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Abstract

The medial entorhinal cortex and the hippocampus are brain regions specialized in spatial

information processing. While an animal navigates around an environment, grid cells in the

medial entorhinal cortex spike at multiple discrete locations, forming hexagonal grid pat-

terns, and each grid cell is spatiotemporally dynamic with a different grid size, spacing, and

orientation. In contrast, place cells in the hippocampus spike when an animal is at one or

more specific locations, called a “place field”. While an animal traverses through a place

field, the place cell’s spike phases relative to the hippocampal theta-frequency oscillation

advance in phase, known as the “spike phase precession” phenomenon and each spike

encodes the specific location within the place field. Interestingly, the medial entorhinal corti-

cal grid cells and the hippocampal place cells are only one excitatory synapse apart. How-

ever, how the spatiotemporally dynamic multi-peaked grid cell activities are transformed into

hippocampal place cell activities with spike phase precession phenomenon is yet unknown.

To address this question, we construct an anatomically and physiologically realistic neural

network model comprised of 10,000 grid cell models, each with a spatiotemporally dynamic

grid patterns and a place cell model connected by excitatory synapses. Using this neural

network model, we show that grid cells’ spike activities with spatiotemporally random and

diverse grid orientation, spacing, and phases as inputs to place cell are able to generate a

place field with spike phase precession. These results indicate that spatiotemporally random

and diverse grid cell spike activities are essential for the formation of place cell activity

observed in vivo.

Introduction

The ability to locate one’s current position and to navigate around in the external environment

is critical for survival. The medial entorhinal cortex (MEC) and the hippocampus of the

PLOS ONE | https://doi.org/10.1371/journal.pone.0225100 November 14, 2019 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Park SW, Jang HJ, Kim M, Kwag J (2019)

Spatiotemporally random and diverse grid cell

spike patterns contribute to the transformation of

grid cell to place cell in a neural network model.

PLoS ONE 14(11): e0225100. https://doi.org/

10.1371/journal.pone.0225100

Editor: Gennady Cymbalyuk, Georgia State

University, UNITED STATES

Received: December 11, 2018

Accepted: October 29, 2019

Published: November 14, 2019

Copyright: © 2019 Park et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: This study was supported by the Basic

Science Research Program (NRF-

2013R1A1A2053280, NRF-2016R1A1A05921614),

the Brain Research Program (NRF-

2015M3C7A1028790) and the Brain Convergence

Research Program (NRF-

2019M3E5D2A01058328) through the National

Research Foundation (NRF) funded by the Korean

government (MSIT) to JK. HJJ was supported by a

http://orcid.org/0000-0002-3245-6681
http://orcid.org/0000-0002-0091-6532
https://doi.org/10.1371/journal.pone.0225100
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225100&domain=pdf&date_stamp=2019-11-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225100&domain=pdf&date_stamp=2019-11-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225100&domain=pdf&date_stamp=2019-11-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225100&domain=pdf&date_stamp=2019-11-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225100&domain=pdf&date_stamp=2019-11-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225100&domain=pdf&date_stamp=2019-11-14
https://doi.org/10.1371/journal.pone.0225100
https://doi.org/10.1371/journal.pone.0225100
http://creativecommons.org/licenses/by/4.0/


mammalian brain are known to be the centers for such spatial information processing (Fig

1A). There, two different types of spatially-selective neurons have been identified: grid cells in

the MEC [1–3] and place cells in the hippocampus [4–6] (Fig 1B). MEC grid cells show

increased spike firing rate at multiple discrete locations called “grid fields” (Fig 1C, top) and

these multi-peaked grid fields are arranged to form hexagonal grid-like firing patterns that are

regularly spaced over the entire environment [1]. By maintaining a positional relationship

with the environment that is independent of the contextual information [7], grid fields effec-

tively act as grid coordinates of the environment. These grid field patterns are spatiotemporally

diverse and dynamic, where grid field size and grid spacing (distance between individual grid

fields) increase as the grid cell’s anatomical location moves from the dorsal to ventral part of

the MEC [8]. In addition, grid orientation (the rotation of grid axes) and the grid phase (x-y

axis of the firing vertices) [1, 9, 10] can be changed. Such spatiotemporally diverse and

dynamic grid cell characteristics allow for multiple grid cells to code the entire environment

[1, 9].

In contrast, place cells in the CA1 area of the hippocampus typically spike at one or more

discrete locations in the environment called “place fields” [5, 6, 11, 12] (Fig 1C, bottom). Inter-

estingly, when the rat traverses through the place field, the spike phases of a place cell relative

to the ongoing theta-frequency oscillation progressively advance 360˚ over each theta cycle [6,

13]. Such a phenomenon, which is called a “spike phase precession”, demonstrates that spike

firing rate codes the place field within the environment, while each spike phase codes for the

specific location of an animal within the place field [6].

Although these two types of neurons have distinct functional roles in spatial information

processing, how such spiking characteristics arise in the neural network of the brain is still

unclear. Anatomically, grid cells located in layer III of the MEC directly project their axons to

place cells in the CA1 area of the hippocampus [14] (Fig 1B). Thus, being only a single synapse

apart, grid cells have naturally been assumed to be a precursor of place cells [15, 16]. Indeed,

bilateral MEC lesions disrupted the spike phase precession in CA1 place cells [17]. Moreover,

pharmacological [18], surgical [19], optogenetic [20], and chemogenetic [21] blockade of syn-

aptic transmission between the MEC and the CA1 area of the hippocampus impaired hippo-

campal place cell activity. These studies strongly suggest that inputs from the MEC are critical

for the generation of a place cell. However, it is still a mystery how multi-peaked hexagonal

grid spike patterns of grid cells in the MEC could be transformed into spike activities in spe-

cific place fields of hippocampal place cells with spike phase precession, being only a single

synapse apart [14, 22].

