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,e present techniques of clinical and histopathological diagnosis hardly distinguish chromophobe renal cell carcinoma (ChRCC)
from renal oncocytoma (RO). To identify differentially expressed genes (DEGs) as effective biomarkers for diagnosis and
prognosis of ChRCC and RO, three mRNAmicroarray datasets (GSE12090, GSE19982, and GSE8271) were downloaded from the
GEO database. Functional enrichment analysis of DEGs was performed by DAVID. STRING and Cytoscape were applied to
construct the protein-protein interaction (PPI) network and key modules of DEGs. Visualized plots were conducted by the R
language. We downloaded clinical data from the TCGA database and the influence of key genes on the overall survival of ChRCC
was performed by Kaplan–Meier and Cox analyses. Gene set enrichment analysis (GSEA) was utilized in exploring the function of
key genes. A total of 79 DEGs were identified. Enrichment analyses revealed that the DEGs are closely related to tissue invasion
and metastasis of cancer. Subsequently, 14 hub genes including ESRP1, AP1M2, CLDN4, and CLDN7 were detected.
Kaplan–Meier analysis indicated that the low expression of CLDN7 and GNAS was related to the worse overall survival in patients
with ChRCC. Univariate Cox analysis showed that CLDN7might be a helpful biomarker for ChRCC prognosis. Subgroup analysis
revealed that the expression of CLDN7 showed a downtrend with the development of the clinical stage, topography, and distant
metastasis of ChRCC. GSEA analysis identified that cell adhesion molecules cams, B cell receptor signaling pathway, T cell
receptor signaling pathway, RIG-I like receptor signaling pathway, Toll-like receptor signaling pathway, and apoptosis pathway
were associated with the expression of CLDN7. In conclusion, ESRP1, AP1M2, CLDN4, PRSS8, and CLDN7 were found to
distinguish ChRCC from RO. Besides, the low expression of CLDN7 was closely related to ChRCC progression and could serve as
an independent risk factor for the overall survival in patients with ChRCC.

1. Introduction

Chromophobe renal cell carcinoma (ChRCC) was the third
most common histologic subtype of renal cell carcinoma,
accounting for about 5%–10% of the total cases of renal cell
carcinoma [1]. Compared with renal oncocytoma (RO), the
second most common benign renal neoplasm, ChRCC was
understood to be a malignant tumor with a high possibility
for metastatic spread and death [2]. Surgical intervention

was the standard treatment for RO, while no standard
therapy has been identified for advanced ChRCC. However,
these two types of renal tumors shared histologic, immu-
nohistochemical, and ultrastructural features, which added
difficulties in accurately distinguishing the two entities [3].
Fluorescence in situ hybridization, proteomics, and cyto-
genetics might be useful techniques but they were costly and
not easily available. ,ere were still clinical dilemmas in
precisely differentiating ChRCC from RO. ,erefore,
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techniques with the confident exact diagnosis of these two
entities needed more investigations, especially via nonin-
vasive means.

,e gene mutation was known to play a key role in the
occurrence, development, and prognosis of diverse diseases.
A large number of studies have shown that gene biomarkers
were widely used in various disease diagnoses and targeted
treatments, like digestive system neoplasms [4], Alzheimer’s
diseases [5], and diabetes mellitus [6]. Moreover, a better
understanding of the molecular mechanisms of tumors
helped discover the more efficient strategies for the man-
agement. Microarray technology showed an increasingly
powerful function on genome-wide scanning and new key
genes discovery in special diseases. Jon Jones discussed the
transcriptional profiling with oligonucleotide microarrays
(22,283 genes) in 49 RCC tumors and explored the bio-
markers associated with tumor progression and metastases
[7], providing abundant resources for further investigation.
However, the results of individual microarray analysis
seemed to be disputable due to its false-positive rates. To
identify new DEGs as effective biomarkers for the diagnosis
in ChRCC and RO, we merged multichip mRNAmicroarray
datasets which were downloaded from Gene Expression
Omnibus (GEO) and used ,e Cancer Genome Atlas
(TCGA) data to analyze the prognostic value of key genes in
ChRCC. All the samples were originated from tumor tissues.

