
Necdin, a p53-Target Gene, Is an Inhibitor of p53-
Mediated Growth Arrest
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Abstract

In vitro, cellular immortalization and transformation define a model for multistep carcinogenesis and current ongoing
challenges include the identification of specific molecular events associated with steps along this oncogenic pathway. Here,
using NIH3T3 cells, we identified transcriptionally related events associated with the expression of Polyomavirus Large-T
antigen (PyLT), a potent viral oncogene. We propose that a subset of these alterations in gene expression may be related to
the early events that contribute to carcinogenesis. The proposed tumor suppressor Necdin, known to be regulated by p53,
was within a group of genes that was consistently upregulated in the presence of PyLT. While Necdin is induced following
p53 activation with different genotoxic stresses, Necdin induction by PyLT did not involve p53 activation or the Rb-binding
site of PyLT. Necdin depletion by shRNA conferred a proliferative advantage to NIH3T3 and PyLT-expressing NIH3T3 (NIHLT)
cells. In contrast, our results demonstrate that although overexpression of Necdin induced a growth arrest in NIH3T3 and
NIHLT cells, a growing population rapidly emerged from these arrested cells. This population no longer showed significant
proliferation defects despite high Necdin expression. Moreover, we established that Necdin is a negative regulator of p53-
mediated growth arrest induced by nutlin-3, suggesting that Necdin upregulation could contribute to the bypass of a p53-
response in p53 wild type tumors. To support this, we characterized Necdin expression in low malignant potential ovarian
cancer (LMP) where p53 mutations rarely occur. Elevated levels of Necdin expression were observed in LMP when compared
to aggressive serous ovarian cancers. We propose that in some contexts, the constitutive expression of Necdin could
contribute to cancer promotion by delaying appropriate p53 responses and potentially promote genomic instability.
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Introduction

Carcinogenesis is a multistep process defined by uncontrolled

cell growth and neoplastic progression leading to invasive tumors

and metastasis. Cancer progression models dictate that normal

cells undergo a variety of genetic/epigenetic alterations which can

be summarized in vitro by two major phenotypic changes: im-

mortalization and transformation. Normal cells need to overcome

cell cycle checkpoints and their limited division potential to

achieve immortalization. Interlaced with this process, additional

events contribute to cellular transformation and move cells toward

the complete neoplastic phenotype [1]. Human lung and colon

cancers, genetically altered mice, mouse and human cell culture

models, have all been extensively used to support the multistep

progression model [2,3,4].

Normal human epithelial or fibroblast cell transformation can

be obtained with the sequential expression of a series of oncogenes,

often including the viral proteins SV40LT (simian virus 40 Large-

T antigen) or adenovirus early protein E1A [5,6]. Some E1A

domains conserved in SV40LT, including the CR1/CR2 Rb

family (pRb’s) binding domains and the p300/400-binding pocket

are absolutely required for this transformation process [7]. Despite

the importance of these domains, the characterization of other

viral oncogenic domains involved in transformation remains in-

complete and additional activities could contribute to the

carcinogenesis process.

Polyomavirus (Py), an oncogenic member of the papovaviruses,

causes tumors in rodents and transforms primary cells in culture

[8]. In Py-induced carcinogenesis, Large-T antigen (PyLT) is

responsible for inappropriate cell cycle promotion and immortal-

ization of mouse primary cells in culture [9,10]. This ability is

mediated principally through the binding and inactivation of

pRb’s by the CR1/CR2 amino-terminal domains [11,12]. PyLT

genetically and functionally shares extensive homology with the

closely related SV40LT, although critical differences exist. As an

example, while both proteins can bind p300 and inactivate the

pRb family of tumor suppressors, only SV40LT can bind and

inactivate p53 [13]. Functionally, SV40LT is a dual oncogene able

to immortalize and transform primary rodent cells as a single event

while PyLT appears limited to immortalization in vitro [14]. Thus,

PLoS ONE | www.plosone.org 1 February 2012 | Volume 7 | Issue 2 | e31916



differences between PyLT and SV40LT render these LT-Ags

useful in studying different aspects of oncogenesis.

Congruent with its in vitro activity, PyLT drives tumor formation

when expressed under various promoters in transgenic mouse

models, but the lower frequency and longer latency suggest a

requirement for additional secondary events [15,16,17]. While

PyLT alone cannot transform cells in culture, it can confer

resistance to growth arrest in low serum condition [10] and protect

cells against Fas and TNF-a induced apoptosis [18]. This ability to

evade apoptotic signals could potentially promote growth and allow

cells to evade cellular-mediated immunity; important events in

multistep carcinogenesis [2,19,20]. Moreover, while PyLT does not

bind p53 directly, it has the ability to overcome some effects of this

master tumor suppressor, notably p53-induced cell cycle arrest

[21,22,23]. Finally, all E1A domains known to be essential to

human cell transformation are not only conserved in SV40LT but

are also found in PyLT [7]. Based on this evidence, we hypothesized

that, in addition to its immortalizing activity, PyLT also modulates

important functions in early mouse cell transformation.

Here, we present a strategy where PyLT induced immortaliza-

tion-independent events can be revealed using NIH3T3 immortal

mouse embryonic fibroblasts which already harbor immortaliza-

tion-associated events that have occurred prior to PyLT

introduction. Using gene expression microarray analysis, we

identified Necdin among a set of genes that were consistently

upregulated following PyLT expression in NIH3T3 cells. Necdin

was first identified as a neuronal differentiation marker associated

with growth arrest [24,25,26], but has since been found in several

normal tissues [27,28,29,30,31]. Necdin interacts with the viral

oncoproteins SV40LT and E1A [32] and is functionally similar to

pRb as it can promote growth arrest by interacting with E2F1 to

repress its transcriptional activity [32,33]. In accordance with this

function, Necdin overexpression shows growth inhibitory proper-

ties in NIH3T3 and SaOS cell lines [26,32]. However, it is also

expressed in myogenic precursors that have a high proliferating

potential [34]. Necdin is a p53 target gene and physically interacts

with the p53 protein product suggesting a functional relationship

[35,36]. Furthermore, the expression of Necdin can protect cells

from apoptosis in different models [29,33,34,37,38,39], including

p53-induced apoptosis [35]. Therefore we hypothesize that during

carcinogenesis, and depending on the cellular context, Necdin

possesses opposing functions and may act as a tumor suppressor

based on its similarity with pRb proteins, or as an oncogene

through its capacity to inhibit apoptosis and p53-dependent tumor

suppressive cell fates.

