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Abstract

Recent prostate cancer screening trials have given conflicting results and it is unclear how

to reduce prostate cancer mortality while minimising overdiagnosis and overtreatment.

Prostate cancer testing is a partially observable process, and planning for testing requires

either extrapolation from randomised controlled trials or, more flexibly, modelling of the can-

cer natural history. An existing US prostate cancer natural history model (Gulati et al, Biosta-

tistics 2010;11:707-719) did not model for differences in survival between Gleason 6 and 7

cancers and predicted too few Gleason 7 cancers for contemporary Sweden. We re-imple-

mented and re-calibrated the US model to Sweden. We extended the model to more finely

describe the disease states, their time to biopsy-detectable cancer and prostate cancer sur-

vival. We first calibrated the model to the incidence rate ratio observed in the European Ran-

domised Study of Screening for Prostate Cancer (ERSPC) together with age-specific

cancer staging observed in the Stockholm PSA (prostate-specific antigen) and Biopsy Reg-

ister; we then calibrated age-specific survival by disease states under contemporary testing

and treatment using the Swedish National Prostate Cancer Register. After calibration, we

were able to closely match observed prostate cancer incidence trends in Sweden. Assuming

that patients detected at an earlier stage by screening receive a commensurate survival

improvement, we find that the calibrated model replicates the observed mortality reduction

in a simulation of ERSPC. Using the resulting model, we predicted incidence and mortality

following the introduction of regular testing. Compared with a model of the current testing

pattern, organised 8 yearly testing for men aged 55–69 years was predicted to reduce

prostate cancer incidence by 14% and increase prostate cancer mortality by 2%. The model

is open source and suitable for planning for effective prostate cancer screening into the

future.
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Introduction

Cancer screening policies must balance the benefits and potential harms based on uncertain

and incomplete evidence. It is difficult to infer causation from observational data, and even

large randomised screening studies provide limited evidence. Simulations using natural his-

tory models can provide further insights. Such natural history models describe the course of

the disease from onset to progression through to death. Calibration of such models against

observed disease incidence patterns with and without screening can be used to improve our

understanding of the mechanisms for disease progression and cancer screening interventions.

Simulations of the natural history of disease can be used to bring together evidence from spe-

cific randomised controlled trials with data from other sources and to generalise the results

from specific population structures and disease prevalence [1, 2]. Finally, these simulations

can also be used as a basis for cost-effectiveness analysis in order to make informed decisions

on cancer screening interventions [3–5].

Our application relates to prostate cancer. The prostate is a male reproductive organ that,

together with other glands, is responsible for the production of semen. As men age, they are

more likely to suffer from prostate enlargement or prostate cancer. In Sweden, prostate cancer

accounts for a third of male cancer diagnoses and a fifth of male cancer deaths [6].

Evidence from ERSPC suggests that PSA testing can reduce prostate cancer mortality by

approximately 20% over 13 years [7]. There are two other large randomised studies of prostate

cancer screening: the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial did not

find any significant reduction in prostate cancer mortality when the control arm included high

levels of opportunistic PSA testing [8]. The recent Cluster Randomized Trial of PSA Testing

for Prostate Cancer found that with 40% attending the clinical visit in the screening arm for a

single PSA screen in men aged 50–69 years lead to an estimated mortality reduction of 4% at

ten years [9]. Although PSA testing is common in many western countries, testing is not sys-

tematically organised, and the balance of harms versus benefits of PSA testing is uncertain [4].

PSA testing in Sweden continues to be common and new prostate cancer tests are becom-

ing available. To assess whether organised prostate cancer testing would be beneficial, we

sought to develop a well-validated prostate cancer simulation model for Sweden.

There are few existing models for the natural history of prostate cancer. However in order

to make full use of the detailed longitudinal Swedish registers and allow the natural history

model to represent the mortality rate ratio observed in the ERSPC [7], we adapted and

extended an existing model [10–12] with a more detailed natural history. This is important for

modelling risk-stratified prostate cancer testing in combination with new screening tests.

Our objectives are to describe a contemporary, validated prostate cancer screening model

and to apply that model to predict key screening outcomes under different PSA screening sce-

narios for Sweden. The longer-term goal is to use this simulation model to plan for better pros-

tate cancer testing and screening.

Results

Model overview

We adapted a prostate cancer screening model from the Fred Hutchinson Cancer Research

Center (FHCRC) [10–12]. The FHCRC model simulated for individual life histories, coupling

PSA trajectories with the disease onset and progression from localised to advanced disease by

Gleason score (low-moderate versus high grade). The FHCRC model used inputs from the

Prostate Cancer Prevention Trial (PCPT) [13] and US PSA test patterns [14], and was cali-

brated to US data before and after the introduction of PSA testing, and validated against (a)
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the prostate cancer mortality RR from the ERSPC screening trial and (b) US prostate cancer

incidence. Starting with the model from [12], we re-implemented and extended the model to

include additional states by T-stage/M-stage and Gleason scoring as shown in Fig 1 (more

recent developments of the FHCRC model are described in the Discussion). We also used

more detailed inputs for calibration and validation. Data sources for the model inputs, calibra-

tion and validation included: the National Patient Register (including data on cancer

Fig 1. Schematic of the prostate cancer natural history model reflecting disease onset, progression and survival in the absence

of screening. Individuals are assumed to be healthy at age 35 years; they may progress to preclinical cancer states with fixed Gleason

score, but with progression by T-stage and to metastatic cancer; preclinical cancers may be clinically diagnosed from nine different

states, with survival from prostate cancer death modelled from the time of clinical diagnosis; death due to other causes is represented

as a competing event.

https://doi.org/10.1371/journal.pone.0211918.g001
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treatment), National Prostate Register (cancer incidence by Gleason score, T-stage and M-

stage), Total Population Register (defining the at-risk population), Cause of Death Register,

the Stockholm PSA and Biopsy Register (SPBR), and the PCBaSe research database for prostate

cancer survival. Details are provided in the Materials and Methods.