2. Materials and Methods

2.1. GEO Datasets Collection. GEO was a functional geno-
mics data platform [8], collecting gene expression data,
chips, and microarrays from various tumor samples and
nontumor samples (available online: https://www.ncbi.nlm.
nih.gov/geo/). In our study, three mRNA microarray
datasets were eligible for data merging after screening.
GSE12090 (9 ChRCC samples and 9 RO samples) [9],
GSE19982 (15 ChRCC samples and 15 RO samples) [10],
and GSE8271 (10 ChRCC samples and 10 RO samples) [11]
were obtained from GEO. Selection criteria were as follows:
(i) each dataset contained the human gene expression
profiles of ChRCC and RO; (ii) ChRCC and RO tissues
samples were more than 5 in each dataset, respectively; (iii)
series matrix file of each dataset was available and intact.

2.2. Data Batch Normalization and Identification of DEGs.
To remove batch effects which might originate from diverse
laboratory conditions, reagent lots, and personnel differ-
ences and get a standardized gene expression matrix, we
used the R (R version 3.6.0) package SVA [12] with ComBat
function to normalize data. DEGs between ChRCC and RO
samples were screened using the Limma package [13]. ,e
cutoff criteria were set as follows: |log Fold Change|> 1 and
adjusted P value <0.05. Visualized volcano plot and heat
map of DEGs were implemented by R.

2.3. Functional Enrichment Analysis of DEGs. ,e Database
for Annotation, Visualization, and Integrated Discovery
(DAVID) [14] was a well-known online biological

information database for data analysis (available online:
https://david.ncifcrf.gov/). We used DAVID to execute gene
ontology (GO) and Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathway enrichment analyses of DEGs.
Adjusted P< 0.05 showed statistical significance. ,e R
package GOplot [15], DOSE [16], and ClusterProfiler [17]
were utilized to implement visualized figures of GO and
KEGG enrichment analyses.

2.4. PPI Network Construction and Key Modules Screening.
We utilized the Search Tool for the Retrieval of Interacting
Genes (STRING) (version 10.5) [18] in the construction of
the PPI network of DEGs (available online: https://string-db.
org/). DEGs with a combined score ≥0.4 were eligible for
constructing the relational network, which was visualized by
Cytoscape (version 3.7.0) [19]. Subsequently, we used Mo-
lecular Complex Detection (MCODE) [20] (version 1.4.2) to
attain key modules of PPI network and the screening
conditions were set as follows: degree cutoff� 2, MCODE
scores> 5, Max depth� 100, k-score� 2, and node score
cutoff� 0.2.

2.5. Hub Genes Verification Using Oncomine Analysis.
Oncomine was an accessible online tool for discovering new
biomarkers in various tumor microarray databases (https://
www.oncomine.org/). In the present study, Oncomine da-
tabase was used for validating the different expressions of
hub genes between ChRCC and RO tissues. ,ree available
studies were selected, that is, Yusenko’s study [21], Bittner’s
study (not published), and Jone’s study [7].

2.6. Survival Analysis of Key Genes by TCGA. 65 genes ex-
pression datasets and relative clinical information were
downloaded from the TCGA website for the Kidney
Chromophobe projects (TCGA-KICH) (available online:
https://portal.gdc.cancer.gov/). ,e association between key
genes and the overall survival of ChRCC patients was done
by the Kaplan–Meier method. Log-rank P< 0.05 showed
statistical significance.We analyzed the relationship between
clinical features and key genes using the Wilcoxon signed-
rank test and the logistic regression. Univariate Cox analysis
and multivariate Cox analysis were utilized for comparing
the influence of key genes expression on survival along with
other clinical characteristics. All statistical analyses were
conducted using R [22].