Results reported here support this dual functionality for Necdin.

We show that despite the growth suppressive functions of Necdin, it

was possible to derive growing cell populations expressing con-

stitutively high levels of Necdin. These high levels of Necdin

interfered with p53 activity and contributed to an ineffective growth

arrest in response to stress. Overall, we provide evidence suggesting

that upregulation of Necdin expression could provide advantages

for p53 wild type cells during early carcinogenesis through its ability

to decrease signaling from p53 pathways. Interestingly, we found

higher Necdin expression to be associated with low malignancy

potential (LMP) ovarian tumors, where p53 mutations are rare,

compared to high grade invasive ovarian cancers (TOV).

Results

Gene statement mapping of PyLT expressing mouse
fibroblasts

NIH3T3 mouse fibroblasts were transfected with a PyLT

expression plasmid and the selected clones were assessed for stable

PyLT expression at the mRNA and protein level (Figure 1, Figure

S1A). Selected clones were used for microarray analysis comparing

PyLT-expressing clones to a second group composed of parental

NIH3T3 cells as well as clones that did not express a detectable

amount of PyLT. A variation cut-off set to .1.5-fold with a P

value of $0.02 generated 194 candidate genes significantly

modulated by PyLT, composed of 160 upregulated and 34

downregulated genes (Table S1). To refine candidate selection, we

imposed a further selection criteria on the 194 genes selected in the

primary analysis based on the observation that genes displaying

co-transcriptional regulation often interact by functional relation-

ships [40]. Levels of PyLT were correlated to the amplitude of

fold-change expression (either up- or down-regulation) which

identified 26 candidate genes whose expression varied propor-

tionally to PyLT (Table S2). As an example, note the correlation

between the variation in Necdin gene expression and PyLT

(Figure S1B). These genes represented the strongest candidates

with 15 upregulated and 11 downregulated genes.

The generated data was validated by Northern blot analysis

using a selected number of genes. Expression levels on Northern

blots were compared to corresponding microarray expression

values (Figure 1, and data not shown). Gene expression variations

observed on Northern blots with full length cDNA probes were

highly similar to the data generated by the Affymetrix oli-

gonucleotide microarray for all probes and clones tested

(Figure 1). Some full-length cDNA probes generated more than

one band when using radioactive Northern blots although at least

one band of the expected molecular size closely followed the

microarray pattern (see a-sm-actin and Necdin, Figure 1). In

addition to loaded RNA quantification, Gapd, Dohx as well as

Rsp2 showed little variation across all clones and were used as

loading controls.

Validation of a selected candidate gene, Necdin, on an
extended NIH3T3 clone set

Among all candidates identified, the gene encoding Necdin was

selected for further study. Microarray analysis showed an

upregulation of mRNA up to five-fold (T-test, P,0.001) (Table

S2 and Figure S1B). In addition, a second probe set was associated

with the Necdin gene (94811_s_at) and also revealed a 3.6-fold

upregulation, although with a P value of 0.04 (data not shown). To

further validate the microarray data, Necdin expression was

analyzed on an extended set of six NIH3T3 sub-clones and nine

independent PyLT-expressing NIH3T3 stable clones not included

in our initial analysis (Figure 2A). The higher expression levels of

Nectin observed when PyLT is expressed, as determined by

Northern blot analysis, correlated well with the data derived from

microarray analyses. Moreover, a nonradioactive Dig-labeled

probe gave only one specific band around the expected size of

1.6 kb, confirming the identity of the lower band in Figure 1 as

Necdin. Some clones with variable levels of PyLT expression were

also used to confirm that the variation measured at the RNA level

was reproduced at the protein level for Necdin (Figure 2B).

Furthermore, when we derived a new heterogeneous population of

NIH3T3 cells expressing PyLT (NIHLT), we again observed an

upregulation of Necdin expression compared to a vector-

transfected population control (NIH) (Figure 2C and Figure 3A

inset). Necdin variation could be seen as early as 72 hrs post-

transfection of PyLT. These results show that elevated Necdin

expression levels were a reproducible and constant phenotype in

PyLT-expressing NIH3T3 cells and not caused by a clonogenic

effect, thus suggesting that Necdin may be involved in some of

PyLT oncogenic functions.

PyLT/Necdin Affects p53 Response
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PyLT induced Necdin expression independently of Rb
inactivation

In order to understand the underlying mechanisms behind the

increase in Necdin expression upon PyLT expression, we used

different well-characterized mutants of important PyLT domains

(Figure 2D). Rb binding deficient LT-c/s is unable to immortalize

primary cells while LT-CKII has an increased Rb binding

capacity compared to wild-type and demonstrates twice the

immortalization potential [12]. Deletion of the zinc finger in

mutant LT-delZ does not affect Rb binding but enhances the

immortalization potential of the protein [41]. The amount of

protein expressed from transfection of these three mutants in

NIH3T3 cells was variable, with the mutant LT-c/s exhibiting the

lowest level of expression (Figure 2D). However, it was clear that

the LT-delZ mutant, even with a high level of expression, did not

induce Necdin when compared to other mutants. The LT-c/s

mutant was able to reproduce the increase in Necdin expression

even with an overall lower protein level. The LT-CKII mutant

also showed similar increases in Necdin expression (Figure 2D).

These results suggest that Necdin expression is not directly

associated with the immortalization function of PyLT since the

mutation of PyLT affecting the modulation of Necdin expression

(LT-delZ), did not compromise its immortalization potential.

Necdin overexpression does not affect NIH3T3
proliferation in long term experiments

Necdin has been reported as a growth suppressor [26], and it is

counterintuitive that its expression would be stimulated by a viral

protein such as PyLT whose main function is to stimulate cell

cycling to promote viral DNA replication [9,42]. NIH3T3 and

PyLT-expressing NIH3T3 cells were thus compared. No differ-

ences in cell proliferation were observed (Figure 3A).

To further assess the effect of Necdin modulation in our model,

we used either gain or loss of function experiments. Three different

shRNAs (shNdn1–3) were transduced in NIH and NIHLT cell

populations resulting in decreased Necdin expression (Figure 3B).