Simultaneous recordings of anatomically connected MEC grid cells and hippocampal place

cells will give us clues to whether MEC grid cells are indeed precursors of hippocampal place

cells. However, this experimental technique is currently unavailable. Hence, many theoretical

and computational modeling studies have been attempted to overcome the experimental limi-

tation [15, 16, 23–28]. In these models, MEC grid cells with different sizes, spacings, and orien-

tations [16, 23–26], as well as synaptic learning rules [23, 24, 27] have been shown to influence

the grid-to-place cell transformation. Moreover, non-spatial inputs [24, 28, 29] and inhibition

[30] have also been shown to play roles in grid-to-place cell transformation. Although success-

ful in demonstrating grid-to-place cell transformation, none of these models replicate the

other spatial feature of the place cell: spike phase precession [6].

In vivo patch-clamp recordings of hippocampal place cells have revealed that place cells

receive depolarizing excitatory ramp-like input (ERI) while the rat is in the place field [31],

and such ERIs have been shown to cause spike phase precession in hippocampal neurons in in
vitro experiments [32–34] and in an in silicomodeling study [33]. This shows that transforma-

tion of the MEC grid cell inputs to ERI would dictate whether spike phase precession would
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occur. Thus, accurate modeling of the physiological and anatomical characteristics of grid

cells, place cells, and the synapse between them is required. However, previous computational

models investigating grid-to-place cell transformation modeled place cells as reduced inte-

grate-and-fire neurons [30], simplified spiking units [25, 26] or even non-spiking units [16,

35], where the role of place cell models was to simply sum the firing rates of grid cells [16, 25],

thus, no ERI nor spike phase precession was observed in these studies. Furthermore, place

cells in the CA1 area of the hippocampus receive around 100–1,000 synaptic inputs directly

from neurons in the MEC [16, 22, 36]. The inputs from the MEC are spatiotemporally diverse

and produce dynamic grid patterns that vary in size, spacing, and orientation, and the MEC

axons make excitatory synapses located 300–400 μm from the soma of the place cell in the

CA1 area of the hippocampus [14, 22, 37]. These anatomical and physiological details should

also be taken into close consideration in order to closely simulate the in vivo characteristics of

grid-to-place cell transformation.

In this study, we developed a computational neural network model consisting of an in vivo-

like grid cell model and a multi-compartment Hodgkin-Huxley place cell model connected by

anatomically and physiologically realistic excitatory synapses that closely reflects the in vivo
and in vitro recorded grid cell and place cell characteristics. Using this neural network model,

we investigated the conditions under which grid cell spike outputs would transform into a

place field with ERI at the place cell that can cause spike phase precession [33]. We show that

grid cells with spatiotemporally random and diverse grid patterns as inputs to place cells could

generate robust grid-to-place cell transformation with spike phase precession, suggesting that

random and diverse neural activities could explain spatial information processing in the brain.

Material and methods

To investigate how spatiotemporally diverse and dynamic hexagonal grid-like spike patterns of

grid cells in the MEC could be transformed into spike activities of hippocampal place cells at

one or more specific locations with spike phase precession, we built a computational neural

network model consisting of MEC grid cells and a hippocampal place cell connected by excit-

atory synapses.

Fig 1. Place cell in the hippocampus and grid cell in the medial entorhinal cortex of the rodent brain. (A)

Anatomical location of the hippocampus and the medial entorhinal cortex (MEC) in the rodent brain. (B) Anatomical

neural circuit of the hippocampus and the MEC. Grid cell (blue) in layer III of the MEC provides direct synaptic input

to place cell (red) in the hippocampus. (C) Examples of spiking patterns of a grid cell (top, blue) and a place cell

(bottom, red) while a rodent navigates (trajectory of a rodent: gray line) around a 1 m × 1 m square environment

(black square). A grid cell generates spikes (blue dots) at multiple locations, forming haxagonal grid patterns (black

hexagon) called “grid fields” (top) while a place cell generates spikes (red dots) selectively at one or more specific

locations (bottom) called a place field.

https://doi.org/10.1371/journal.pone.0225100.g001
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In order to capture the navigational characteristics of rodents into the computational neural

network model of grid cell and place cell, the positional data of a freely moving rodent within a

1 m × 1 m square box obtained from the publicly available dataset (http://www.ntnu.edu/

kavli/research/grid-cell-data) was used.

In vivo-like grid cell model

We developed an in vivo-like grid cell model by modifying the conventional oscillatory inter-

ference (OI) grid cell model [38] to generate spikes in Gaussian manner, as observed in vivo
[1, 3, 16]. The conventional OI grid cell model realistically replicates the spatially periodic fir-

ing patterns of grid cells as a consequence of interference between background theta-frequency

oscillation and six velocity-controlled oscillation (VCO) during exploration [9, 38–40]. The

frequency of each VCO is determined by the speed of the animal headed in a specific preferred

direction (ϕpref) and each of the six VCOs has preferred directions that are separated by 60˚ (0,

60, 120, 180, 240, and 300˚).

fVCOiðtÞ ¼ ftheta þ bsðtÞðcosð;prefi � ;ðtÞÞÞ ð1Þ

Here, ftheta is set to 10 Hz. s(t) and ϕ(t) are the speed and direction derived from the velocity

of the rat, respectively, and β is a positive constant that controls the field size and spacing of

the grid field. The interference of six VCOs and background thetafrequency oscillation is cal-

culated by g(t), as in the following equation:

gðtÞ ¼
PnVCO

i¼1
ðcosð2pfthetatÞ þ cosð2pðftheta þ fVCOiÞtÞÞ

¼ nVCOcosð2pfthetatÞ þ
PnVCO

i¼1
ðcosð2pðftheta þ fVCOiÞtÞÞ

ð2Þ

When g(t) reaches the threshold (gthres = 1 × the number of VCOs = 6), the OI grid cell

model is assumed to have generated a spike, resulting in a spatially periodic hexagonal grid cell

firing pattern, as seen in Fig 2A.