Current PSA testing. The Stockholm and Swedish calibration targets were from a PSA

tested population. We therefore modelled PSA testing in this population using data from the

SPBR (details are provided in PSA testing sub-model). The initial PSA test uptake was mod-

elled with a log-logistic distribution by age and calendar period. The PSA re-testing was mod-

elled by age groups and PSA values. The resulting PSA testing rates by age and calendar period

are shown in Fig 2. The probability of having a biopsy following a positive PSA test (i.e. biopsy

compliance) was modelled by age and PSA value using the SPBR (see Table B in S1 Appendix).

Model calibration

Model calibration was undertaken in two steps. First, we calibrated for the relative distribu-

tions of incident cancers from contemporary Sweden and the screening effect on incidence

from the ERSPC. Second, we calibrated to survival from contemporary Sweden.

Calibrating to the relative distributions of cancer staging. The observed relative distri-

butions of incident cancer stages at diagnoses were used as calibration targets for modelling

several prostate cancer natural history parameters (Tables 1 and 2). Importantly, we modelled

for transitions between T-stages and fitted the relative distributions for the Gleason scores and

cancer T and M stages by age groups; see Fig 3. We included different T-stages to support

more detailed modelling of treatment and survival. The use of relative proportions allows for

the absolute incidence rates to be used for validation. The calibration used a reconstruction of

a contemporary Swedish population with data on PSA test uptake, health state proportions at

diagnosis, and survival from a screened population. A total of 4392 diagnoses in the ages 50–

74 from a three-years interval (2011–2013) were used as calibration targets.

The calibration to cancer staging only included two parameters. As a consequence, the

model predictions do not accurately reflect all of the variation by age, T-stage and Gleason

score (Fig 3). In particular, the predicted proportions are less accurate at younger ages for T-

stages 1–2.

Fig 2. Modelled current PSA testing rates per person-year for ages 40-80 years and the calendar period 1995-2014

for men without an existing prostate cancer diagnosis. The white contour lines indicates the rates 0.1, 0.2 and 0.3.

The modelled values are based on data from the Stockholm PSA and Biopsy Register [15].

https://doi.org/10.1371/journal.pone.0211918.g002
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Calibration of screening effects on incidence. In addition to the calibration of the

screened Swedish population, we also simulated for the screened and unscreened arms from

the ERSPC to replicate results from the 13 years of follow-up [7]; for details on the reconstruc-

tion of the ERSPC trial, see Materials and methods. The ERSPC rate ratio of prostate cancer

incidence (1.57, 95% confidence interval (CI) 1.51–1.62) was used in the calibration, while the

ERSPC mortality RR of prostate cancer was used for validation. To calibrate to the ERSPC

incidence rate ratio and to model indirectly for tumour size, we introduced a parameter for

the proportion of the time from onset that a T1–T2 cancer would not be biopsy detectable

[16]; we estimated that the T1–T2 cancers would on average be undetectable at biopsy for 53%

of the time before they progressed to T3–T4 cancers.

Calibrating to survival from diagnosis. To calibrate prostate cancer survival, we com-

pared simulated survival from a contemporary Swedish population, including longitudinal

screening and treatment patterns, with observed 10- and 15-year survival from the PCBaSe

database [17, 18]. The PCBaSe database contained 93014 men from the Swedish National Pros-

tate Cancer Register diagnosed in the period 1998–2014 linked with the health and population

registers. Prostate cancer survival was stratified by M stage, Gleason score (� 6, 7,� 8), PSA

(< 10,� 10) and ten-year age groups. Predictions from the calibrated model are displayed as

Kaplan-Meier survival curves and the observed 10- and 15-year survival are displayed as point

estimates with 95% CIs in Fig 4. The calibrated model has a clear separation in survival for

men diagnosed with either Gleason 6 or Gleason 7 cancers; see Fig B in the S1 Appendix for a

comparison with the FHCRC model, where survival tends to be similar for Gleason 6 and 7

cancers. For the FHCRC model, systematic differences in survival for Gleason 6 and 7 cancers,

which are indirectly driven by differences in PSA growth rates and treatment assignment

Table 1. Model inputs and targets used to adapt the model to the Swedish context.

Category Description Source

External inputs PSA trajectories FHCRC [11]

Natural history prior to diagnosis FHCRC [11, 12]

Directly observed inputs Treatment SPBR

PSA and biopsy compliance SPBR

PSA testing SPBR

Calibration targets Gleason score and T-stage distribution SPBR

Screening incidence rate ratio ERSPC [7]

Survival PCBaSe [17]

Validation targets Cancer incidence Stockholm & Sweden [32]

Cancer mortality Stockholm & Sweden [32]

Screening mortality rate ratio ERSPC (mortality RR) [7]

https://doi.org/10.1371/journal.pone.0211918.t001

Table 2. Estimated parameters from calibration procedure.

Label Estimate Standard error Equation

β7 6.4 � 10- 2 2.0 � 10- 4 (2)–(4)

β8 1.9 � 10- 1 5.9 � 10- 4 (2)–(4)

γt 9.7 � 10- 4 6.9 � 10- 5 (6)

γm 1.5 � 10- 3 2.0 � 10- 4 (7)

ϕlag 5.3 � 10- 1 7.8 � 10- 3 (16) and (17)

https://doi.org/10.1371/journal.pone.0211918.t002
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by Gleason score, are modest and appear to be swamped by Monte Carlo variation in our

simulations.

Model validation

Population prostate cancer incidence. In Fig 5, we compared the age-standardised

prostate cancer incidence rates from the simulation with that of Sweden during 1985–2016

which included the introduction of PSA testing. There is evidence for a good fit although the

rapid increase in incidence following the introduction of PSA testing was not fully captured.

This over-smoothing is possibly due to the PSA uptake sub-model having few degrees of free-

dom. Importantly, this is a validation and we did not calibrate for prostate cancer incidence

rates.

Screening effect on mortality. In contrast to the incidence increase from ERSPC, which

was used for calibration, the mortality decrease was used for validation. Using simulations of

Fig 3. Fitted Gleason, T-stage and metastatic proportions of cases in 2011-2013 by age groups to that observed in the SPBR register.

https://doi.org/10.1371/journal.pone.0211918.g003
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the screened and unscreened arms in ERSPC (see Materials and methods), we estimated the

13-year mortality rate ratio using Poisson regression. The ERSPC reported a mortality RR of

0.79 (95% CI 0.61–0.88), whereas our calibrated model predicted a RR of 0.784 (95% Monte

Carlo interval (MCI) 0.781–0.786).