Consistent with a role for Necdin as a growth suppressor,

removing Necdin expression by shRNA increased cellular

proliferation of NIH and NIHLT cell populations (Figure 3C

and 3D). Additionally, no cell death was observed in NIHLT cells

after Necdin removal indicating that its expression was not

necessary to maintain a PyLT-expressing cell population. While

NIH and NIHLT cells proliferate at the same rate, it remained

possible that Necdin levels were not elevated enough to cause

growth arrest in our cell lines. Therefore, we overexpressed

Necdin in NIH and NIHLT cells by using a lentiviral transduction

system (Figure 3E). A transient decrease in growth rate was

Figure 1. Validation of Affymetrix microarray data for selected genes in NIH3T3 and NIHLT clones. Northern blotting (using full-length
radiolabeled cDNA probes) was used to validate selected Affymetrix microarray patterns. Northern blots are compared to bar graphs representing
normalized microarray data. Stars represent the transcript corroborating microarray data when more then one band was detected by
autoradiography for a single probe. Note the lack of detectable PyLT in clone NIHLT33, although transcripts can be seen on longer exposures (data
not shown). There is no microarray data for the PyLT transcript. PyLT expression was verified on the total RNA used for microarray analysis.
doi:10.1371/journal.pone.0031916.g001

PyLT/Necdin Affects p53 Response
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observed shortly after the expression of Necdin (Figure S2), as

previously shown by others [26]. However, maintaining these

populations for longer periods of time in culture rapidly allowed us

to derive populations that still expressed high levels of Necdin

without any growth defects (Figure 3F and Figure 3G). These

populations stably expressing Necdin were further characterized.

PyLT allows bypass of p53-dependent growth arrest
induced by nutlin-3

Necdin interacts with p53 and possibly modulates its activity

[35,39], which raises the possibility that PyLT exerts its inhibitory

effect on p53 through Necdin induction. Nutlin-3 is a small

molecule antagonist of MDM2, which prevents the interaction

between MDM2 and p53, thus promoting the accumulation of

p53 in cells [43]. It has been recently shown that nutlin-3 can

efficiently induce cell cycle arrest or apoptosis in different cancer

cell lines with functional p53 [44]. To assess the response induced

in our model, the NIH3T3 cell line was treated with nutlin-3 and

proliferation was followed by flow cytometry. Stimulation of NIH

cells with nutlin-3 resulted in the stabilization of p53 causing p21

induction (Figure S3A) and a gradual growth arrest (Figure 4A).

We did not detect apparent cell death as evaluated by the sub-G1

content (Figure 4B). When PyLT-expressing NIH3T3 cells were

treated with the same dose of nutlin-3, we observed an important

delay in growth arrest without a significant elevation in the amount

of cell death (Figure 4A and 4B). To confirm that growth arrest

obtained in our model was actually dependent on p53, we used a

dominant-negative p53 peptide, GSE22 [45,46], delivered by

lentivirus. As revealed by immunostaining, high infection efficien-

cies were reached with lentiviruses since almost all cells showed

expression of GSE22, which resulted in an accumulation of non-

functional p53 in the nucleus (Figure 4C). Inactivation of p53 by

GSE22 expression (NIH-GSE22) conferred almost complete

resistance to nutlin-3 (Figure 4D) thereby showing the p53-

dependence of nutlin-3 induced cell cycle arrest in NIH3T3 cells.

These results show that PyLT expression clearly protects against a

p53-dependent growth arrest, which supports previous reports on

the inhibitory activity of the viral protein on p53 [21,22].

p53-dependent growth arrest is delayed by Necdin
To address whether the presence of elevated Necdin levels in

PyLT expressing cells may play a role in the delayed p53-response,

Figure 2. Necdin as a relevant candidate. (A) Validation of the microarray identified Necdin gene by Northern blot analysis on an independent
extended clone set. Lanes 1 to 6 represent individual NIH3T3 sub-clones. Lanes 7 to 15 represent individual NIH3T3 clones transfected and selected to
express PyLT. Clones were independent from those used in the microarray analysis. DIG-labeled probes were used and exposure times were adjusted.
DOHX was used as a control. (B–C) Necdin protein level in (B) clones expressing variable level of PyLT or (C) additional heterogeneous populations of
NIH3T3 cells stably transfected with PyLT (NIHLT) or empty vector (NIH). (D) Different mutant forms of PyLT protein expressed in NIH3T3 were used to
determine the domain involved in Necdin modulation. Western blot shows protein expression levels. Representation of mutants utilized with Rb-
binding and immortalization capacity as reported previously [12,41].
doi:10.1371/journal.pone.0031916.g002

PyLT/Necdin Affects p53 Response
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we examined cell cycle distribution upon nutlin-3 treatment in

cells where Necdin expression was decreased by the use of three

different shRNA (Figure 3B). In response to nutlin-3 treatment for

48 hours, an increase in cell cycle arrest was observed when

suppressing Necdin expression in NIHLT cells compared to

NIHLT infected with the control recombinant virus, shGFP

(Figure 5A). It was observed that shNdn 3, which repressed Necdin

less efficiently (Figure 3B), only showed a limited effect (Figure 5A).

Thus, the reduced presence of Necdin in NIHLT cells sensitized

them to p53 cell cycle arrest. We did not notice significant changes

using flow cytometry assays in NIH cells expressing shNdn

constructs presumably due to the fact that the parental cells

already expressed very low levels of Necdin, and were already

highly sensitive to cell cycle arrest (Figure S3B).

To validate these results, we also used Wst-1 assays to assess the

effect of Necdin loss on cell growth. Again, reduction of Necdin

levels by shRNA sensitized NIHLT to cell proliferation arrest

induced by nutlin-3 (Figure 5B). Significant changes where observed

for shNdn 1 and 2 at a dose of 10 mM while shNdn 3 did not vary

significantly. In all experiments, targeting Necdin in NIHLT did not

convey the same sensitivity as NIH cells (Figure 5B). Unlike results

obtained using flow cytometry, reduction of Necdin levels in NIH

cells did sensitize them further to the p53-induced growth arrest

when measured using the Wst-1 assay (Figure S4C).