To make the firing rate of the OI grid cell model more in vivo-like as observed in in vivo
experimental studies [1, 3] and a computational modeling study [16] because the firing rate of

the OI grid cell model was unphysiologically higher than that of the in vivo grid cell data (Figs

2 and 3), we applied a Gaussian probability curve adopted from a Gaussian-approximated

place field model [4] to each grid field in the conventional OI model (Fig 2C).

pGauss tð Þ ¼
1

s
ffiffiffiffiffiffi
2p
p exp �

ðdðtÞ � mÞ2

2s2

� �

ð3Þ

pGauss is the spike probability at current position t; μ is the mean value in the Gaussian proba-

bility, d is the distance between the maximum firing rate location and the nearest center of the

firing fields, and σ is the standard deviation set to one-third of the firing field radius to make

the firing field size and firing rate similar to the in vivo grid cell data (Figs 3 and 4).

In order to capture the spatiotemporally diverse and dynamic grid patterns, we generated a

pool of 10,000 grid cells that each fires with different firing patterns by varying β and ϕpref uni-

formly within the ranges of 1� β� 3.5 and 0� ϕpref< 60 (Figs 5 and 6) in the in vivo-like OI

model. From the pool of 10,000 grid cells, 50–500 grid cells were randomly selected as inputs

to the place cell model (Figs 7–10). We analyzed the randomness of the grid cell parameter

space (β, ϕpref) by calculating the relative ratio of entropy of randomly chosen parameter space

(β, ϕpref) to the maximal entropy of parameter space (β, ϕpref) of grid cells (Fig 7). Here, the
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ratio of entropy indicates the randomness of the chosen parameter set (Eq 4).

Randomness ¼ Ex2fb;�pref g=MaxðEx2fb;�pref gÞ

Ex2fb;�pref g ¼ �
P
ðpðxÞ � log

2
pðxÞÞ

ð4Þ

Fig 2. In vivo-like oscillatory interference (OI) grid cell model. (A) Trajectory of a rodent navigating within a 1

m × 1 m square environment obtained from in vivo recording (black line) and spikes (red dots) simulated with

conventional oscillatory interference (OI) grid cell model is superimposed to the trajectory. (B) Firing rate of grid cell

in the square environment, called the “firing rate map” (red: peak firing rate (323.53 Hz); blue: no spike (0 Hz)). (C)

Gaussian distribution (σ = 0.069, center of grid field to border = 3σ) used to model in vivo-like grid field spike pattern

(red dots). (D) Spikes (red dots) from in vivo-like OI grid cell model plotted over trajectory (black line). (E) Firing rate

map of in vivo-like OI grid cell model (red: peak firing rate (21.51 Hz); blue: no spike (0 Hz)).

https://doi.org/10.1371/journal.pone.0225100.g002
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Hodgkin-Huxley place cell model

The hippocampal place cell was modeled using the Hodgkin-Huxley conductance-based

model with 155 compartments that was previously used in other study [33].

Cm
dVm
dt
¼ � �gL Vm � Eð Þ þ �gNam

3hs Vm � Eð Þ þ �gKDRn Vm � Eð Þ þ �gKMn Vm � Eð Þð

þ�gKAnl Vm � Eð Þ þ �ghl Vm � Eð ÞÞ ð5Þ

Fig 3. Grid fields of in vivo-like OI model, in vivo grid cell data, and OI model. (A) Spike (red dots) over trajectory (black line) and (B) firing rate map

simulated with in vivo-like OI model. (C) The spatial autocorrelogram of firing rate map plotted as color plot (correlation coefficient of 1.0: yellow,

correlation coefficient of 0.0: blue). (D-F) Same figures as (A-C), but with in vivo grid cell data. (G-I) Same figures as (A-C), but with grid cell spikes

simulated with conventional OI grid cell model.

https://doi.org/10.1371/journal.pone.0225100.g003
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Cm is the membrane capacitance and Vm is the membrane potential. The model had leak (max-

imal conductance, �gL = 12.5 μS/cm2), voltage-gated Na+ (�gNa = 9.4mS/cm2), delayed-rectifier

K+ (�gKDR = 1.05mS/cm2), M-type K+ (�gKM = 45 μS/cm2), A-type K+ (�gKA = 1.04mS/cm2) and

hyperpolarization-activated (�gh = 5 μS/cm2) conductances with a channel kinetics (gating vari-

ables:m, h, s, n, l) and distributions from a previously published model [41].

Fig 4. Comparison of in vivo-like OI model, in vivo grid cell data, and OI model. (A) Maximum firing rate, (B) grid

field area, (C) grid spacing between grid fields and (D) grid score of in vivo-like OI model (empty), in vivo grid cell

data (gray), and the OI grid cell model (black). (�: p< 0.05, �� < 0.01, ��� < 0.001, n.s> 0.05).

https://doi.org/10.1371/journal.pone.0225100.g004

Fig 5. Modulation of grid field orientation of in vivo-like OI model by VCO (ϕVCO) preferred direction. (A-D) The

spatial autocorrelogram of the in vivo-like OI model when ϕVCO values are (A) 0˚, (B) 15˚, (C) 30˚, and (D) 45˚ with β
fixed at 2 Hz/(m/s).

https://doi.org/10.1371/journal.pone.0225100.g005
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To simulate the hippocampal theta-frequency oscillation in place cells during the naviga-

tion [6, 13, 42, 43], inhibitory conductance (ginh(t)) oscillating at a slightly high theta-fre-

quency (10 Hz) that was observed in individual place cells [6, 13, 44, 45] was injected onto the

soma of the Hodgkin-Huxley place cell, given that hippocampal theta-frequency oscillation is

generated by inhibitory interneurons [46].

IinhðtÞ ¼ sinð2pftÞ � ginhðtÞ ½VmðtÞ � ERev� ð6Þ

Iinh(t) is the current to be injected onto the soma of the place cell model to simulate theta-fre-

quency oscillation, f is the frequency set to 10 Hz, Vm(t) is the membrane potential and ERev is

the reversal potential of inhibitory oscillating conductance set to -70 mV. Step current was

simulated to the Hodgkin-Huxley place cell to sustain a minimum mean firing rate of 2.5 Hz

in the place cell [47].