Additional validations. We provide further validations in section C in S1 Appendix. Fig

D in S1 Appendix shows that the model predicts prostate cancer incidence in Sweden and

Stockholm for age for the years preceding the introduction of PSA testing. The age-specific

model predictions are less accurate for the years preceding 2016, which suggests that the PSA

sub-model does not capture the dynamic changes in earlier PSA testing (Fig E, S1 Appendix).

The model was not calibrated for prostate cancer mortality. For the validation by calendar

period, see Fig F in S1 Appendix. The predicted shape of the temporal trends is similar to

observed rates, although the level for the predicted mortality rates are lower than those

observed. Detailed prostate cancer mortality rates by age and calendar period are shown in Fig

G in S1 Appendix. The predicted rates are similar to the observed rates. Finally, we show all

cause mortality rates by age and calendar period (Fig H, S1 Appendix). The model predictions

follow closely the observed patterns in Stockholm and Sweden.

Fig 4. Simulated survival from the calibrated model displayed as Kaplan-Meier survival curves together with the observed 10-

and 15-year survival from PCBaSe displayed as point estimates with 95% confidence intervals. Survival is stratified by age at

diagnosis, PSA at diagnosis, Gleason score and cancer extent.

https://doi.org/10.1371/journal.pone.0211918.g004
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Model predictions

When planning for prostate cancer testing policies, the following measures were considered to

represent the burden of disease: prostate cancer incidence rate; prostate cancer overdiagnosis

rate, where overdiagnosis is defined as the lifetime risk of having a prostate cancer diagnosis

that would never have been clinically detected prior to death due to another cause; prostate

cancer mortality rate; and life expectancy. We predicted these measures for a policy that

replaces the current testing pattern (see Fig 2) with regular prostate cancer testing during ages

55–69 years: regular testing was introduced from 2015 at age 55 years for those born in 1960

and in later birth cohorts. After 15 years, regular testing had replaced current testing for ages

55–69 years. For each policy 100 million life histories were simulated. We assumed that prefer-

ences for PSA testing did not change with the introduction of regular testing, such that only

men who would undertake testing under current testing would participate in regular testing

[19, 20]. Our modelling of organised screening specifically addresses the effect of screening

intensity for the targeted age groups.

In Fig 6 we predicted prostate cancer incidence and overdiagnosis rate ratios for 20 years of

2-yearly testing, 8-yearly testing and the complete cessation of asymptomatic testing in com-

parison with the current testing pattern. The 2-yearly testing scenario resulted in a small

reduction, RR 0.95 (95% MCI 0.95–0.95), in prostate cancer incidence and a larger decrease in

prostate cancer overdiagnosis, RR 0.74 (95% MCI 0.73–0.74), over 20 years compared with the

current testing pattern. The less intensive 8-yearly testing scenario substantially reduced the

prostate cancer incidence, RR 0.86 (95% MCI 0.86–0.86), and the reduction of prostate cancer

overdiagnosis was even larger, RR 0.53 (95% MCI 0.53–0.53), compared with the current test-

ing pattern. The hypothetical cessation of all PSA testing for asymptomatic men in 2015 would

result in a substantial decrease, RR 0.72 (95% MCI 0.72–0.73), of prostate cancer incidence

compared with the current testing rates over 20 years as well as no overdiagnosis of asymptom-

atic men.

The purpose of early detection for prostate cancer is to lower prostate cancer mortality and

increase the life expectancy. To assess these effects, we predicted mortality rates and life-years

gained for the different PSA testing policies (Fig 7). Both the mortality rates and the life-years

Fig 5. Age-standardised prostate cancer incidence rates from the simulation model compared with those observed

in Sweden.

https://doi.org/10.1371/journal.pone.0211918.g005
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gained were expressed relative to the current PSA testing pattern. We predict that the broad

introduction across the 1946–1965 birth cohorts contributed to the mortality reduction,

which, while wearing off towards the end of the 20 year period, causes an increase in mortality,

particularly for the 8 yearly testing. The relative effect on the mortality is considerably smaller

than the effect on the incidence and while the 2 yearly testing pattern has a similar mortality,

RR 0.99 (95% MCI 0.99–1.00), the 8 yearly testing pattern slightly increases the mortality, RR

1.02 (95% MCI 1.01–1.02), as the current uptake pattern for the predicted 20 years. Similarly

the 2 yearly testing pattern slightly increased the life expectancy, 0.01 (95% MCI 0.01–0.02)

life-years gained per 1,000 persons, and the 8 yearly testing pattern did not noticeably affect

the life expectancy, -0.01 (95% MCI -0.01–-0.00) life-years gained per 1,000 persons, compared

to the current uptake pattern for the predicted 20 years. The hypothetical scenario of cessation

of PSA testing for asymptomatic men in 2015 was predicted to significantly increase prostate

cancer mortality over 20 years, RR 1.07 (95% MCI 1.07–1.08), and reduce the life expectancy

by -0.06 (95% MCI -0.08–-0.04) per 1000 persons. The effect is smaller than the 20% prostate

cancer mortality reduction observed in the ERSPC study as the current PSA uptake pattern is

less intensive than ERSPC and the lower biopsy compliance observed in Sweden (see Table B

in S1 Appendix).

Fig 6. Predicting incidence and overdiagnosis rate ratios for 2-yearly and 8-yearly screening between 55 and 69 years of age and

the cessation of asymptomatic testing compared with current testing uptake. The changes in testing policy were introduced in

2015 for a population reflecting the Swedish age-structure.

https://doi.org/10.1371/journal.pone.0211918.g006
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The modest mortality reductions are potentially explained by relatively high levels of testing

under the current PSA testing, and the use of the currently observed biopsy compliance for all

predicted scenarios. These reductions are also comparable to the non-significant mortality

reduction found in the Prostate, Lung, Colorectal and Ovarian (PLCO) cancer screening trial

[8], where there were high levels of PSA testing in the control arm [21].