Conversely, Necdin overexpression delayed p53-mediated

growth arrest both in NIH and NIHLT as evaluated by DNA

content (Figure 5C). Consistent with flow cytometry, Wst-1 assays

revealed that the ectopic expression of Necdin appeared to

attenuate the effect of nutlin-3 in NIH and NIHLT (but only at the

5 mM concentration for NIHLT), although this reached statistical

significance only in NIH cells (Figure 5D). It should be noted that

the mere overexpression of Necdin did not confer to NIH cells the

equivalent response to nutlin-3 seen in the NIHLT cells (Figure 5C

and 5D). These results suggest that the acquired resistance to

growth arrest in PyLT-expressing NIH3T3 cells was in part

mediated by Necdin expression but also that other factors were

presumably involved. Nevertheless, Necdin could confer growth

arrest resistance even in the absence of PyLT.

Necdin is a p53-target gene induced by different
genotoxic stress

As shown in Figure 6A, a dose-dependent elevation of Necdin

protein levels in NIH and NIHLT cells were observed after

exposure to nutlin-3. This increase was also observed at the RNA

Figure 3. Necdin influences the proliferation of NIH and NIHLT populations. (A) NIH and NIHLT mixed populations proliferate at the same
rate. (B) Decrease of Necdin protein levels by three different shRNAs transduced by lentivirus infection in NIHLT and NIH. Growth curves for NIHLT (C)
and NIH (D) revealed that cells depleted in Necdin proliferate faster. (E) Protein expression level in NIHLT and NIH cells with overexpression of mouse
Necdin, the GFP control or vector alone. Growth curves for NIHLT (F) and NIH (G) expressing exogenous Necdin after a certain period of time did not
shown differences in their growth rate.
doi:10.1371/journal.pone.0031916.g003

Figure 4. Nutlin-3 induces a p53-dependent growth arrest in NIH3T3 cells that is bypassed by PyLT expression. (A–B) Flow cytometry
analysis of NIH or NIHLT populations treated with nutlin-3 (5 mM) demonstrate that nutlin-3 induces a growth arrest in NIH cells, but not in NIHLT
cells. Results presented are from one representative experiment (A) Cell cycle arrest was represented by the variation of ratio of arrested cells (G1+G2
phases) over proliferating cells (S phase) in treated cells versus untreated controls. (B) No variation of the percentage of cells in Sub-G1 phase,
representing cell death, was observed after nutlin-3 treatment. (C–D) The use of a p53 inhibitor peptide (GSE22) validates the p53-dependence of the
growth arrest induced by Nuclin-3. (C) High efficiency of infection and functionality of the GSE22 peptide were demonstrated by the accumulation of
non-functional p53 in the nucleus by immunocytochemistry detecting p53 in NIH transduced with GSE22 or control vector. The stabilization of non-
functional p53 was also seen in Western blots of the corresponding infected cells. (D) FACS analysis on NIH transduced with GSE22 or vector with
nutlin-3 treatment (*P,0.05, **P,0.01 t-test).
doi:10.1371/journal.pone.0031916.g004

PyLT/Necdin Affects p53 Response
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level (Figure S4A and S4B) suggesting transcriptional regulation,

!?tlsb=-.005w?>rather than a protein stabilization. This transcrip-

tional regulation was p53-dependent since inactivation of p53 with

GSE22 peptide abolished the Necdin increase seen in response to

nutlin-3 stimulation (Figure S4C). This is consistent with a recent

report suggesting that Necdin is a direct target gene of p53 [36]. We

then examined if other genotoxics stresses known to induce p53

could also cause Necdin upregulation. Both Camptothecin, a

Topoisomerase I inhibitor, and Actinomycin D, an inhibitor of

transcription, are known to induce p53 activation [47]. Increased

Necdin expression levels were observed in all cells treated with

these two drugs (Figure 6B). By extension, this suggests that Necdin

is a part of p53 pathways that can be induced by different signals.

Necdin upregulation in PyLT-expressing cells is
independent of p53

Since p53 activation induces Necdin expression, we hypothe-

sized that the PyLT-mediated induction of Necdin may involve an

increase in p53 basal activity in NIHLT cells. To assess p53

involvement, the p53 inhibitor GSE22 was introduced in NIHLT

Figure 5. Necdin confers resistance to p53-dependent growth arrest. (A–B) NIHLT cells depleted in Necdin by shRNAs and exposed to nutlin-
3 showed an increase in growth arrest (A) measured by DNA content analysis by flow cytometry (as described in figure 4A) or (B) assessed by Wst-1
colorimetric assay. Results for Wst-1 represent normalized data according to the portion of arrested cells (O.D. untreated – O.D. treated) relative to
arrested control NIH after 48 h of exposure to nutlin-3. (C–D) NIH and NIHLT cells overexpressing Necdin showed growth arrest resistance upon
nutlin-3 treatment. (C) FACS analysis or (D) Wst-1 colorimetric assay (*P,0.05, **P,0.01 t-test).
doi:10.1371/journal.pone.0031916.g005

PyLT/Necdin Affects p53 Response
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cells and changes in p53-induced gene expression were analyzed.

Expression of GSE22 affected basal mRNA of p53 target genes as

judged by the level of p21 (2.5-fold decrease) but did not affect the

control GAPDH (Figure 6C). In the same extract, the Necdin level

was not affected by inhibition of the p53 function (Figure 6C).

These data demonstrate that although Necdin is induced by p53 in

response to cellular stresses, PyLT does not require p53 to mediate

increased Necdin expression levels.

Necdin is expressed in low malignant potential ovarian
cancer

Since Necdin expression can be regulated independently of p53

and can repress p53 activity, it is possible that deregulation of Necdin

may be important in cancers with wild type p53, where Necdin may

play a role in inhibiting the p53 tumor suppressor activity. To test

this, we examined Necdin expression in low malignancy potential

(LMPs) versus aggressive ovarian cancer (TOVs), two distinct types

of serous ovarian cancer thought to have different molecular origins,

and where p53 mutations rarely (in LMPs) or frequently (in TOVs)

occur [48,49]. A set of seven LMP and eight TOV tissues were used

and Necdin mRNA levels were determined by quantitative real-time

PCR analysis. The relative expression levels revealed a significant

difference in Necdin expression (P,0.0001) between tissues from

LMP and TOV, with higher levels found in LMP tissues (mean value

was .10-fold higher) (Figure 7).