Excitatory synapse model

The excitatory synaptic inputs between the grid firing patterns from a grid cell and a place cell

were modeled on the dendrite located 315.95 μm or spatially distributed 300–400 μm from the

soma of the CA1 pyramidal cell, to reflect the neurons in MEC layer III synapses to the distal

Fig 6. β controls the size and spacing of grid patterns of the in vivo-like OI model. (A-F) The spatial autocorrelogram

of the in vivo-like OI model when β values are (A) 1.0, (B) 1.5, (C) 2.0, (D) 2.5, (E) 3.0, and (F) 3.5 Hz/(m/s) with ϕVCO
fixed at 30˚. (G) Grid field size (open circle) plotted as a function of β, fitted with an exponential curve (black line, r2 =

0.96). (H) Grid field spacing (open circles) plotted as a function of β, fitted with an exponential curve (black line, r2 =

0.96).

https://doi.org/10.1371/journal.pone.0225100.g006
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dendrites of the CA1 pyramidal neuron (Figs 7B and 8A) [14, 22, 37]. The spike timings of ran-

domly selected grid cells were transformed into the excitatory postsynaptic potential (EPSP) of

the place cell using the single exponential function of excitatory postsynaptic conductance

(EPSG):

EPSG tð Þ ¼ w exp �
t

tdecay

 ! !

ð7Þ

where τdecay is the decay time constant (30 ms) and w is the synaptic conductance (200 pS)

which were used in the computational CA1 PC model based on an unitary EPSP measured at

the distal dendrites of CA1 PC in vitro [48, 49] to mimic the perforant path-evoked EPSP

amplitude (~7 mV) recorded in CA1 pyramidal cells in vitro [50].

Data analysis

Analyzing the firing rate map and spatial correlation plot. To analyze the firing rate

map, the 1 m × 1 m square environment was divided into 3 cm by 3 cm bins, and the total

Fig 7. Summation of 250 spatiotemporally random grid cell inputs to single distal dendritic synapse of place cell could generate grid-to-place

field transformation. (A) Pool of 10,000 grid cells generated with in vivo-like OI grid cell model through varying orientation (ϕVCO) and spacing

(β). (B) 250 grid cells, each with different spatiotemporal grid field patterns, were randomly selected from the pool and were used to generate

excitatory inputs to Hodgkin-Huxley hippocampal place cell model through a synapse located 315.95 μm from the soma. (C) Distribution of (ϕVCO,

β) of 250 randomly selected grid cells (color bar: number of grid cells). (D) Spikes of Hodgkin-Huxley place cell model (red dots) plotted over

trajectory (black line). (E) Firing rate map of the Hodgkin-Huxley place cell model. (F) The proportion of viable place fields generated by 100

different sets of grid field patterns, each set containing 250 spatiotemporal random grid fields patterns.

https://doi.org/10.1371/journal.pone.0225100.g007
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number of spikes in each bin was divided by the total time spent in the bin [3]. The rate map

was spatially smoothed with a moving boxcar window of 5 × 5 adjacent bins of each bin along

both x and y axes [10]. The bin with the maximum firing rate and adjacent bins with at least

20% of the maximum firing rate were considered as firing fields [1]. We determined a place

field to be viable when the size of firing field was larger than 15 adjacent bins and was smaller

than 60% of the total environment size [51, 52]. To test the reliability of place field generation,

we repeatedly and randomly generated grid cell inputs 100 times and calculated the proportion

of viable place fields (Figs 7F, 10G–10I).

To analyze the grid characteristics, we used an autocorrelogram of the firing rate map (Figs

3C, 3F, 3I, 5 and 6) [1]. The autocorrelogram was calculated by taking the spatial correlation of

the fields X and Y, where X and Y are identical to each other with the field size of M by N [3],

as shown in Eq 8.

cðk; lÞ ¼
PM� 1

m¼0

PN� 1

n¼0
Xðm; nÞYðm � k; n � lÞ;

� ðM � 1Þ � k � M � 1

� ðN � 1Þ � k � N � 1
ð8Þ

(

For each autocorrelogram, the spacing of the grid firing field was measured from the center

of the spatial autocorrelation plot to the nearest peaks around the center and averaged (Fig 4C)

[1]. If there were not enough peaks near the center, the circular shape was fitted using the out-

ermost peak [1]. To analyze the grid score, which quantifies periodicity and regularity of the

grid pattern [3, 53], the autocorrelation plot was repeatedly rotated by 6˚ and the spatial corre-

lation between the rotated autocorrelation plot and the original autocorrelation map was cal-

culated as a function of rotated degree. The grid score was calculated as the difference between

the minimum correlation value at 60˚ and 120˚ and the maximum correlation value at 30˚,

90˚, and 150˚ (Fig 4D).

The peak position of the excitatory ramp input. To analyze the characteristics of place

cell, we also analyzed the firing rate map of the CA1 pyramidal cell with same procedures used

for the grid cell. In the smoothed firing rate map of the 1 m × 1 m square environment, we

defined a “place field” as a cluster of �15 adjacent bins with a firing rate > 20% of the peak

firing rate [54, 55]. The membrane potential of the place cell when the rat was within the

Fig 8. Summation of 250 spatiotemporally random grid cell inputs to spatially distributed synapses in distial dendrites of place cell model could generate

grid-to-place field transformation. (A) 250 grid cells, each with different spatiotemporal grid field patterns, were randomly selected from the pool and were

used to generate excitatory inputs to Hodgkin-Huxley hippocampal place cell model through 250 excitatory synapses spatially distrubted at 300–400 μm from

the soma. (B) Spikes of Hodgkin-Huxley place cell model (red dots) plotted over trajectory (black line). (C) Firing rate map of the Hodgkin-Huxley place cell

model.

https://doi.org/10.1371/journal.pone.0225100.g008
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place field was analyzed to characterize the shape of the excitatory ramp input (ERI), as

shown in Fig 11. To classify the shapes of ERIs (Fig 11), ERI was smoothed by the Smooth-

ing Spline method with a smoothing factor of 0.9 [56]. When the peak position of the

smoothed ERI (Rpeak) was smaller than 35% of the total length of the ERI, ERI was classified

as left-skewed ERI (L-ERI). When the Rpeak was larger than 65% of the total length of ERI,

ERI was classified as right-skewed ERI (R-ERI). Otherwise, ERI was classified as symmetric

ERI (S-ERI).