2.7. Gene Set Enrichment Analysis. GSEA was a computing
method that identified whether an a priori defined set of
genes had statistical significance and concordant differences
between two biological states [23] (available online: http://
software.broadinstitute.org/gsea/index.jsp). ,e gsea-3.0.jar
version was used for analysis. Tumor tissue samples were
divided into high and low expression groups according to
the median expression level of CLDN7, and then the effect of
the CLDN7 expression on various gene sets was analyzed by
GSEA with the enrichment of MSigDB Collection
(h.all.v6.2.symbols.gmt) [24]. Gene set permutations were
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performed 1000 times for each analysis. Absolute value of
normalized enrichment score (NES)> 1, NOM P value
<0.05, and FDR q value <0.05 were considered as statistical
significance.

3. Results

3.1. Identification of DEGs between ChRCC and RO. After
batch normalization and analysis of the selected datasets
(GSE12090, GSE19982, and GSE8271), 79 DEGs were
identified in ChRCC, including 33 significant upregulated
genes and 46 downregulated genes, compared to RO
(Figures 1(a) and 1(b), and Table S1).

3.2. GO and KEGG Enrichment Analyses of DEGs.
Enrichment analysis was carried out using online DAVID
and the results were visualized by R language. GO analysis
showed that changes in the biological process (BP) of 79
DEGs were significantly enriched in positive regulation of
cytokine-mediated signaling pathway, auditory receptor cell
development, and transport. Changes in cell component
(CC) were prominently enriched in extracellular exosome,
nucleoplasm, and mitochondrial inner membrane
(Figure 1(c) and Table S2). ,e analysis of Molecular
Function (MF) enrichment showed no statistical signifi-
cance. KEGG enrichment results reported that 79 DEGs
were mainly enriched in FoxO signaling pathway, cell ad-
hesion molecules, melanoma, and thyroid cancer
(Figure 1(d) and Table S2).

3.3. PPI Network Construction and Key Modules Screening.
,e result of PPI network of DEGs was illustrated in
Figure 2(a). A total of 43 nodes with 77 edges were reflected
in this established network system. ,e statistical results in
Figure 2(b) indicated that CDH1, KRAS, CLDN7, and
ESRP1 were the most important genes in the network. After
screening the modules of the network by Cytoscape soft-
ware, two significant modules were eligible. Module 1
contained 9 hub genes (CLDN7, ESRP1, ZEB1, CLDN4,
CDH1, PRSS8, RAB25, MAL2, and AP1M2) (Figure 2(c)) as
well as 5 hub genes (GNAS, ANGPT1, RECK, KRAS, and
PRKAR1A) in module 2 (Figure 2(d)).

3.4. Validation of the Hub Genes. After the validation using
Oncomine online data, we found that CLDN7, ESRP1,
AP1M2, CLDN4, PRSS8, and ZEB1 were differentially
expressed between ChRCC and RO (P< 0.05), which were
consistent with the results performed by GEO data (Figure 3).

3.5. SurvivalAnalysis ofHubGenes. Clinical data (65 ChRCC
samples) were downloaded from TCGA. To analyze the
overall survival in patients with ChRCC, the Kaplan–Meier
curve was performed according to the high and low ex-
pressions of each hub gene. ,e results suggested that pa-
tients with low CLDN7 (P � 0.017) or GNAS (P � 0.033)
expression had significantly worse overall survival than
those with high expression (Figure 4).

3.6.�e Prognostic Value of Significant Hub Genes in Patients
with ChRCC. ,e two aforementioned hub genes (CLDN7
and GNAS) associated with the overall survival were selected
for further prognostic evaluation in patients with ChRCC.
Subgroup analyses suggested that CLDN7 showed a de-
creasing trend with the development of the clinical stage,
topography, and distant metastasis (Figure 5(a)). ,e
downtrend of GNAS was associated with the progress of
lymph nodes metastasis but not clinical stage, topography,
and distant metastasis (Figure 5(b)). Univariate analysis
indicated that tumor topography, lymph node metastasis,
and distant metastasis as well as the low expression of
CLDN7 (HR� 0.97, 95% CI (0.932–0.990)) (Table 1) were
independent risk factors for the overall survival in the pa-
tients with ChRCC. However, multivariate analysis adjusted
by age, gender, clinical stage, topography, lymph node, and
distant metastasis indicated that CLDN7 no longer achieved
statistical significance, but distant metastasis and lymph
nodes metastasis remained statistical significance.