Discussion

Our aim was to develop, calibrate and validate a prostate cancer natural history model that

could be used to evaluate prostate cancer testing. Using extensive Swedish data resources, we

extended an older US-calibrated prostate cancer natural history model for the Swedish popula-

tion and validated the new model. We then used the revised model to predict longer-term pat-

terns of prostate cancer incidence and mortality in Sweden.

One of the challenges with natural history models is finding a model that is biologically

meaningful and representative, whilst being mathematically simple and potentially estimable.

Another challenge is that many of the parameters of a cancer’s natural history are either not

observable, such as the initial onset of disease, or are only partially observed at specific time

points, such as the size of a tumour at the time of diagnosis.

Fig 7. Predicting mortality RRs and life-years gained for 2-yearly and 8-yearly screening between 55 and 69 years of age and

the cessation of asymptomatic PSA testing compared with current testing patterns. The shifts in testing policy was

introduced 2015 on a population reflecting the Swedish age-structure.

https://doi.org/10.1371/journal.pone.0211918.g007
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Investigators are divided in how to resolve these challenges. One school uses very simple

models with expert judgement for the effectiveness of interventions. The validity of the predic-

tions depend on the accuracy of the experts. A second school uses Markov models fitted to

evidence from randomised controlled trials (RCTs) to assess the effectiveness of specific inter-

ventions within the follow-up from the RCTs. The validity is limited by the available RCT evi-

dence, with strong limitations for predicting outside of the observed data. A third school uses

more detailed natural history models and simulate for individuals. The validity of the predic-

tions primarily reflects the validity of the natural history model. We are firmly in the last of

these three schools. We have previously modelled cancer screening using both simple and

more complex Markov models, and found issues with validity for the simple models and issues

with model complexity for scaling more detailed Markov models to combinations of natural

history and test states by time in state [22].

One potential criticism of many microsimulation models for cancer screening is that their

complexity is coupled with a lack of model detail and that the source is usually closed. The US-

funded CISNET collaboration has provided detailed model documentation [23] and some

models (e.g. FHCRC) are available on request. We addressed this criticism by making all of

our code open source and easily available (https://github.com/mclements/microsimulation

and https://github.com/mclements/prostata). We encourage other microsimulation modellers

to make their code openly available, which will lower the entry requirements for other investi-

gators. If the cost of entry remains high, then a closed source consulting model will continue

to be predominant.

There are several potential limitations. First, the revised natural history model was less

accurate for modelling age dependent incidence (e.g. the incidence was under estimated in the

younger ages and overestimates in the older ages; see Fig E in S1 Appendix). We suggest cau-

tion when interpreting incidence for Nordic populations for several reasons: the higher Nordic

rates may lead to greater absolute declines in rates, leading to more effective screening; and the

point estimate for the mortality reduction due to screening was higher in the Göteborg site,

although there was no statistically significant heterogeneity between the ERSPC sites [7,

p = 0.4]. More accurate modelling at older ages would require a more detailed natural history

model. Second, it is difficult to assess whether the natural history model is causal and accurate:

the disease process is only partially observed and the biology represented using a simple math-

ematical representation. Third, the prediction of age-standardised mortality rates were slightly

lower than that observed in the Swedish population. This underestimation could be due to

e.g. changes in Gleason grading, where the Gleason and T-stage distribution at diagnosis was

based on data from patients diagnosed 2011–2013 whereas the survival by stage was based on

patients diagnosed 1998–2014.

Finally, as individuals were followed for up to 15 years, the survival calibration was influ-

enced by earlier Gleason grading practices, possibly leading to an overestimation of the risks

for Gleason� 6 cancers. Nonetheless, we expect that our predictions will have strong internal

validity, as the simulations allow for carefully controlled experimental conditions.

Strengths of our approach include the wealth of detailed longitudinal data available from

Sweden, and that we have made the model open source. Our natural history model can sup-

port an evidence-based approach to assessing whether the introduction of organised re-testing

or screening would be effective and cost-effective. The Stockholm Prostata model was

branched from the FHCRC prostate cancer model in 2013. Since that time, both the Stock-

holm Prostata model and the FHCRC model have incorporated a number of similar exten-

sions, including T-stage development and more detailed modelling of Gleason grading [5]. A

key difference is that the updated FHCRC model includes a two-parameter model for cancer

onset [24]. We are currently investigating whether to incorporate these extensions into the
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Stockholm Prostata model. A key advantage of the Stockholm Prostata model is the availability

of detailed longitudinal data on PSA values and prostate biopsies linked with clinical out-

comes. The US CISNET prostate cancer models have historically relied heavily on un-linked,

cross-sectional SEER data. In contrast the Swedish registry data have high coverage and are

well suited for modelling the disease progression and treatment pathways within men. Our

choice of modelling approach included model calibration for some key parameters in both

unscreened and screened populations (Table 1). To assess whether the adapted model was

valid for Sweden, we compared the model predictions with observed population incidence.

This approach demonstrates both the strengths and potential weaknesses of our model.

Our model is now well suited to the health economic evaluation of new prostate cancer

screening tests. In particular, we have modelled for Gleason� 6 cancers, which typically have

very good prognosis, from Gleason 7 or Gleason� 8 cancers, where the last category has par-

ticularly poor prognosis. The new prostate cancer tests have focused on maintaining sensitivity

for more aggressive prostate cancers, such as Gleason 7 or higher, with reductions in the inci-

dence of small Gleason� 6 cancers and negative biopsies. Following a reviewer’s suggestion,

we will further investigate how to model for preferences for prostate cancer testing (see also

[19]). Those preferences are expected to affect the effectiveness of new prostate cancer screen-

ing interventions in populations with established PSA testing patterns.

From the section on Model predictions, we found evidence to suggest that organised

screening would reduce overdiagnosis without increasing mortality compared to current

screening practices. Future work is needed to investigate refined screening strategies and the

evaluation of cost-effectiveness.

Materials and methods

In this section, we will describe the various data sources used to develop the model, explain the

model formulation, outline the methods for the calibration and validation of the model, and

finish with a description of the model implementation.

Data sources

We have integrated multiple sources of data in order to extract relevant Swedish prostate can-

cer statistics for our model. The linkage between the different sources is illustrated in Fig 8.