Phase calculation. The spike phase (Φ) of place cell at time t was calculated relative to the

theta- frequency inhibitory oscillation (ginh, Eq 6), where the peak of theta-frequency oscilla-

tion was defined as 0˚ or 360˚ (Fig 12A and 12B). t1 represents the time of the first previous

peak of the background oscillation compared to the spike time, t, and t2 represents the time of

the first background oscillation peak after the spike time, t.

� ¼ 360� �
t � t1
t2 � t1

ð9Þ

In analyzing the spike phase precession, the phase of the spikes elicited within the place

field was plotted as distance travelled across the place field (Fig 12C–12E). To quantify the

Fig 9. Different place fields generated by different sets of random grid cell inputs. (A) 250 grid cells that were randomly selected

from the pool of 10,000 grid cells and each having different distribution of (ϕVCO,β) (Color bar: number of grid cells). (B) 250 grid cells

in (A) were used as inputs to the Hodgkin-Huxley place cell model and the resulting place cell spikes (red dots) are plotted over

trajectory (black line). (C) Firing rate map of place cell model of (B). (D-F) Same as (A-C) but with place cell receiving different sets of

250 randomly selected grid cells having different distribution of (ϕVCO,β). Note that place fields in (C) and (F) are at different

locations.

https://doi.org/10.1371/journal.pone.0225100.g009
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correlation between the position and the phase which arises by the phase precession phenome-

non [5, 55], we calculated the slope (ρ) using linear-circular regression (Fig 12C–12G).

Statistical tests. To compare the grid characteristics of the in vivo-like grid cell model, the

in vivo grid data, and the OI model, one-way ANOVA followed by Dunnett’s post hoc test was

Fig 10. A sufficient number of grid cell inputs is needed for grid-to-place cell transformation. (A) 100 grid cells, each with different spatiotemporal grid field

patterns, were randomly selected from the pool of 10,000 grid cells and used as excitatory inputs to the Hodgkin-Huxley hippocampal place cell model. (B) Place

cell spikes (red dots) plotted over trajectory (black line). (C) Firing rate map of place cell model of (A). (D-F) Same as (A-C) but place cells receiving inputs from

500 randomly selected grid cells. (G-H) The proportion of viable place fields (G), and peak firing rate as a function of the number of the grid cells (H). (I) Place field

area plotted as a function of the number of grid cells. The top gray horizontal dotted line denotes the upper boundary for determining viable place field size (60% of

total arena size, 6,000 cm2) and the bottom horizontal gray dotted line denotes the lower boundary for determining viable place field size (15 adjacent bins, 240

cm2).

https://doi.org/10.1371/journal.pone.0225100.g010
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Fig 11. Spikes of grid cells are transformed into excitatory ramp input in place cell model. (A) 250 grid cells, each

with different spatiotemporal grid field patterns, were selected from the pool of 10,000 grid cells and were used as

excitatory inputs to the Hodgkin-Huxley hippocampal place cell model. (B) Spikes of place cell model (red dots) while

the animal traversed (trajectory: black line) a fragment (blue line) within a place field (green). (C) Membrane voltage

(Vm, black line) of the Hodgkin-Huxley place cell model when the animal traversed the blue trajectory in (B). The

spikes from 250 grid cell models are summated and transformed into a right-skewed excitatory ramp input (R-ERI) in

the place cell model. The spline-fitted curve (red line) and the relative peak position (RPeak = 0.75) of the R-ERI is
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performed (Fig 4). A p-value < 0.05 was considered as statistically significant (n.s. p> 0.05; �

p<0.05; �� p< 0.01; ��� p<0.001).

Simulation environment

Grid cell simulation and data analysis were conducted with MATLAB R2015a. Place cell simu-

lation was performed with NEURON v. 7.3 [57]. The models are available on GitHub (https://

github.com/kuncl/grid2place).

Results

Grid cells in layer III of the MEC and place cells in the CA1 area of the hippocampus are

anatomically only a single synapse apart, where MEC grid cells send direct excitatory synaptic

inputs to the hippocampal place cells, as shown in Fig 1A and 1B. However, how the multi-

peaked spike activities of grid cells that form hexagonal spike patterns in the entire environ-

ment (Fig 1C, top) are transformed into hippocampal place cell activities at specific locations

(Fig 1C, bottom) is perplexing.

To investigate grid-to-place cell transformation, we constructed a neural network model

composed of an anatomically and physiologically realistic place cell with grid fields generated

by an OI-based grid cell model that were connected by excitatory synapses. We first developed

a grid cell model that had similar spiking characteristics to the grid cells observed in in vivo
experiments for rats navigating around a 1 m × 1 m square environment [1]. The conventional

OI grid cell model simulated with grid orientation parameter ϕVCO = 30˚ and grid spacing/size

parameter β = 2 generated multi-peaked grid-like spiking activities (red dots) along the rat’s

trajectory (black line), as shown in Fig 2A. The firing rate map in Fig 2B, which shows the

spike firing rate as a color plot, visualizes the grid fields better. Although the OI grid cell model

mimicked the location and spacing between the grid fields, it exhibited an unphysiologically

high peak firing rate of 323.53 Hz (Fig 2B). In fact, grid cells in vivo have a firing rate of around

10–20 Hz, with a maximum firing rate of up to ~ 40 Hz [1, 3]. Moreover, the firing rate of grid

cell peaks at the center of the grid field as the rat moves from the edge to the center of the grid

field in a Gaussian-like fashion [1, 3, 16], as seen in Fig 2C. Therefore, we incorporated these

two in vivo features of the grid fields in the model and built an in vivo-like OI grid cell model

that not only captures the grid field location and spacing but also the Gaussian-like grid field

firing pattern for the given trajectory of the rat (Fig 2D). Fig 2E shows that our in vivo-like OI

grid cell model exhibits a peak firing rate of 21.51 Hz.