Discussion

Genes regulated by PyLT were identified in a mouse

fibroblast cell culture model. Considering that PyLT has anti-

apoptotic activities [18], that it maintains strong homologies in

essential domains to the transforming oncogenes SV40LT and

E1A [7], and that its expression in transgenic mice leads to

tumors development [15,16], it was hypothesized that these

PyLT structure-function properties could provide clues to early

steps during the transformation process. Since NIH3T3 cells

were already immortalized mostly through the biallelic deletion

of the INK4 locus [50,51], PyLT-mediated immortalization

was not a selection criteria in our model and we considered

candidate genes as possibly immortalization-independent.

Figure 6. PyLT-induced Necdin expression is p53-independent. Necdin is induced following activation of p53. (A) Dose response treatment
with nutlin-3 increased Necdin protein level in NIH (left) and NIHLT (right). (B) Genotoxic stress induced by Actinomycin D and Camptothecin also
stimulated Necdin protein expression. (C) In NIHLT cells, Necdin expression is not dependent on p53 activity as assessed by p53 inhibition. Mean of
relative expression of Necdin, p21, p53 and GAPDH in NIHLT cells with or without the p53 inhibitor GSE22. Expression was measured by Q-PCR in
three independent samples from each group. Expression is relative to actin (**P,0.001, t-test).
doi:10.1371/journal.pone.0031916.g006

PyLT/Necdin Affects p53 Response
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Our microarray analysis identified a list of potential transfor-

mation-associated candidate genes that corroborates the existing

literature and point out the importance of viral proteins as tools to

identify events related to cancer progression. For example,

Transgelin, an actin-binding protein downregulated in our study,

is also downregulated in virally transformed human cells and in

human breast, colon and lung cancers [52,53]. Alternatively, DNA

methyltransferase 1 (Dnmt1), which contributes to the mainte-

nance of tumor suppressors silencing in colon cancer progression

and in tumorigenic cell lines [54,55], is also upregulated by PyLT

expression. Importantly, Dmnt1 is recognized as a significant

event during the carcinogenesis process in models related to

polyomavirus T antigen expression including the prostate cancer

mouse model expressing SV40LT (TRAMP) [56], and transfor-

mation of cell lines by SV40LT or the human polyomavirus BKV

[57,58]. Interestingly our main candidate gene, Necdin, was also

upregulated in a mouse prostate cancer progression model based

on SV40LT expression [59]. Initial observations for Necdin

expression in human cancer suggested a tumor suppressor function

due to its lack of expression in brain tumor cell lines [25], its

decrease in melanomas [60], and in bladder cancer cell lines and

tumors [61]. Conversely, more recent studies revealed loss of

imprinting and upregulation of Necdin in pancreatic cancer

[62,63]. As a whole, Necdin function in cancer remains poorly

defined and warrants further investigation.

Identification of functional activities associated with PyLT
One way to identify closely interacting proteins (physical or

functional associations) is to monitor their mRNA expression levels

since they are often co-regulated [40]. Since the group of genes

shown in Table S2 most closely correlates with PyLT expression at

the transcriptional level, these genes represent good candidates for

functional associations. One particularly promising member of this

group is Necdin, whose gene product has Rb-like growth

regulatory activities and has been shown to interact with p53

and viral oncogenes such as SV40LT and E1A [32,35]. It has been

hypothesized that the Rb-like activity of Necdin leads to cell

growth arrest when overexpressed in neurons and fibroblasts

[26,32]. In particular, the growth inhibitory effects of Necdin were

described in a model system using NIH3T3 cells [26]. Here, we

demonstrate that PyLT expression in NIH3T3 cells results in

increases in both Necdin transcript and protein levels but without

altering the long-term growth of PyLT-expressing cells. This

suggests that PyLT can inhibit the known growth suppressive

functions of Necdin [26]. Surprisingly, continued proliferation in

the presence of high levels of Necdin was not due to the

simultaneous expression of PyLT since the overexpression of

Necdin alone produced long-term Necdin-expressing NIH3T3

cells. Indeed, cell growth slowed immediately following Necdin

expression, as previously described [26], but as shown in this

study, the cells rapidly recovered and maintained normal

proliferation rates while maintaining high Necdin levels. This

divergence in Necdin-influenced cell proliferation may be

explained by differences between the experimental approaches.

Although the previous study also used the mouse Ndn sequence,

the protein was conditionally expressed in NIH3T3 cells with an

inducible expression system. Three independent clones were

selected and analyzed immediately after induction. In contrast,

we used lentivirus-mediated Necdin expression and evaluated the

growth potential of heterogeneous populations after a period of

selection and some passages in culture. While long-term Necdin

overexpression was not incompatible with cell growth, we cannot

yet conclude whether the emerging population came from a

selective pressure for cells able to tolerate high Necdin expression

or if they came from a transient anti-proliferative effect of Necdin

from which most cells can adapt. Interestingly, we also ex-

perienced difficulty with the production of recombinant lentivi-

ruses from Necdin constructs (also reported by [32]), potentially

reflecting Necdin related growth inhibition in the packaging cell

line 293FT.

Necdin regulation by PyLT-Ag
The increase in Necdin expression in response to PyLT

expression was not caused by Rb inactivation but was dependent

on the presence of the PyLT C-terminal zinc finger domain. This

PyLT domain is required for viral DNA replication possibly due to

its involvement in protein-protein interaction, which allows the

formation of PyLT hexamers [64]. Given that the zinc finger motif

is conserved in several polyomavirus large T antigens, this supports

the idea that other large T antigens may also induce Necdin

expression. Although mutations in this domain do not abolish the

immortalization property of PyLT [41], deletions in this domain of

SV40LT or papillomavirus E7 decreased their transforming

potential [65,66]. Accordingly, Necdin could have a potential

role in the transformation process involving viral proteins but not

in immortalization. Necdin induction by PyLT could arise through

direct PyLT interaction with DNA or with cellular transcription

factors via its zinc finger domain to enhance their activity at the

Necdin promoter. One promising candidate is Lim domain only 4

(LMO4) known to control the expression of the Ndn gene [67] and

that was also upregulated following PyLT expression (Table S2).

LMO4 demonstrates variable expression in different cancers but

its role remains unclear since in breast cancer, high LMO4

expression is associated with a poor prognosis [68,69], while in

pancreatic cancer it is associated with a better survival [70,71].

The p53-Necdin negative feedback loop
Necdin was identified in our screen using conditions that high-

light stable events occuring in continuously proliferating cells.