Fig 8. Overview of data sources and their linkage.

https://doi.org/10.1371/journal.pone.0211918.g008
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The regional ethics committee in Stockholm approved the study (dnr 2012/438-31/3, dnr

2016/620-32) and the data were analyzed anonymously. Detailed individual data on men who

had a PSA test or a prostate core biopsy were extracted from the Stockholm PSA and Biopsy

Register. Using the unique Swedish personal identification number [25], we linked the study

cohort to a number of population registers, including the National Cancer Register (NCR) and

the National Prostate Cancer Register (NPCR). The NCR included data on tumour extent

(loco-regional vs distant) and the date of diagnosis; the NPCR contained additional clinical

information, including Gleason score and TNM cancer stage classification. The NCR and

NPCR were known to cover 96.3% and 94% of cancer patients, respectively [18, 26]. A

dynamic cohort (with men moving in and out of the Stockholm County) was defined via the

Population Register which contains information on migrations within Sweden as well as exter-

nal migration.

From PCBaSe, a research database linking the NPCR with other health and population reg-

isters, we extracted survival following a prostate cancer diagnosis by calendar period, age,

stage, PSA value and Gleason score; and treatment modality by calendar period, age and Glea-

son score.

Data on prostate cancer incidence by calendar year, age, stage and Gleason scores were

extracted from the NCR and the NPCR. Prostate cancer mortality by calendar year and age

were obtained from the Cause of Death Register. The Total Population Register was used to

calculate the male population at risk by calendar period and age.

Model description

As noted in the Results, we re-implemented and extended an earlier model by Gulati et al [12].

The prostate cancer natural history model links PSA growth with prostate cancer progression.

The main components of the model are: (i) longitudinal PSA growth; (ii) Gleason score distri-

bution at onset; (iii) transitions between natural history disease states, as shown in Fig 1; (iv)

PSA testing; (v) biopsy sensitivity and specificity; (vi) treatment; and (vii) survival. The PSA

growth is expressed functionally in Eq (1) and the transitions between states is defined in Eqs

(5)–(11). Cancer onset is assumed to be independent of PSA, and that PSA rises faster after

cancer onset. The distribution of Gleason score is assumed to be multinomial with the propor-

tions modelled as a function of age at cancer onset, with no de-differentiation (or change in

Gleason score) after onset. We expand on these difference components in the following sub-

sections.

Changes from the earlier model. In the absence of Swedish data, we did not update a

number of model components from the 2013 model, including: most parameters and the gen-

eral structure for the longitudinal PSA sub-model; prostate cancer onset; the mean time from

onset to metastatic cancer; the rates of clinical detection; the shape of the hazards from prostate

cancer diagnosis to death; and the hazard ratios due to prostate cancer treatment. We updated:

the population structure and background mortality rates; longitudinal PSA sub-models for

Gleason 6 and Gleason 7 cancers; a detailed PSA testing sub-model; biopsy compliance; man-

agement of negative biopsies; new states for undiagnosed cancer by T-stage, modelling for pro-

gression; the distribution of Gleason score at cancer onset; treatment, including subsequent

treatment for men initially assigned to active surveillance; and detailed survival by stage, Glea-

son score, PSA values and age.

Longitudinal PSA sub-model. The change in PSA values after cancer onset is assumed to

differ by Gleason score, with a specific change for Gleason score 6 and below (G6-), Gleason 7
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(G7) and Gleason 8 and above (G8+).

log ðyiðtÞÞ ¼ b0i þ b1iðt � 35Þþ

ðb2iIðG6� Þ þ b3iIðG7Þ þ b4iIðG8þÞÞðt � toiÞIðt > toiÞ þ �iðtÞ
ð1Þ

where yi(t) is measured PSA at age t for subject i, I(A) is a 1 if A is true and 0 otherwise, toi is

the age of cancer onset and where

• b0i � Nðm0; s
2
0
Þ, is a random intercept

• b1i � TNðm1; s
2
1
Þ, which is a random slope

• bki � TNðmk; s
2
2
Þ; k ¼ 2; 3; 4, is a Gleason-specific random change of slope after cancer

onset

• �i(t)*N(0, ϕ2), represents measurement error.

The random slopes β* TN(μ, σ2) are truncated normal distributions with support for posi-

tive real values. The probability density functions are f(β) = ϕ((β − μ)/σ)/(1 −F(−μ/σ)), where

ϕ and F are the probability density function and cumulative distribution functions for stan-

dard normal distributions, respectively. The truncated normal distributions ensure that PSA

growth is monotonically increasing.

The values for μ1, σ1, μ4 and σ4 were from [11], while the estimates for μ2, σ2, μ3 and σ3 were

weighted sums to separate the estimates of Gleason� 7 from [11] into Gleason� 6 and Glea-

son 7.

Gleason score distribution. The Gleason score assigned to an individual at cancer onset

is dependent on the age at cancer onset according to the probabilities modelled via the multi-

nomial logistic regression in Eqs (2)–(4) as illustrated in Fig 9 (right panel). There is evidence

that the FHCRC and Swedish models assume different Gleason score distributions, which may

reflect differences in Gleason grading between the US and Swedish populations or changes in

Fig 9. Comparing the modelled proportion of Gleason scores at cancer onset from FHCRC model in 2013 and 2018 with the

Stockholm Prostata model.

https://doi.org/10.1371/journal.pone.0211918.g009
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Gleason grading over time, where the Swedish data are more recent.

PðGleason � 6Þ ¼
1

1þ ea7þb7ðt� 35Þ þ ea8þb8ðt� 35Þ
ð2Þ

PðGleason ¼ 7Þ ¼
ea7þb7ðt� 35Þ

1þ ea7þb7ðt� 35Þ þ ea8þb8ðt� 35Þ
ð3Þ

PðGleason � 8Þ ¼
ea8þb8ðt� 35Þ

1þ ea7þb7ðt� 35Þ þ ea8þb8ðt� 35Þ
ð4Þ

where t� 35.

Transition rates between natural history states. Transitions between different states in

the model (i.e. healthy, localized states, metastatic states and death) are simulated via events,

which occur with different rates.