In order to confirm that our in vivo-like OI grid cell model mimicked the grid cell charac-

teristics observed in vivo better than the conventional OI grid cell model, our in vivo-like OI

model was simulated with the same parameters as the conventional OI model (β = 2, ϕVCO =

30) and the grid field characteristics were directly compared. The raw spiking data in Fig 3A,

3D and 3G, the firing rate map in Figs 3B, 3E and 3H, and the autocorrelograms of the firing

rate map in Fig 3C, 3F and 3I of our in vivo-like OI model, in vivo data, and conventional OI

model were plotted, respectively. Autocorrelograms (Fig 3C, 3F and 3I) were used to analyze

the grid field size, the spacing between grid fields, and the grid scores for comparison, as

shown. (D-E) Same figures as (B-C), but summation of excitatory input showing symmetric excitatory ramp input

(S-ERI, RPeak = 0.43). (F-G) Same figures as (B-C), but summation of excitatory input showing left-skewed excitatory

ramp input (L-ERI, RPeak = 0.30). (H) Distribution of RPeak of 653 ERIs generated by 100 different sets of grid field

patterns, each containing 250 spatiotemporal random grid fields patterns. ERIs are divided into L-ERI, S-ERI, and

R-ERI depending on the location of RPeak. (I) Ratio of the number of L-ERI (25.68 ± 1.82%), S-ERI (27.06 ± 2.09%) and

R-ERI (47.26 ± 2.20%) in (H).

https://doi.org/10.1371/journal.pone.0225100.g011
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Fig 12. Spatiotemporally random grid cell inputs are transformed into place cell with spike phase precssion. (A) Top:

Excitatory ramp input (ERI) of Hodgkin-Huxley hippocampal place cell model (black line) with spline-fitted curve (red line),

which was used to determine the peak position of ERI (RPeak). Middle and bottom: inhibitory theta-frequency oscillation (ginh)

and step current input (Istep) given to place cell model. (B) Top: Membrane voltage trace of the Hodgkin-Huxley place cell

model (Vm) with ginh. Bottom: The expanded view of the dotted box above showing spike phase precession relative to ginh
from 360˚ to 0˚. Vertical tick represents spike times and dotted lines are 0˚/360˚ of ginh. (C-E) Top: ERI (black) with spline-

fitted curve (red curve). Middle: Membrane voltage trace of the Vm (black) and ginh (gray). Bottom: Phase of place cell spikes
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shown in Fig 4. We found that our in vivo-like OI grid cell model closely mimicked the maxi-

mum firing rate (in vivo-like OI model: 29.64 ± 5.50 Hz, in vivo: 26.53 ± 3.74 Hz, OI model:

353.37 ± 4.38 Hz; F[2,6] = 1,668.77, p< 0.001; in vivo versus in vivo-like OI model, p> 0.05; in
vivo versus OI model, p< 0.001 by Dunnett’s post hoc test; Fig 4A), grid field area (in vivo-like

OI model: 373.80 ± 22.77 cm2, in vivo: 341.17 ± 24.58 cm2, OI model: 605.36 ± 135.65 cm2;

F[2,6] = 26.01, p< 0.01; in vivo versus in vivo-like OI model, p> 0.05; in vivo versus OI model,

p< 0.01 by Dunnett’s post hoc test; Fig 4B) and grid spacing (in vivo-like OI model:

57.91 ± 0.07 cm, in vivo: 50.53 ± 5.62 cm, OI model: 68.49 ± 1.65 cm; F[2,6] = 7.11, p< 0.05; in
vivo versus in vivo-like OI model, p> 0.05; in vivo versus OI model, p< 0.05 by Dunnett’s

post hoc test; Fig 4C) of the in vivo-recorded data in the OI model. Interestingly, our model

had a significantly higher grid score than the in vivo data (in vivo-like model: 0.81 ± 0.09, in
vivo: 0.43 ± 0.1, OI: 0.73 ± 0.07; F[2,6] = 8.94, p< 0.05; in vivo versus in vivo-like OI model,

p< 0.05; in vivo versus OI model, p< 0.05 by Dunnett’s post hoc test; Fig 4D), which quanti-

fies the periodicity and regularity of the grid pattern [3, 53]. These results indicate that our in
vivo-like OI grid cell model can closely capture the in vivo grid cell characteristics better than

the conventional OI model.

The grid cell’s spike patterns in vivo are diverse in grid spacing, orientation, and grid field

size, depending on the anatomical and electrophysiological properties of the grid cell [1, 8, 10].

Similar to in vivo grid cells, our in vivo-like grid cell model could also generate diverse grid

field orientations, modulated by ϕVCO (Fig 5). Also, with ϕVCO fixed at 30˚, the size of the grid

field could be modulated by β (Fig 6A–6F). The grid field size had a negative correlation with β
(r2 = 0.96, Fig 6G) and the grid field spacing was also negatively correlated with β (r2 = 0.96,

Fig 6H). Based on these simulation results, we can confirm that our in vivo-like grid cell model

could closely mimic the diversity of the grid cell firing pattern with different combinations of β
and ϕVCO.

Being only one synapse apart, how are these multi-peaked spike activities of grid cells with

diverse grid patterns transformed into spike activities of hippocampal place cell at specific

locations? Interestingly, anatomical studies indicate that each place cell receives approximately

100–1,000 synaptic inputs from neurons in layer III of the MEC [16, 22, 36]. Thus, we conjec-

tured that the summation of inputs from a random collection of grid cells with diverse grid

patterns may be critical in the transformation of multi-peaked grid cells to a place cell. To test

our hypothesis, we first generated a pool of 10,000 grid cells, each with different grid field ori-

entations, spacing, sizes, and peak firing rates by varying β and ϕVCO uniformly over the ranges

1� β� 3.5 and 0˚� ϕVCO< 60˚, respectively, in the in vivo-like grid cell model (Fig 7A).