3.7. CLDN7-Related Signaling Pathway Identification Using
GSEA. GSRA was applied to analyze signaling pathways
activated in ChRCC according to the CLDN7 expression.
,e results showed that cell adhesion molecules cams, B cell
receptor signaling pathway, T cell receptor signaling path-
way, RIG-I like receptor signaling pathway, Toll-like re-
ceptor signaling pathway, and apoptosis pathway were
associated with the expression of CLDN7 (Figure 6). ,e
details were reported in Table 2.

NES: normalized enrichment score; NOM: nominal;
FDR: false discovery rate. Gene sets with NOM P value <0.05
and FDR q value <0.05 are considered as statistical
significance.

4. Discussion

Conventional methods are sometimes hard to distinguish
ChRCC from RO due to the overlap of morphological and
ultrastructural features. ChRCC is a malignant tumor with
higher mortality than RO, so next-generation diagnostic
methods with high efficiency and high accuracy are urgently
demanded. It has been certified that gene mutations had
significant effects on the occurrence, development, and
prognosis of tumors. ,e expression of distinctive genes in
some diseases not only benefits the early diagnosis but also
provides targeted therapy. ,erefore, it is of great value to
explore new diagnostic methods from the genetic per-
spective. A previous report [25] showed that the deletion of
ERBB4 and RB1 might provide a sensitive and specific
method to differentiate ChRCC from RO. ,e study by
Ehsani et al. [26] showed that BCA2 could be a biomarker
that might be used in the distinction between RO and its
mimickers. However, none of these was entirely specific.
Recently, microarray technology has shown a powerful
potential in exploring the genetic alteration in different
tumor tissues and it has been widely utilized in identifying
new biomarkers in colorectal cancer [27], breast cancer [28],
and gastric carcinoma [29].
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To reduce false-positive rates which might originate
from diverse laboratory conditions, reagent lots, and other
uncontrolled conditions, 3 mRNA microarray datasets were
merged to gain DEGs between ChRCC tissues and RO
tissues. Compared with RO, there were 79 DEGs identified
in ChRCC, including 33 upregulated genes and 46 down-
regulated genes. KEGG and GO enrichment analyses were
implemented to explore the interacted function of the DEGs.
,e results of GO analysis showed that the DEGs (CD74,

PAFAH1B1) were associated with the biological process of
the cytokine-mediated signaling pathway, suggesting that
these two genes may have the potential to stimulate tumor
growth and progression [30]. Moreover, cell component
analysis noted that the vast majority of DEGs, like MAL2,
PRSS8, RAB25, GNAS, and CDH1, were mainly located in
the extracellular exosome. Previous reports have certified
that exosomes can act as functional mediators in cell in-
teraction, resulting in cancer metastasis [31]. Four
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Figure 1: DEGs identification and function enrichment of DEGs. (a) Volcanomap of DEGs between ChRCC and RO tissues.,e red points
represent upregulated genes and the green points represent downregulated genes. (b) Heat map of the 79 DEGs based on the |log Fold
Change|> 1 and adjusted P value <0.05. (c) GO terms in the enrichment analysis of the 79 DEGs. (d),e KEGG pathways in the enrichment
analysis of the 79 DEGs.
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Figure 3: Continued.
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Figure 3: ,e results of hub genes expression in ChRCC and RO tissues from Oncomine data. Each plot denotes the log2 median-centered
intensity of the gene expression of every single sample.,e t-test was performed on the relevant results (∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001,
and ∗∗∗∗P< 0.0001). (a) CDH1 expression. (b) KRAS expression. (c) CLDN7 expression. (d) ESRP1 expression. (e) AP1M2 expression.
(f ) CLDN4 expression. (g) PRSS8 expression. (h) ZEB1 expression. (i) GNAS expression.
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Figure 4: Continued.
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Table 1: Univariate analysis and multivariate analysis of the correlation of CLDN7 expression with overall survival among ChRCC patients.

