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Immunotherapy using broadly neutralizing antibodies (bNAbs) endowed with Fc-mediated 
effector functions has been shown to be critical for protecting or controlling viral replica-
tion in animal models. In human, the RV144 Thai trial was the first trial to demonstrate 
a significant protection against HIV infection following vaccination. Analysis of the cor-
relates of immune protection in this trial identified an association between the presence 
of antibody-dependent cellular cytotoxicity (ADCC) mediated by immunoglobulin G (IgG)  
antibodies (Abs) to HIV envelope (Env) V1/V2 loop structures and protection from infec-
tion, provided IgA Abs with competing specificity were not present. Systems serology 
analyses implicated a broader range of Ab-dependent functions in protection from 
HIV infection, including but not limited to ADCC and Ab-dependent NK cell activation 
(ADNKA) for secretion of IFN-γ and CCL4 and expression of the degranulation marker 
CD107a. The existence of such correlations in the absence of bNAbs in the RV144 trial 
suggest that NK cells could be instrumental in protecting against HIV infection by limiting 
viral spread through Fc-mediated functions such as ADCC and the production of antiviral 
cytokines/chemokines. Beside the engagement of FcγRIIIa or CD16 by the Fc portion of 
anti-Env IgG1 and IgG3 Abs, natural killer (NK) cells are also able to directly kill infected 
cells and produce cytokines/chemokines in an Ab-independent manner. Responsiveness 
of NK cells depends on the integration of activating and inhibitory signals through NK 
receptors, which is determined by a process during their development known as edu-
cation. NK cell education requires the engagement of inhibitory NK receptors by their 
human leukocyte antigen ligands to establish tolerance to self while allowing NK cells to 
respond to self cells altered by virus infection, transformation, stress, and to allogeneic 
cells. Here, we review recent findings regarding the impact of inter-individual differences 
in NK cell education on Ab-dependent functions such as ADCC and ADNKA, including 
what is known about the HIV Env epitope specificity of ADCC competent Abs and the 
conformation of HIV Env on target cells used for ADCC assays.
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iNTRODUCTiON

There is great interest in developing an effective vaccine against 
HIV infection. It is generally acknowledged that inducing broadly 
neutralizing antibodies (bNAbs) would be a desirable goal for 
prophylactic HIV vaccines. The most potent bNAbs have been 
shown to protect against virus infection or to suppress viral 
replication in humanized mouse models and in rhesus macaques 
(1–6). Clinical trials conducted in HIV-infected humans, using 
the bNAbs VRC01 and 3BNC117, reduced HIV viral load by up 
to 2.5 logs (7, 8) and delayed viral rebound after antiretroviral 
therapy (ART) interruption (9, 10). However, there are still 
significant challenges to inducing such antibodies (Abs) through 
vaccination. BNAbs are rarely elicited in natural HIV infection 
and many exhibit high levels of affinity maturation (11–15). 
Despite this, progress has been made producing bNAbs in animal 
models using sequential cycles of boosting with defined immu-
nogens (16). It is interesting to note that bNAbs able to protect 
humanized mice or rhesus macaques against challenge with HIV 
or simian/human immunodeficiency virus (SHIV) require an Fc 
region able to interact with Fc receptors (FcRs) on innate immune 
cells (17–19). One of these FcRs, FcγRIIIa, also known as CD16, 
is found on natural killer (NK) cells, macrophages, and monocyte 
subsets (20–22).