From the pool of spatiotemporally diverse grid cells, 250 grid cells were randomly selected,

and their spikes were used as inputs to the full-morphology Hodgkin-Huxley hippocampal

place cell model through the excitatory synapse (Fig 7B, See Materials and Methods). The

number of grid cells in each parameter space (β, ϕpref) was plotted in Fig 7C. To confirm the

randomness of the selected grid cell parameter space, the ratio of entropy of parameter space

was calculated as the relative entropy to the maximal entropy of parameter pool. The random-

ness was 100%, indicating that 250 randomly selected grid cells from the pool were perfectly

spatiotemporally random and diverse (Fig 7C). Surprisingly, these 250 spatiotemporally ran-

dom grid cells’ inputs to a place cell could successfully generate a place field in the place cell

(black dot) relative to ginh plotted as a function of distance during single-pass of place field with linear-circular regression

(blue line) when ERI was R-ERI (C, ρ = -10.38˚/cm), S-ERI (D, ρ = 2.04˚/cm), and L-ERI (E, ρ = 17.82˚/cm). (F) Distribution

of slope of linear-circular regression (ρ) in (C), (D) and (E) generated by 100 different sets of grid field patterns, each set

containing 250 spatiotemporal random grid fields patterns. (G) Slope of linear-circular regression (ρ) of L-ERI (ρ =

9.33 ± 0.99˚/cm), S-ERI (ρ = 3.94 ± 0.77˚/cm), and R-ERI (ρ = -5.11 ± 1.31˚/cm).

https://doi.org/10.1371/journal.pone.0225100.g012
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model of the virtual rat navigating around the environment (Fig 7D) and in the firing rate map

(Fig 7E). Moreover, we repeated the simulation 100 times with 250 randomly generated grid

cells and found that 94 of 100 grid input sets generated viable place fields, indicating 250 grid

cells is sufficient to reliably generate a place field (Fig 7F).

Biologically, the real synapses from MEC grid cells to hippocampal CA1 place cells are spa-

tially distributed at dendritic locations of 300–400 μm from the soma of the CA1 pyramidal

cell in the hippocampus [14, 22, 37]. When we tested whether 250 grid cell inputs onto distal

dendritic synapses that were spatially distributed could generate grid cell-to-place cell transfor-

mation (Fig 8A), we found that 250 spatiotemporally random grid cells to a place cell could

successfully generate a place field (Fig 8B) and firing rate map (Fig 8C).

One important result of our simulation is that, when we repeated the simulation with two

different sets of 250 spatiotemporally random grid cells with different (β, ϕpref) parameters, as

in Fig 9A and in Fig 9D, the transformed place field was generated at a completely different

location (Fig 9B, 9C, 9E and 9F) to that in Fig 7D and 7E. Such simulation results are related to

the in vivo observation, where optogenetic modulation or perturbation of grid cell activities

changes the place field location within the same environment [58–60].

When we repeated the simulation with a set of 100 spatiotemporally random grid cells

selected from the pool (Fig 10A), we found that an insufficient number of spikes were evoked

in the place cell (Fig 10B and 10C), whereas inputs from 500 spatiotemporally random grid

cells selected from the pool (Fig 10D) resulted in too much excitation in the place cell (Fig 10E

and 10F), both failing to transform grid cells to place cell. When we systematically increased

the number of grid cells from 50 to 500 with an increment of 50 grid cells, we found that the

number of spatiotemporally random grid cells for transformation to viable place cells in firing

rate and place field size was optimal with grid cell numbers in the range of 250 to 300 (Fig

10G–10I). These results suggest that a certain range of grid cell numbers is required for suc-

cessful grid-to-place cell transformation and that the number of grid cells required is well

within the lower range of the anatomical connections observed in the MEC-CA1, which is

around 100–1,000 grid cells [16, 22, 36].

The other spatial feature of place cells, in addition to having place fields at specific locations,

is that they show the spike phase precession phenomenon, where the spike phases of place cells

advance relative to the ongoing theta-frequency oscillation when a rat traverses a place field [6,

55]. Moreover, in vivo whole-cell patch clamp studies demonstrated that a place cell’s mem-

brane potential shows a depolarizing excitatory ramp-like input (ERI) shape as the rat passes

through the place field [31]. Indeed, in vitro and computational modeling studies confirm that

ERI is required for spike phase precession to occur [33, 61]. Therefore, for our grid-to-place

cell transformation to be realistic, our model should be able to replicate the spike phase preces-

sion phenomenon with ERI as well. In our neural network model, we observed that the 250

spatiotemporally random grid cell patterns used as inputs to the CA1 pyramidal neuron model

(Fig 11A) robustly generated a place field (Fig 11B, green area). As the rat traverses through a

specific fragment of the trajectory within the place field (Fig 11B, blue line), the place cell

receives ERIs as inputs from grid cells (Fig 11C). We found that, depending on the part of the

place field the rat is traversing (Fig 11B, 11D and 11F), different shapes of ERIs arose: right-

skewed ERI (R-ERI, Fig 11C), symmetric ERI (S-ERI, Fig 11E), and left-skewed ERI (L-ERI,

Fig 11G). By generating 100 different sets of grid field patterns, each set containing 250 spatio-

temporal random grid fields patterns, we obtained 653 ERIs from 94 viable place fields.

Among these ERIs, analyzing the distribution of ERI peaks revealed that R-ERI most fre-

quently occurs compared to S-ERI and L-ERI (Fig 11H and 11I), which is similar to what is

observed in vivo [31].
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Finally, to confirm that the ERIs are directly related to spike phase precession in place cells,

ERI was superimposed with theta-frequency (10 Hz) background inhibitory oscillatory con-

ductance (ginh), step current, and Gaussian white noise in the place cell model (Fig 12A and

12B), to replicate the in vivo-observed background oscillation in place cells [6, 13, 42, 43].

When spike phases relative to the given ginh were analyzed, robust spike phase advancement

was observed when R-ERI was superimposed with ginh (Fig 12C, negative linear-circular

regression (ρ) while S-ERI and L-ERI could not generate spike phase advancement (Fig 12D

and 12E), which was also confirmed by analyzing the distribution of slope of linear-circular

regression (ρ) between spike phase and distance (Fig 12F and 12G). Thus, we demonstrate that

the spatiotemporally random and diverse grid spike patterns generate grid cell spikes that

transformed into R-ERI in the place cell model that could replicate the spike phase precession

phenomenon.