These conditions presumably reflect the plasticity of heteroge-

neous cancer tissue where each cell will not have the exact same

fate upon exposure to stress and where selection pressures allow the

emergence of growth/survival promoting properties. According to

Figure 7. Necdin expression is detected in LMP and is lower in
TOV. Q-PCR analysis of tissues from seven LMP serous ovarian cancers
and eight high grade serous ovarian cancers. Expression of Necdin gene
(P,0.0001, Mann-Whitney’s U test) relative to ERK-1.
doi:10.1371/journal.pone.0031916.g007
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the tumor suppressor function previously proposed for Necdin, it

would be beneficial for a cell to lose Necdin expression to acquire a

proliferative advantage, unless maintaining Necdin was somehow

advantageous to the cancer cell. Therefore, we examined whether

in some contexts, increased Necdin could paradoxically promote

growth or survival.

A possible role for Necdin in DNA damage response was

suggested by the upregulation of Necdin following different

genotoxic stresses. By using nutlin-3, we showed that p53

activation clearly induced Necdin in a dose dependent manner,

supporting a previous report that identified Necdin as a p53 target

gene [36]. Moreover, we show that modulation of the Necdin level

affects p53-dependent growth arrest. Indeed, we demonstrate that

an increase in Necdin expression results in a delayed cell cycle

arrest while inversely targeting Necdin by shRNA accelerates this

arrest. The interaction of Necdin with p53 [35] suggests that this

delay in growth arrest is probably associated with a direct

inhibitory effect of Necdin over p53. We noted that Necdin

affected p21 induction following p53 activation in our model

(Figure S3D and S3E) supporting previous results [35]. Therefore,

interference with p53 transcriptional activity may represent the

mechanism underlying the cell cycle arrest variations caused by

Necdin. However, we believe that other mechanisms may be

involved since p21 mediated-arrest mostly relies on functional Rb

[72,73] and in PyLT-expressing cells, the Rb proteins are kept

inactive by their interaction with PyLT [74,75].

As p53 induction upon genotoxic stress is associated with

multiple additional signaling events, we directly addressed p53

stimulation by exposure to nutlin-3. This specific stimulation

results in a functional induction of p53, although the post-

translational phosphorylation of p53 observed with genotoxic

stress are absent or barely detectable with nutlin-3 [76,77]. This

suggests that phosphorylation may not be critical for interaction of

Necdin with p53 and that Necdin does not interfere with the

phosphorylation status to modulate p53 activity. In addition to

phosphorylation, other modifications contribute to p53 activity

[78], including acetylation, which is increased upon nutlin-3

stimulation [79]. The deacetylase Sirt1 is a negative regulator of

p53 activation [80,81] and Necdin interactions with this protein

potentiate its activity upon genotoxic stress [39]. However, we did

not address the status of these post-translationals modifications in

our model. Additionally, it is important to note that p53 responses

can differ with particular drugs depending on the dose employed,

the duration of the treatment, and the metabolic state of the cell

[82,83].

Others mechanisms can explain Necdin inhibitory effects over

p53. Necdin binds the N-terminal transactivation domain of p53

[35]. Some proteins share this binding site, among them SOCS1,

which contribute to p53 activation [84]. It is possible that Necdin

competes with activating proteins such as SOCS1 for p53 binding,

leading to a decrease in p53 response. Others examples exist

where the response to p53 activation varies according to the

presence or absence of specific cellular partners. The capacity of

p53 to translocate to the mitochondria where it plays a

transcription-independent function in apoptosis is now well

documented. Tid1 is a p53-interacting protein that helps this

localization from the nucleus to mitochondria [85]. Both

cytoplasmic and nuclear cellular partners have been revealed for

Necdin and expression of these partners has been shown to cause

Necdin relocalisation in the cell [28,86,87,88,89]. Perhaps

interference with p53 activation may arise from the ability of

Necdin to relocate p53 in other cellular compartment. All these

mechanisms are consistent with the notion that Necdin can inhibit

p53 function and require further investigation.

Combining our data on p53 inhibition by Necdin with the

knowledge that Necdin is a direct p53 response gene suggests that

Necdin is part of a negative feedback loop controlling p53 activity.

Under normal conditions, this loop is probably well controlled and

allows normal regulation of cellular responses as in the case of the

p53 negative regulator and target gene mdm2 [90,91]. Impor-

tantly, our results also show that Necdin can be induced by PyLT

in a p53-independent manner, which, in a cancer context, could

cause a reduction in p53 activity and potentially contribute to

checkpoint bypass and genomic instability [92].

Necdin is expressed in the borderline ovarian cancer
subtype

According to the literature, Necdin expression may not be

suitable for tumor progression. Necdin has an anti-angiogenic

function by interacting with HIF-1-alpha and by negatively

regulating its activity on VEGF induction [93,94]. VEGF play a

major role in the proliferation and migration of endothelial cells,

thereby nourishing and favoring tumor growth by a pro-

angiogenic function. Moreover, Crawford and al. [95] identified

some genes predictive of metastasis in breast cancer from a

quantitative trait locus analysis and found Necdin among their

candidates whose expression diminished with increased risk of

metastasis. These results evoke a possible limited capacity of tumor

progression to an advance stage in the presence of Necdin

expression. In this study, we chose to further characterize Necdin

in ovarian cancer since this pathology includes a particular subset

of low malignancy cancer. LMPs are non-invasive, or only display

micro-invasion, rarely progress to an aggressive metastatic cancer

and patients with LMP disease have a 5 years survival rate of 95%.

Here, we observed higher expression of Necdin in LMPs

compared to TOVs. In line with this, LMPs have low angiogenesis

as compared to TOVs [96], which fits nicely with Necdin’s anti-

angiogenic activity.

Moreover, LMP rarely have mutation in TP53 while 50 to 80%

of high-grade carcinomas present abnormalities in TP53 [48,49].

This could indicate that in LMPs, where p53 is wild type,

alternative mechanisms are responsible to render p53 inactive.

Our results revealed an inhibiting function of Necdin over p53-

dependent growth arrest. Therefore, Necdin expression in LMPs

may attenuate the response when p53 activity is required. Taken

together, the data support the notion that in ovarian cancer,

Necdin expression correlates with a favorable prognosis. The

hypothesis that LMP tumors are precursors of invasive tumors is

still controversial, but the evidence suggests that they are two

distinct diseases. Expression of Necdin in borderline ovarian

tumors could be characteristic of this particular ovarian cancer

and may have a biologic impact on p53 pathways and malignancy.