The disease onset (a transition from the healthy to a localized state) is modelled via a time-

dependent hazard (from age 35) as

loðtÞ ¼ goðt � 35Þ ð5Þ

which means that the time-to-event follows a Weibull distribution (shape parameter 2 and

scale parameter
ffiffiffiffiffiffiffiffiffi
go=2

p
). The cumulative distribution (the complement of the survival func-

tion) for the time to cancer onset is hence Ro tð Þ ¼ 1 � exp � go
2

t � 35Þ
2

� ��
[11]. The event

density, which is simply the probability density for the Weibull distribution with parameters as

above, represents the rate of cancer onset per unit time (see Fig A in S1 Appendix).

Transitions between disease states are dependent on age (t) and the individual log-PSA-val-

ues (logð~yiðtÞÞ ¼ logðyiðtÞÞ � �iðtÞ). The model includes T-stage transitions within localised

cancer states for preclinical cancer. The transition from T1–T2 to T3–T4 is the same for all

Gleason categories and is described in Eq (6). γt is the hazard of transitioning to T3–T4 and

the time-dependence comes from the log-PSA levels.

ltðtÞ ¼ gt~yðtÞ ð6Þ

The rate from T3–T4 to metastatic disease is proportional to PSA and γm which is the

metastasis hazard (see Eq (7)). Note that the FHCRC model used γt to represent the parameter

for the transition rate from onset to metastatic [11].

lmðtÞ ¼ gm~yðtÞ ð7Þ

The clinical diagnosis rate for localised cancer onset for Gleason score 7 and lower (Eq (8))

and Gleason score 8 and higher (Eq (9)) are proportional to PSA and gG�
lc , which is the clinical

diagnosis hazard for localised cancer for the two Gleason score categories. As per the older US

model, we combined the Gleason� 6 and 7 scores for these transitions due to a lack of infor-

mative data.

l
G7�

lc ðtÞ ¼ g
G7�

lc ~yiðtÞ ð8Þ

l
G8þ

lc ðtÞ ¼ g
G8þ

lc ~yiðtÞ ð9Þ

The rate to clinical diagnosis after metastatic onset for Gleason score 7 and below (Eq (10))

and Gleason score eight and above (Eq (11)), is proportional to PSA and gG�
mc is the post-
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metastasis clinical diagnosis hazard for the two Gleason score categories.

l
G7�

mc ðtÞ ¼ g
G7�

mc ~yiðtÞ ð10Þ

l
G8þ

mc ðtÞ ¼ g
G8þ

mc ~yiðtÞ ð11Þ

PSA testing. Diffusion of a new health technology into a population is a dynamic process.

This process may reach a stationary state after a longer period of time. For PSA testing, test

uptake was distributed across a range of ages over a comparatively short period, such that the

PSA test patterns varied substantially by birth cohorts. PSA test uptake is required for calibrat-

ing the model to screened populations.

The natural history model is calibrated to data that are observed both before and since the

introduction of PSA testing. In particular, we have survival data for men diagnosed for prostate

cancer from 1998, which is after the introduction of PSA testing. This requires that we accu-

rately model for PSA uptake and re-testing and for treatment to represent the men at risk for

prostate cancer incidence, survival and mortality.

The PSA sub-model represents uptake of the PSA test together with the pattern of PSA re-

testing. Uptake was modelled as: (i) a function of age for cohorts born from 1960; (ii) a func-

tion of calendar period multiplied by a factor for birth cohort for birth cohorts born before

1932; and (iii) a mixture of (i) and (ii) for the birth cohorts between 1932 and 1960. Mathemat-

ically, age-specific uptake (i) is modelled by the cumulative density function for a log-logistic

cure model, such that

F1ðtja1; b2; cÞ ¼ p1ðcÞð1 � 1=ð1þ ððt � 35Þ=b1Þ
a1ÞÞ; t � 35 ð12Þ

where t is age at uptake, π1 is the proportion of men ever having a PSA test, c is the calendar

year of birth (or birth cohort), and where a1 and b1 are the shape and scale for a log-logistic

distribution for those men who ever have a PSA test. The calendar-specific uptake for the

older cohorts (ii) is modelled by

F2ðtja2; b2; cÞ ¼ p2ðcÞð1 � 1=ð1þ ððt � ð1995 � cÞÞ=b2Þ
a2ÞÞ; t � 1995 � c ð13Þ

where π2 is the proportion of men who ever have a PSA test, and where a2 and b2 are the shape

and scale for a log-logistic distribution for those men who ever have a PSA test. Finally, for the

intermediate birth cohorts, t1 is sampled from F1, t2 is sampled from F2, and t1 is selected over

t2 with probability (1960 − c)/(1960 − 1932).

PSA re-testing is modelled using a Weibull cure model, such that

F3ðtja3; b3; t0; y0Þ ¼ p3ðy0; t0Þ 1 � exp �
t � t0

b3ðy0; t0Þ

� �a3ðy0 ;t0Þ
 ! !

; t > t0 ð14Þ

where t0 is the age at the previous PSA test, y0 is the value of the previous PSA test, π3 is the

proportion of men who will ever have a re-test, and where a3 and b3 are the shape and scale

parameters of the Weibull distribution for those who ever have a re-test.

For re-testing, the parameters π, a3 and b3 were estimated using a Weibull cure model strat-

ified by the five-year age groups (30–34, 35–39, . . ., 85–89, 90+) and by PSA values ([0, 1), [1,

3), [3, 10), [10,1)) at the previous PSA test. The parameters π1, π2, a1, a2, b1 and b2 were cali-

brated to observed PSA test rates for Stockholm using a Poisson likelihood.

Biopsy sensitivity and compliance. For men who had a PSA value above 3 ng/mL, the

proportion complying with a subsequent biopsy varied by PSA values and age, and was

Prostate cancer natural history modelling using Swedish registry data

PLOS ONE | https://doi.org/10.1371/journal.pone.0211918 February 14, 2019 16 / 23

https://doi.org/10.1371/journal.pone.0211918


estimated from the SPBR (see Table B in S1 Appendix). We also modelled for whether a pros-

tate cancer was biopsy-detectable, assuming that a cancer was not initially detectable for a pro-

portion ϕlag (16) and (17) of the time from cancer onset to the development of a T3–T4 cancer.