Discussion

In this study, we built a physiologically and anatomically realistic neural network model con-

sisting of a Hodgkin-Huxley place cell model with excitatory synapses receiving in vivo-like

grid fields from in vivo-like OI grid cell model. Using this model, we demonstrated that the

integration of inputs from grid cells that have spatiotemporally random and diverse multi-

peaked grid spike patterns as inputs to place cells can successfully perform grid-to-place cell

transformation (Fig 7). In addition, such input requirements in our neural network model

allowed us, for the first time, to simultaneously capture one more important in vivo character-

istics of place cells: the spike phase precession phenomenon [6, 55] (Fig 12). The results from

our model indicate that integration of random and diverse grid cell input patterns as input to

place cells is critical for the spatial information transformation in the entorhinal-hippocampal

network in vivo.

In our simulation, the optimal number of grid cells (250–300 grid cells), each with

completely random and diverse distribution of grid spacing, orientation, and phase, can aid

grid-to-place cell transformation (Figs 7–10). The numbers of afferent inputs derived from our

simulation are in agreement with the anatomically and physiologically realistic estimate of the

number of synaptic connections between MEC grid cells and place cells [14, 22] where MEC

grid cells with different grid field sizes, spacing, orientations, and phases [1, 3, 10] in layer III

of the MEC make up to 1,000 direct synaptic connections to excitatory neurons in the CA1

area of the hippocampus [16, 22, 36]. However, caution is warranted in interpreting these

results since the number of grid cells specified as 250–300 is only valid for our simulation

parameter and cannot be generalized in vivo. The synapse model we used in our study was

fixed to have maximal synaptic conductance of 200 pS, while synaptic conductance in vivo
may vary depending on the distance between the soma and the input locations [48], laminar

location, recruitment of inhibitory synapses [62], number of inputs, and neuromodulatory

state [63]. Also, since our model gave all inputs from grid cells into one single synapse on the

dendrite of the place cell (Fig 7B) or spatially distributed synapses (Fig 8A), the number of grid

cell inputs we suggest in our model should only be used as a guide in gauging the relative con-

tribution of low and high synaptic conductance in grid-to-place cell transformation.

The most important novelty of our study is that we developed a network model of a place

cell with grid cell inputs that could, for the first time, capture not only the grid-to-place cell

transformation but also the spike phase precession phenomenon observed in place cells (Fig

12). Our simulation result, that grid cell inputs can generate spike phase precession in place

cells, is in line with experimental observations [17, 64, 65], suggesting that synaptic input from

the MEC may be critical for the phase precession. Many previous computational studies solely
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focus on demonstrating the transformation of periodic hexagonal spike activities of MEC grid

cells to non-periodic single place field in hippocampal place cells [15, 16, 23–30]; especially grid

cells with uniform distribution of orientation, phase, and spacing [30], and grid cells with ran-

dom variability only in spacing and orientations but not phase [16] or grid cells with random

connectivity by a competitive Hebbian learning process with variability in orientation, phase,

and spacing [27]. However, none of the transformed place cells showed spike phase precession.

It was evident from other in vivo, in vitro, and in silico studies that emergence of R-ERI is critical

in generating spike phase precession within the place field [31, 33, 61] and afferent grid cell

inputs to place cells should integrate in the form of EPSP to form R-ERI. In our simulation, inte-

grated synaptic EPSPs evoked by grid cell inputs successfully generated both R-ERI and the

spike phase precession phenomenon (Figs 11 and 12). It is well established that such synaptic

integration is affected by the passive dendritic cable properties of the neuronal membrane [66]

as well as by active dendritic properties, such as voltage-gated Ca2+, Na+ ion channels [67], Ih
[68] and IM [41]. Therefore, we included these INa, Ih, and IM ion channels into our multi-com-

partment full-morphology Hodgkin-Huxley CA1 pyramidal neuron and the synapse between

the grid cell and the place cell was modeled to reflect the anatomical detail that afferent grid cell

inputs arrive in the distal dendrites of the CA1 pyramidal neuron. Through such physiologically

and anatomically realistic modeling of the synapse between grid cell and place cell, we could

successfully demonstrate grid-to-place cell transformation with spike phase precession phe-

nomenon. However, many previous studies modeled place cells as integrate-and-fire neurons

[30], simplified spiking units [25, 26], or even non-spiking units [16, 35], where the place cell

model simply summed the firing rates of grid cells, which may be the reason they failed to repli-

cate the spike phase precession phenomenon. Moreover, it is well established that anatomical

location of grid cells along the dorsoventral axis of the MEC correlates to the various spatial

scale of grid field, and dorsoventral place cells are correlated with place field size [8, 69].

Although our network model included a physiologically and anatomically realistic synapse

model between grid cells and a place cell, our model is limited by the fact that place cells receive

inputs from grid cells showing all variations of grid cell activity along the dorsoventral axis [8].

Moreover, recent experimental evidence suggests that cooperative inputs from both the MEC

and CA3 regions are important to control phase precession [64, 65]. Therefore, further investi-

gation on the role of distinct connectivity between dorsal/ventral MEC-to-CA1 region and

CA3-to-CA1 region on the grid cell-to-place cell transformation will be necded.

Our simulation results also could capture a recent in vivo observation, where the place field

of the same place cell changes location within the same environment when grid cells in the

MEC were optogenetically perturbed through partial inactivation or depolarization [58, 60]

without changing their grid field firing locations [59]. Whenever we repeated the random

selection of 250 grid cells from the pool, the place field was generated at a different location

(Fig 9B and 9E) and the number of grid cells with specific angle and spacing combinations

were completely random (Fig 9A and 9D).

Overall, our results show that an anatomically and physiologically realistic network model

of grid cells and place cell can, for the first time, closely simulate key features of in vivo-

observed grid-to-place cell transformation. Also, our model provides evidence that the

dynamic integration of spatiotemporally random and diverse spiking activities in spatially-

selective neurons may hold the key to unraveling the mechanisms underlying spatial naviga-

tion in our brains.
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