Parameter
Univariate analysis Multivariate analysis

HR 95%CI P HR 95%CI P

Age 1.06 0.999–1.117 0.055
Gender 1.54 0.385–6.189 0.540
Stage 7.63 2.616–22.23 0.000∗ 1.282 0.171–9.61 0.0509
T 10.11 2.155–47.42 0.003∗ 1.302 0.104–16.33 0.0838
M 23.67 4.649–120.543 0.000∗ 4.628 1.484–44.27 0.024∗
N 7.44 3.138–17.659 0.000∗ 8.744 1.474–51.88 0.017∗
CLDN7 0.97 0.932–0.990 0.017∗ 0.985 0.921–1.05 0.668
T, Topography; N, lymph node; M, distant metastasis; HR, hazard ratio; CI, confidence interval. ∗P< 0.05 shows statistical significance.
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Figure 4: Overall survival in patients with ChRCC.,e Kaplan–Meier curve is performed according to the high and low expressions of each
huge gene in ChRCC. P< 0.05 shows statistical significance.
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Figure 5: Relationship between gene expression and clinicopathologic characteristics. (a) Association between CLDN7 expression and
clinical stage, topography, lymph nodes, and distant metastasis. (b) Association between GNAS expression and clinical stage, topography,
lymph nodes, and distant metastasis. T: topography; N: lymph node; M: distant metastasis.
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significant pathways were found after KEGG enrichment
analyses. FoxO signaling pathway [32], cell adhesion mol-
ecules pathway [33], and Rap1 signaling pathway [34] have
been proved to be closely related to tissue invasion and
metastasis of cancer.

Two key modules including 14 hub genes were selected
after screening by STRING and MCODE. CDH1, KRAS,
and CLDN7 seemed to locate at the hub of the network
because the numbers of edges linked to these genes were the
largest. Cadherin-1, calcium-dependent cell adhesion
proteins, was the translation product of CDH1. ,e

function of cadherin-1 was to promote adhesion between
adjacent cells and played a key role in cell development,
tissue maintenance, and tumor inhibition [35]. Our study
found that the expression of CDH1 was lower in ChRCC
compared with RO, suggesting that CDH1 inhibition might
be one of the key factors for early metastasis in ChRCC.
Moreover, the study of Costa et al. reported that CDH1
methylation levels varied from different renal cell tumors
and the results pointed out that CDH1 hypermethylation
levels were significantly lower in ChRCC compared with
RO [36]. GTPase KRas, the protein encoded by KRAS,
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Figure 6: Enrichment plots by GSEA. Genes related to cell adhesion molecules cams, B cell receptor signaling pathway, T cell receptor
signaling pathway, RIG-I like receptor signaling pathway, Toll-like receptor signaling pathway, and apoptosis pathway are differentially
enriched in ChRCC cases with high CLDN7 expression.

Table 2: Relative pathways associated with the expression of CLDN7.

Name ES NES NOM P value FDR q value
KEGG_CELL_ADHESION_MOLECULES_CAMS 0.68 1.9 0.000 0.033
KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY 0.65 1.83 0.002 0.031
KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY 0.63 1.82 0.000 0.029
KEGG_RIG_I_LIKE_RECEPTOR_SIGNALING_PATHWAY 0.60 1.79 0.004 0.025
KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY 0.59 1.72 0.004 0.041
KEGG_APOPTOSIS 0.57 1.70 0.006 0.051
NES: normalized enrichment score; NOM: nominal; FDR: false discovery rate. Gene sets with NOM P value <0.05 and FDR q value <0.05 are considered as
statistical significance.