Our approach varied from Wever et al. 2010 [16], who modelled for the sensitivity of a PSA

test to detect a cancer by stage, irrespective of the time from cancer onset. The probability of a

biopsy (Bx) rendering a diagnosis (Dx) depends on the biopsy sensitivity, the biopsy compli-

ance and the probability of cancer:

PðDxjPSAþÞ ¼ PðBxsensÞPðBxcompðt;PSAjPSA
þÞÞPðt � t0Þ ð15Þ

where P(t� t0) is the probability of having had a cancer onset, P(Bxcomp(t, PSA|PSA+)) is

probability of performing a biopsy after a positive PSA test depending on age and PSA value

and P(Bxsens) is the biopsy sensitivity as expressed below:

PðBxsensjt0 < t � t0 þ D�lagÞ ¼ 0 ð16Þ

PðBxsensjt0 þ D�lag < t � tT3� T4Þ ¼ 1 ð17Þ

where Δ = tT3−T4 − t0 is the time with a T1–T2 cancer.

Treatment sub-model. Probabilities for treatment assignment to either active surveil-

lance, radical prostatectomy, radiotherapy or androgen deprivation therapy were assessed

from the SBPR. These values were stratified by five year age groups and Gleason score (see Fig

C in S1 Appendix).

Survival sub-model. Survival from cancer diagnosis to death due to screening was cali-

brated to the NPCR. In summary, we first simulated survival for Sweden for 1998–2014

including screening uptake. The shape for the uncalibrated hazard function used data from the

SEER database for localised and metastatic diagnoses. NPCR survival estimates were available

at ten and fifteen years after diagnosis by age groups for the period 1998–2014; for non-meta-

static cancer, survival was available by Gleason score and for PSA less than 10 ng/mL and for

10 ng/mL and over. We compared the Kaplan-Meier estimates of survival from diagnosis from

the simulated data with observed Kaplan-Meier estimates for men diagnosed with prostate

cancer in Sweden. For each group, we calculated a calibration hazard ratio from the log of

observed survival from NPCR divided by the log of simulated survival. We did not calibrate to

observed survival from the pre-PSA era, as such estimates were not available.

One significant modelling challenge is selecting and fitting a mathematical representation

for the effect of cancer screening. For cancers with a short period between a screen-detected

diagnosis and a counter-factual clinical diagnosis, a common model is to represent differential

survival based on changes in stage at diagnosis and changes in treatment. For prostate cancer,

there is potentially a long period between screen-detectable prostate cancer and clinical diag-

nosis. The lead-time between a screen-detected diagnosis and clinical diagnosis is of the order

of 10 years [27, 28]. We represent the effect of screening on survival S as a function of time

t = a − ac, where ac is the possibly counter-factual age of clinical diagnosis, rather than the age

of screen-detected diagnosis as. Then

Sðt j ac;ClinicalDxÞ ¼ Sðt j ac; StageðacÞ;TreatmentðacÞ; PSAðacÞÞ ð18Þ

Sðt j ac; as; ScreenDxÞ ¼ Sðt j ac; StageðasÞ;TreatmentðasÞ;PSAðasÞÞ ð19Þ

where ClinicalDx and ScreenDx represents either a clinical diagnosis or a screen-detected

diagnosis, respectively, and Treatment(a), Stage(a), and PSA(a) are the treatment modality,

stage and PSA value at age a, respectively. The treatment sub-model assumes that the hazard
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ratio from SPCG-4 [29, 0.56] applies comparing both radical prostatectomy and radiation

therapy with either watchful waiting or active surveillance. This point estimate is consistent

with the point estimate from the PIVOT trial [30], albeit without the latter being significantly

different from one. We then model survival as

Sðt j ac; StageðaÞ;TreatmentðaÞ; PSAðaÞÞ ¼ Sðt j ac; StageðaÞ; PSAðaÞÞ
0:56IðTreatmentðaÞ2fRP;RTgÞ

ð20Þ

Implementation of the Stockholm Prostata model

The FHCRC prostate cancer model was implemented in C under an open source GPL licence,

although the code has not been widely distributed. We have implemented our extended model

using existing C++ simulation libraries and to manage input parameters and output predic-

tions using R. The model is implemented together with an extensible microsimulation frame-

work. It is available from https://github.com/mclements/microsimulation and https://github.

com/mclements/prostata under a GPL3 license, allowing for use and reuse, in contrast to most

existing microsimulation models which are not open source [31].

Model fitting and calibration

To adapt the extended prostate cancer model to the Swedish context, a number of input

parameters were estimated from external data and a smaller set of parameters were estimated

using simulation predictions fitted to calibration targets. First, a set of parameters were esti-

mated from available data sources, including parameters describing the longitudinal develop-

ment of PSA with age, the rate controlling time to cancer onset, and transition between cancer

states (Table 1, external inputs). Observed characteristics of the modelled population were col-

lected and used to estimate another set of parameters via simulations of the model. The charac-

teristics used as calibration targets were the distribution of incident prostate cancers by

Gleason scores and T-stage, observed survival by age groups and disease stage, together with

the PSA uptake and re-testing (Table 1, directly observed inputs). The PSA test uptake prior to

2003 was reconstructed by fitting a model to prostate cancer incidence using later PSA test

rates as covariates, and we used survival analysis to estimate re-testing rates prior to cancer

diagnosis by age and PSA values. The calibration targets are described in further detail under

the sub-section on Calibration methods below. The model was validated against the popula-

tion of Sweden and the population of Stockholm [32] (Table 1, validation targets). For the vali-

dation, we simulated the observed PSA testing pattern and validated the model against the

population data for incidence, all-cause mortality and prostate cancer mortality (see Results

and section C in S1 Appendix).

Emulating the ERSPC trial. We performed a simulation experiment to emulate the

ERSPC trial, where we predicted both the “control” arm and the “screening” arm with 100

million simulated men. Both arms where constructed as flat populations with inclusion

between ages 55–69 years after which they where followed for 13 years. For study eligibility,

we assumed that the men had not had a prostate cancer diagnosis prior to age 55 years. For

the control arm, we assumed no screening. For the screening arm, we assumed four-yearly

screening between ages 55 and 69 years. The PSA threshold was assumed to be 3.0 ng/mL,

although in fact this varied by study site. We also used the reported biopsy compliance of

85.6%. Treatment and other-cause deaths were assumed to be similar to those observed in

Stockholm.