The HIV vaccine tested in the RV144 Thai trial is the only 
vaccine to date that conferred modest (approximately 31%) but 
significant protection against HIV infection (23). Protection was 
not associated with the presence of bNAbs or cytotoxic T  cell 
responses (24). Rather, protection from HIV infection in trial 
participants was associated with the presence of anti-HIV enve-
lope (Env) specific immunoglobulin G (IgG) non-neutralizing 
Abs (nNAbs) able to mediate Ab-dependent cellular cytotoxic-
ity (ADCC) provided no potentially competitive IgA Abs were 
present (24–27). Follow-up analyses using systems serology 
approaches confirmed findings from correlation analyses and 
identified links between anti-Env V1/V2-specific IgG, IgG3, and 
IgG1, and Ab-dependent functions such as ADCC, Ab-dependent 
cellular phagocytosis, Ab-dependent complement deposition, 
and Ab-dependent NK  cell activation (ADNKA) for secretion 
of IFN-γ and CCL4, and expression of CD107a in recipients of 
the RV144 vaccine (28). This raised the possibility that anti-HIV 
Env-specific nNAbs able to mediate ADCC and ADNKA activity 
may play a protective role against HIV infection.

Natural killer cells can be activated through Ab-dependent 
pathways that involve CD16 engagement by the Fc region of 
IgG1 and IgG3 Abs (29–35). They can also be activated by 
Ab-independent missing self recognition mechanisms based 
on how they were educated during development. Activating 
NK cells by either mechanism leads to secretion of chemokines 
and cytokines and to the release of cytotoxic granules that lyse 
target cells. ADNKA is the term used to describe the activation 
of NK cells for chemokine/cytokine secretion and degranulation 
by Ab-dependent stimuli. ADCC, on the other hand, denotes the 
lysis of target cells by NK cells in the presence of an Ab bridge. 
In the literature, these two activities have often been incorrectly 
referred to as ADCC. NK  cells are important effector cells for 
these two Ab-dependent functions. Here, we will review recent 

findings on Ab-dependent functions mediated by NK cells and 
explore what is known regarding the influence of NK cell educa-
tion on ADNKA and ADCC.

NK CeLL eDUCATiON

Tolerance to self and the state of activation of NK  cells is 
determined by an ontogenic process termed education. NK cell 
education requires the interaction of inhibitory NK receptors 
(iNKRs) with their cognate human leukocyte antigen (HLA) 
ligands on neighboring cells (36, 37). The education of NK cells 
determines how these cells will respond to infected, transformed, 
stressed, and allogeneic cells in an Ab-independent fashion. 
Education is a complex process whereby functionality is tuned 
by the number of iNKRs engaged, the strength of interactions 
between iNKRs and their ligands, and whether activating NK cell 
receptors are also engaged (38–44). NK cells lacking iNKRs for 
self-HLA ligands remain uneducated and hyporesponsive (45). 
iNKRs involved in NK cell education include NKG2A and the 
killer immunoglobulin-like receptors (KIR)3DL1, KIR2DL1, 
KIR2DL2, and KIR2DL3 (see Table 1). NKG2A is a C-type lectin 
receptor that forms a heterodimer with CD94 (46, 47). It inter-
acts with non-classical major histocompatibility complex class 
I (MHC-I) HLA-E antigens presenting 9-mer peptides cleaved 
from the leader sequence of several MHC-I proteins (48,  49). 
Both NKG2A and HLA-E have limited sequence variability and 
their effects on NK cell education were initially reported to be 
similar from one person to another (50). The inhibitory KIRs 
(iKIRs) recognize subsets of HLA antigens together with peptides 
(51). KIR3DL1 interacts with a subset of HLA-A and -B antigens 
belonging to the HLA-Bw4 (Bw4) group (52–54). Bw4 antigens 
differ from the remaining HLA-Bw6 (Bw6) HLA-B variants at 
amino acids 77–83 of the HLA heavy chain (55). Bw6 isoforms 
do not interact with KIR3DL1 receptors such that KIR3DL1+ 
NK cells from individuals carrying no Bw4 alleles are not edu-
cated through this receptor. KIR2DL3 and KIR2DL2 are encoded 
at the same locus and interact with HLA-C group 1 (C1) variants 
that have an asparagine at position 80 of the HLA heavy chain 
(56–58). The remaining HLA-C variants, belonging to the C2 
group, have a lysine at this position and are ligands for KIR2DL1 
(56). The KIR2DL3 receptor can also bind certain C2 variants, 
though with a lower affinity than either KIR2DL1 or KIR2DL2 
(57, 59, 60). Therefore, KIR2DL3+ NK  cells from individuals 
expressing a C1 ligand are educated, but remain uneducated or 
modestly educated through this receptor in individuals who are 
negative for C1 ligands. By contrast, KIR2DL1+ NK cells require 
the expression of a C2 ligand for education.