However, these possible functions require more investigation.

Conclusion
While the temporal order of multi-step carcinogenesis events

may not be crucial, especially since immortalization and trans-

formation are in vitro concepts, the pathways or genes themselves

may point to important parameters during carcinogenesis. It is

likely that some of the candidate genes identified here may play a

role in human cancer. Our results suggest that Necdin harbors

both tumor suppressive or oncogenic properties depending on the

cellular context. These oncogenic properties were demonstrated

here by the inhibitory effect of Necdin over p53-mediated growth

arrest and by others where Necdin contributed to p53-induced

apoptosis resistance [35,39]. In combination with Necdin

expression patterns during ovarian cancer progression, these

results warrant further investigation about the context-dependent
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oncogenic properties of Necdin. Further challenges include in-

vestigating the functional significance of the identified candidates

during multistep carcinogenesis.

Materials and Methods

Ethics Statement
The Centre hospitalier de l’Université de Montréal (CHUM)

institutional ethics committee approved the ovarian tumors study and

written consent was obtained from patients prior to sample collection.

Cell culture
NIH3T3 cell lines [97] were purchased from ATCC. All cell

lines were cultured in Dulbecco’s modified Eagle’s media (DMEM)

supplemented with 10% fetal bovine serum, gentamycin and

amphotericin. Cells were grown at 37uC with 5% CO2 and kept at

low-density conditions to prevent culture induced transformation

[97,98]. For proliferation experiments, 56104 cells were seeded in

6 well plates and the number of living cells determined using the

CASYH cell counter model TT or by a hematocytometer.

Experiments were repeated at least three times in duplicate.

For p53 stimulation, the following reagents was used: Nutlin-3

(5–20 mM), Actinomycin D (60 mM) and Camptothecin (5 mM).

Vectors and transfections
The PGKLTneo plasmid was constructed by introducing

Neomycin resistance from the pSV2neo vector into PGKLT [18]

and was used to transfect NIH3T3 cells. The PGKLTGFPneo

vector was generated by cloning eGFP from Clontech eGFP-N1

vector in frame with PyLT into PGKLTneo. A small C-terminal

deletion of PyLT was introduced encompassing amino acids 685–

785. All stable clones were selected with 0.5 mg/ml G418 applied

48 hrs post-transfection and named ‘‘LT’’ follow by a different

number representing each independent clone. Heterogeneous

populations expressing PGKLTneo plasmid or the control vector

PGKN were generated with Lipofectamine 2000 transfection

reagent (Invitrogen). We referred to these heterogeneous popula-

tions as NIHLT and NIH respectively. Mutant forms of PyLT are

described elsewhere [12,41]. Briefly, LT c/s contain a cysteine to

serine substitution in amino acid 144. In LT CKII, some amino

acids in the phosphorylation motif adjacent to the Rb binding motif

were substituted to mimic an E7 CKII motif. LT delZ contains a

deletion in amino acids 452 to 469 in the zinc finger domain.

Lentiviral constructs and infections
Mouse Ndn was PCR amplified from a Riken clone (clone

1500000G13) followed by insertion in pENTR/D-TOPOH (In-

vitrogen). The generated pENTR-ndn vector was recombined in

the 670-1 vector (pLenti CMV/TO Puro DEST, Addgene 17293)

[99] using recombination cloning technology from Invitrogen.

Empty control vector (referred to as Vector in figures) was the

product of 686-1 (pENTR4 no ccDB, Addgene number 17424) [99]

recombined with the 670-1 vector. eGFP and GSE22 (encoding an

interfering p53 fragment) are described elsewhere [45,100]. For

gene repression, pLKO.1 lentiviral shRNA vectors targeting the

mouse Ndn gene were purchased from Open Biosystems: shNdn1

(TRCN0000103780), shNdn2 (TRCN0000103781), shNdn3

(TRCN0000103782). shGFP from Open Biosystems (RHS4459)

was used as control vector. The Virapower lentivirus expression

system (Invitrogen) allowed us to deliver genes of interest or shRNA

in mixed populations (NIH and NIHLT). Briefly, the vector of

interest was cotransfected with a packaging mix in 293FT. The

supernatant was collected after three days and was either used fresh

or concentrated. Infections were done overnight in the presence of

polybrene, and puromycin selection was applied 48 hrs later.

RNA and Proteins extractions
RNA was extracted directly from 80% confluent 100 mm petri

dishes with TRIzolTM reagent (Gibco/BRL, Life Technologies

Inc.). RNAs used in microarray experiments were further purified

with QIAGEN Rneasy columns. Total proteins were extracted

from 80% confluent 100 mm plates in buffer containing: 50 mM

Tris HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% TRITON|

X-100, protease inhibitor Cocktail (Complete Protease Inhibitor

cocktail Tablets, Roche), NaF and NaOV.

Microarray analysis
Biotinylated hybridization targets were prepared from total RNA

as described [101]. Affymetrix arrays Mu74a were used in

experiment 1 to hybridize cRNA from the parental NIH3T3

population and from clones NIHLT11, NIHLT47, NIHLT40,

NIHLT50. Arrays Mu74a2 were used in experiment 2 to hybridize

NIHcM, an untransfected NIH3T3 sub-clone, and clones NIHLT7,

NIHLT12, NIHLT32, NIHLT33, NIHLT46, and NIHLTGFPA

(expressing a PyLT eGFP fusion protein). Gene expression levels

were calculated for each EST from the scanned image by the

Affymetrix GeneChip software algorithm. After normalization to the

total average intensity, all probe sets whose expression levels were

below 50 were raised to 50. The ,25% of probes on the Mu74a

arrays corresponding to Affymetrix synthesis errors were removed

from both experiments for subsequent analysis. Based on data

acquired by Northern blots analysis, individual microarray datasets

were pooled into two groups, a first group containing samples with

clearly detectable PyLT expression (NIHLT11, NIHLT32,

NIHLT40, NIHLT46, NIHLT47, and NIHLT50), and a second

group of samples lacking PyLT expression (NIH3T3, NIHcM,

NIHLT7, and NIHLT12). Groups were compared against each

other to detect significant differences in gene expression (Fold change

of more than 50% increase/decrease at a P value of 0.02 or better,

see Table S1). The candidate genes modulated at the transcriptional

level by PyLT were reordered using GENESPRINGTM to identify a

group of genes that have an expression pattern closely matching

PyLT expression levels (Table S2).