Calibration methods. We used four sets of targets for our calibration procedure (with

associated parameters):
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1. The relative distribution of Gleason and T-stage for incident prostate cancers in contempo-

rary Sweden (to estimate β7, β8, γt, γm, ϕlag)

2. An equality constraint on the mean time from onset to metastatic cancer (to estimate γt,

γm)

3. The incidence rate ratio due to screening from the ERSPC (to estimate γt, γm, ϕlag)

4. Detailed prostate cancer survival for contemporary Sweden.

For the first step, we calibrated for the incidence-related targets 1, 2 and 3 in one likelihood;

and then, as a second step, we calibrated for target 4. For targets 1, 2 and 4, we simulated for

current PSA testing in Sweden; for target 3, we simulated for both arms of the ERSPC.

For target 1, we used a multinomial likelihood with unknown parameters θ = (β7, β8, γt, γm,

ϕlag)0. The multinomial log-likelihood was defined as

l1ðθÞ ¼
X

i

log ðni!Þ þ
X

j

ðyij log ðmax ðpijðθÞ; 0:5=miðθÞÞÞ � log ðyij!ÞÞ

( )

ð21Þ

where i is an index over age, j is an index over cancer staging, ni is the observed total count in a

particular age group, yij is the observed count for a combination of age and cancer staging,

mi(θ) is the simulated total count, and pij(θ) is the simulated proportion of individuals in a par-

ticular disease state (see Eqs (2)–(4) for the multinomial data generating mechanism). The can-

cer staging for the observed frequencies and simulated proportions were by age and (i) loco-

regional cancers by combinations of Gleason score and T-stage, and (ii) metastatic prostate

cancers. The intercept terms α7 and α8 for the distribution of Gleason score at age 35 years

were not identifiable and we assumed that α7 = log(0.2) and α8 = log(0.002). Half-cell correc-

tions were performed to handle empty cells in the simulated proportions.

For target 2, we used a non-linear equality constraint on the expected time from onset to

metastatic cancer to ensure identifiability of progression across T-stages. Formally,

l2ðθÞ ¼ ð�tT1� T2ðθÞ þ �tT3� T4ðθÞ � �toldÞ
2

ð22Þ

where �tT1� T2ðθÞ are the mean simulated transition times from onset to T3–T4, �tT3� T4ðθÞ are

the mean simulated transition times from T3–T4 to metastatic cancer, and �told is the expected

mean time from onset to metastatic cancer from a model without separate T stages (25.9 years

from the FHCRC model; [12]).

For target 3, we used a non-linear equality constraint on the simulated incidence rate ratio

from the ERSPC, where

l3ðθÞ ¼ ð log ðIRRÞ � log ðIRRðθÞÞÞ2 ð23Þ

where IRR is the observed PSA screening incidence rate ratio from the ERSPC study and IRR

(θ) is the simulated incidence rate ratio for the emulation of the ERSPC study.

Formally, the log-likelihood l123(θ) for targets 1–3 was

l123ðθÞ ¼ l1ðθÞ þ w2l2ðθÞ þ w3l3ðθÞ ð24Þ

where w2 and w3 are weights for the non-linear constraints. Note that the equality constraints

in targets 2 and 3 were formulated in terms of weighted quadratic penalties. The weights were

selected so that the constraints were approximately satisfied (w2 = 1; w3 = 104).

To optimise the simulation log-likelihood l123(θ), we used the Nelder-Mead optimisation

algorithm. For each iteration of the optimisation, we evaluated the log-likelihood by simulating

three different scenarios that depended on the parameters θ. From these scenarios, we
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predicted values that were used in the log-likelihood, including the relative distribution of can-

cer staging, the mean time from onset to metastatic cancer, and the PSA screening incidence

rate ratio for the reconstructed ERSPC trial. The Nelder-Mead algorithm is commonly used to

optimise functions for which derivatives are difficult to calculate and for objectives that are not

smooth. The standard errors were calculated from the inverse of the Hessian matrix for the

negative log-likelihood (see Table 2). Given the simulation likelihood, the calculation of the

Hessian matrix required that the step size for the finite differences used a larger step size

(0.01).

For the second step and target 4, the distributions of Gleason score, T-stage and metastatic

cancer (θ) were kept fixed. Using the mean between the observed 10- and 15-year survival as

the calibration target and Kaplan-Meier estimates based on the model simulations, we calcu-

lated the hazard ratios by age group, cancer stage, Gleason score and PSA values. The adjust-

ment dHR was calculated by averaging on the log hazard ratio scale

logdHRðAge;Gleason;PSA;metastatic; θ̂Þ ¼

0:5� log
log ðSð10jAge;Gleason; PSA;metastatic; θ̂ÞÞ
log ðSð10jAge;Gleason; PSA;metastaticÞÞ

 !

þ

0:5� log
log ðSð15jAge;Gleason; PSA;metastatic; θ̂ÞÞ
log ðSð15jAge;Gleason; PSA;metastaticÞÞ

 !
ð25Þ

where SðtjAge;Gleason;PSA;metastatic; θ̂Þ is the simulated survival to time t based on the

parameters from step 1 and S(t|Age, Gleason, PSA, metastatic) is observed survival to time t
from the NPCR.

Validation of the ERSPC mortality rate ratio. To validate against the ERSPC screening

mortality RR of 0.79 (95% CI 0.61–0.88), we performed a simulation experiment to emulate

the ERSPC trial (see Emulating the ERSPC trial). The mortality hazard ratio comparing the

screening arm with the control arm was estimated using Poisson regression taking account of

the number of prostate cancer deaths and the person-time by one-year age groups. Our valida-

tion predictions resulted in a mortality RR of 0.784 (95% Monte Carlo interval (MCI) 0.781–

0.786).

Supporting information

S1 Appendix. The appendix contains further detail on the model and the model inputs. It

also holds a comparison of survival from diagnosis by Gleason with the FHCRC model.

Finally, it also includes further validation of the model.

(PDF)
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