Genome-wide association studies (GWAS) confirm that genes 
influencing HIV viral load set point map to the MHC-I region 
on chromosome 6 (61, 62). MHC-I antigens encoded in this 
region form complexes with peptides, which are recognized by 
the T cell receptors on CD8+ T cells (63). It is well established that 
CD8+ T cells play an important role in HIV viral control (64–66). 
However, NKG2A and iKIR on NK cells also recognize MHC-I 
peptide complexes (48, 49, 52, 53, 56). Both epidemiological and 
functional studies have implicated iKIRs, particularly KIR3DL1, 
in combination with certain Bw4 variants in protection from HIV 
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TAbLe 1 | Inhibitory natural killer (NK) cell receptors involved in NK cell education.

Receptor Ligand aa at position 80 of the 
human leukocyte antigen 
(HLA) heavy chain

effect on education 
when ligand is present

Ligand levels in  
Hiv-infected cells

Reference

NKG2A HLA-E + leader peptide from 
HLA-A, -B, -C, and -G

Enhanced Maintained (48, 49)

Killer immunoglobulin-like 
receptors (KIR)3DL1

HLA-B*Bw4, HLA-A*23,  
*24, and *32

Isoleucine (*80I) or threonine 
(*80T)

Enhanced Downmodulated (52–54)

KIR2DL1 HLA-C2 Lysine Enhanced Maintained or downmodulated 
depending on HIV isolate

(56–60)

KIR2DL2 HLA-C1 (some HLA-C2) Asparagine Enhanced Maintained or downmodulated 
depending on HIV isolate

(56–60)

KIR2DL3 HLA-C1 (some HLA-C2) Asparagine Enhanced Maintained or downmodulated 
depending on HIV isolate

(56–60)
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infection and slow disease progression in those already infected 
(67, 68). For example, individuals who are homozygous for 
KIR3DL1 *h/*y genotypes and co-carry HLA-B*57 (*h/*y + B*57) 
progress to AIDS more slowly and control HIV viral load better 
than Bw6 hmz (67). KIR3DL1 *h/*y genotypes encode receptors 
expressed at high levels (69) while HLA-B*57 is a Bw4 variant 
that is also expressed on the cell surface at a high density and 
is a potent ligand for KIR3DL1 (44). The effect of this KIR/
HLA combination on NK  cell education is illustrated by the 
observation that KIR3DL1+ NK cells from *h/*y + B*57 carriers, 
compared to those from Bw6 hmz, have a superior functional 
potential upon stimulation with HLA null cells and inhibit HIV 
replication more potently in autologous-infected CD4+ T  cells 
through mechanisms that involve secretion of CC-chemokines 
(41, 70, 71). An upstream region of HLA-C that plays a role in 
determining HLA-C expression levels was also associated with 
HIV control in individuals of European American origin in 
GWAS studies (61, 62). While the mechanism underlying this 
association is related to HLA-C expression levels and the potency 
of CD8+ T cell recognition of HLA-C-HIV peptide complexes, 
the potential involvement of NK cells has not been excluded (72).