Candidate gene expression validation
Northern blot analysis has been described elsewhere [18].

Radiolabeled probes were generated from RIKEN full-length

cDNA. A subset of Northern blots were hybridized and revealed

using Dig-labeled 1 kb cDNA probes according to the manufac-

turer’s instructions (ROCHE Diagnostics).

Western blotting and immunocytochemistry
The following antibodies were used for western blotting: Necdin

(07-565), GFP (JL-8, 8371-2), p21 (F-5, sc-6246), p53 (Ab-1, clone

PAb-240), HSP60 (N-20, sc-1052), Actin (AC-15, ab6276). The

polyclonal antibody specific to PyLT (Mm1a) was produced by

injection of PyB4a to form ascites in BN rat cells [102]. All HRP-

conjugated secondary antibodies were purchased from Santa

Cruz. Immunocytochemistry was performed on formaldehyde

fixed cells with the DakoCytomation kit according to the

manufacturer’s protocol. p53 Pab240 antibody was used to detect

non-functional p53 in the native form.

Cell cycle analysis and proliferation
For p53 activation, 5 mM or 10 mM of nutlin-3 (Sigma) was

used, with DMSO being used for untreated control. Flow
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cytometric analyses were performed to characterize cell cycle

profiles. Approximately 16105 cells were seeded in 6-well plates

and treated 24 hours later for the indicated period of time. Cells

and medium were collected and centrifuged. Cells were fixed and

stained with propidium iodide. The use of nutlin-3 mimics the

overexpression of p53 as it causes the release of p53 from mdm2,

which results in its accumulation [43]. Nutlin-3, like p53

overexpression, has been described to induce growth arrest in

both the G1 and G2 phase [103,104,105]. Accordingly, we present

FACS data as a ratio of arrested cells (G1+G2 phases) over

proliferating cells (S phase). Cell proliferation reagent WST-1

(Roche) was used to follow growth arrest in NIH and NIHLT

treated with nutlin-3. 56103 cells were plated in 96-well plates

and treated 24 hrs later for a period of 48 hrs. Growth arrest is

the difference between proliferation of untreated cells and

proliferation of treated cells (O.D. untreated – O.D. treated).

This result was normalized to growth arrest with the internal

control NIH.

Quantitative Real-Time PCR
Total RNA was extracted with TRIzolH reagent as described by

the manufacturer and the quantity and quality were determined

with the Agilent 2100 Bioanalyzer and NanoDrop. cDNA was

generated using the QuantiTectH Reverse Transcription Kit

(Qiagen). For Q-PCR, SYBR Green PCR Master Mix (Qiagen)

was used for cDNA labeling and was performed with the Rotor-

Gene 3000 Real-Time PCR Detection System (Corbett Life

Sciences). The Pfaffl analysis method [106] was applied to data

generated by Q-PCR. Primer sequences were from RTprimerDB

[107] and are available upon request. For the ovarian cancers

study, tumor samples were collected through the Division of

Gynecologic Oncology at the Centre hospitalier de l’Université de

Montréal (Hôpital Notre-Dame). We focused on samples of serous

histopathology obtained from chemotherapy naı̈ve patients.

Experiments on ovarian tumor tissues were done twice in

duplicate for each sample. Comparative gene expression analysis

in ovarian samples was performed using ERK1 as an internal

control based on previous results [108].

Supporting Information

Table S1 Microarrays analysis containing 194 genes
modulated by PyLT expression in NIH3T3 (1,5 folds,
P#0.02).
(XLS)

Table S2 PyLT-mediated changes in gene expression
profile in NIH3T3 cells. A partial listing of PyLT modulated

genes representing candidates whose expression variation corre-

lates with the level of PyLT mRNA.

(XLS)

Figure S1 PyLT expression and candidates selection. (A)

Western blot analysis of PyLT expression in selected clones used

for microarrays analysis. The PyLT row represents the expression

levels of PyLT protein in all clones (note that like the mRNA in

Figure 1, PyLT protein in clone NIHLT33 is only detected on

long exposures). (B) Genespring software representation of gene

expression from candidates whose expression correlates with the

level of PyLT, with emphasis on Necdin expression. PyLT mRNA

expression levels by Northern blot analysis are presented below.

(TIF)

Figure S2 Necdin induces growth arrest in short term
experiment. Overexpression of Necdin caused growth inhibition

in three different experiments (A) Proliferation curve of NIH and

NIHLT cells two weeks after transduction with Necdin or control

vector. (B) Cellular proliferation assessed by colorimetric BrdU

ELISA Kit (ROCHE) in the same population. (C) Proliferation

monitored by Wst-1 assays on NIH3T3 cells transiently transfect-

ed with Necdin or control vector.

(TIF)

Figure S3 Effects of Nutlin-3 stimulation in NIH
population. (A) Nutlin-3 stimulation of NIH cells induced an

increase in p53 protein levels accompanied by an increase of its

target gene p21 (B) Flow cytometry analysis of NIH and NIH

shNdn1 to 3 treated with nutlin-3 showed no significant variation

in growth arrest. (C) Wst-1 colorimetric essay on the same

populations after 48 hrs of nutlin-3 treatment revealed increased

sensitivity to growth arrest in Necdin-depleted NIH cells. Graph

represents differences between treated and untreated cells

normalized according to NIH control. (** P,0.01, t-test) (D) Q-

PCR for p21 expression upon nutlin-3 stimulation (24 hrs) or

control DMSO, in NIH and NIHLT cells overexpressing Necdin

or Vector. (E) Protein levels in NIHLT cells containing shNdn or

control 48 hrs after nutlin-3 stimulation.

(TIF)

Figure S4 Nutlin-3 stimulation of NIH and NIHLT
populations induces Necdin mRNA in a p53-dependent
manner. (A–B) Necdin was induced in a dose-dependent manner

with nutlin-3 treatment in (A) NIH and (B) NIHLT. (C)

Inactivation of p53 by transduction of NIH with GSE22 inhibited

Necdin induction by nutlin-3. Relative expression by Q-PCR

analysis according to GAPDH.

(TIF)
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