8 BioMed Research International



showed a powerful function in the regulation of cell
proliferation. Besides, KRAS mutation in colorectal cancer
has been reported and KRAS/BRAF genes mutation might
make EGFR inhibitors ineffective [37]. Results of Kozma
et al.’s investigation showed that KRAS amplification was
associated with tumor size and the pathological grade,
indicating that KRAS amplification might account for a
more rapid progression of renal clear cell cancer [38].
CLDN7 (Claudin 7), a member of the claudin family,
played an important role in the tight junction formation
and function of the intercellular space [39]. Claudin family
proteins have been declared to be expressed differently in
diverse tumor tissues and CLDN7 was particularly relevant
to gastric cancer [40], colon cancer [41], and pancreatic
cancer [42]. In our study, the expression of CLDN7 in
ChRCC was three times higher than the expression in RO,
indicating that CLDN7 had the potential to differentiate
ChRCC from RO. ,e result was further supported by a
meta-analysis including three observational studies [43].
Overall, the majority of key genes found by pooled
microarray datasets in our study were somewhat similar
compared with previous reports.

To provide more significant clinical values, we further
performed the prognostic analyses of each hub gene. Clinical
information and gene expression matrix were downloaded
from TCGA database. Results showed that the overall
survival was correlated with CLDN7 and GNAS but not with
the other hub genes (CDH1, KRAS, ESRP1, AP1M2,
CLDN4, PRSS8, and RAB25). Although Li et al.’s study
reported that the downregulated expression of CLDN7 was
correlated with the progression and poor prognosis in
CCRCC [44], the relationships between CLDN7, GNAS, and
the prognosis of ChRCC were firstly reported in our study.
Even more remarkably, subgroup analyses revealed that
CLDN7 showed a decreasing trend with the progress of the
clinical stage, topography, and distant metastasis in ChRCC.
All these factors were convinced to be the worse prognosis in
cancer. In addition, Univariate Cox analyses indicated that
the expression of CLDN7 might be a significant biomarker
for ChRCC prognosis but not GNAS. However, the result
did not achieve statistical significance after multivariate Cox
analyses. More investigations were required to certify the
function of CLDN7 in ChRCC prognosis.

,e association between CLDN7 and cancer prognosis
varied from diverse cancers. ,e low expression of CLDN7
was found to be correlated with breast cancer grade and
metastasis [45] as well as colon cancer progression [46].
Some studies showed inverse results, indicating that the
overexpression of CLDN7 increased proliferation and mi-
gration in gastric adenocarcinoma [47] and promoted in-
vasion in ovarian cancer [48]. However, the mechanism of
CLDN7 in cancer progression and metastasis remained
unknown. ,e downregulation of CLDN7 might decrease
the expression of E-cadherin, leading to the loss of epithelial
architecture, increasing invasion [49]. Besides, Li et al.’s
study reported that CLDN7 might suppress cell growth and
metastasis by inducing cell apoptosis and inhibiting the
epithelial-mesenchymal transition pathway in CCRCC [44].
To further explore the mechanism of CLDN7 in ChRCC, we

performed GSEA. ,e results showed that cell adhesion
molecules cams, B cell receptor signaling pathway, T cell
receptor signaling pathway, RIG-I like receptor signaling
pathway, Toll-like receptor signaling pathway, and apoptosis
pathway were differentially enriched in high CLDN7 ex-
pression phenotype, offering a potential mechanism for
further investigations.

Overall, bioinformatic analysis using mRNA microarray
datasets from GEO and TCGA indicated that CLDN7 might
provide evidence for the diagnostic and prognostic value in
ChRCC. However, our study was performed at a bio-
informatics level and the results were limited to the number
of microarray datasets. Clinical investigation and biological
experiments were imperative.

5. Conclusion

14 hub genes, especially ESRP1, AP1M2, CLDN4, and
CLDN7, were found to differentiate ChRCC from RO.
Besides, the low expressions of CLDN7 are related to tumor
progression and high overall survival rates in patients with
ChRCC. CLDN7 can serve as a helpful biomarker in the
diagnostic and prognostic evaluations of ChRCC.
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