A dimorphism at position −21 in the leader peptide of HLA-B 
antigens influences the delivery of peptides to either an NKG2A 
or iKIR focused NK cell response (73). The amino acid at this 
position corresponds to the HLA leader peptide’s position 2, 
which is an anchor residue for HLA-E binding. A minority of 
HLA-B and all HLA-A and HLA-C antigens have a methionine 
at position −21 (−21M) of the leader sequence. −21M contain-
ing 9-mer peptides form stable complexes with HLA-E that are 
recognized by NKG2A. It is notable that the haplotypes carrying 
the −21M HLA-B alleles rarely encode Bw4 or C2 isoforms that 
are KIR3DL1 and KIR2DL1 ligands, respectively (73). By con-
trast, 9-mer peptides that have a threonine at the −21 (−21T) 
residue present in most HLA-B antigens, form poor complexes 
with HLA-E. Consequently, this −21M/T dimorphism defines 
two types of HLA haplotypes. One haplotype group, encoding 
−21M variants, is biased toward providing ligands for NKG2A 
and other group, encoding −21T variants, preferentially provides 
ligands for iKIR. This dimorphism appears to be clinically rel-
evant in the context of HIV infection since the presence of −21M 
HLA-B antigens is associated with higher susceptibility to HIV 

infection in HIV-discordant couples and with poorer NK  cell-
mediated killing of HIV+ cells than are −21T HLA-B antigens 
(74, 75). Together, these findings prompt a reconsideration of 
epidemiological and NK cell functional studies in the light of the 
contribution of NKG2A versus iKIR responses to the activation of 
NK cell populations expressing defined patterns of iNKR.

THe iNFLUeNCe OF NK CeLL 
eDUCATiON iN ADNKA

Antibody-dependent NK cell activation measures NK cell acti-
vation following incubation with Ab opsonized targets cells. 
Even though ADNKA depends on the presence of Ab, NK cell 
education can also influence NK cell activation through ADNKA. 
Many of the earlier reports describing a role for NK cell educa-
tion in ADNKA used the CEM.NKr.CCR5 (CEM) cell line coated 
with recombinant HIV Env gp120 as target cells (76). CEM cells 
express the CCR5 co-receptor for HIV entry and are resistant to 
direct NK cell killing (77–79). CEM cells are negative for Bw4 and 
C2 antigens but express C1 antigens (80).

A higher frequency of KIR3DL1+, than KIR3DL1− NK cells, 
from carriers of KIR3DL1/Bw4 genetic combinations secrete IFN-
γ and express CD107a in responses to anti-HIV Ab opsonized 
gp120-coated CEM. This differential activation of KIR3DL1+ and 
KIR3DL1− NK cell populations also occurs when the stimulus is 
HIV-infected or gp120-coated allogeneic primary CD4+ T cells 
(76). As well, a higher frequency of KIR2DL1+ than KIR2DL1− 
NK  cells from carriers of educating KIR2DL1/HLA-C2 combi-
nations secrete IFN-γ in response to HIV-infected autologous 
targets and gp120-coated CEM cells in the presence of anti-HIV 
Env-specific Abs in plasma from HIV+ individuals (81). By 
contrast, if NK cells are from carriers of the non-educating KIR/
HLA pair KIR2DL1/C1 hmz, KIR2DL1+ and KIR2DL1− NK cells 
respond to anti-HIV Ab-dependent stimulation equivalently 
(81). These observations implicate NK cell education in NK cell 
responses to anti-HIV Ab opsonized gp120-coated CEM cells, 
infected allogeneic CEM cells, and gp120-coated primary CD4+ 
T cells. CD16 engagement is also important in ADNKA activity as 
NK cell activation is always higher in the presence versus absence 
anti-HIV-specific Abs.
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Gooneratne et al. have speculated that ADCC activity directed 
at allogeneic HIV-infected cells may play a role in protecting 
against infection with allogeneic HIV-infected cells. Secretion of 
CCL4 from activated NK cells can bind the CCR5 HIV co-receptor 
and block HIV entry into new target cells (82). Activated NK cells 
also secrete cytotoxic granules that can lyse HIV-infected target 
cells (83). It is plausible that ADCC activity directed at allogeneic 
HIV-infected cells contributed to the modest protection conferred 
by the RV144 HIV vaccine trial, in which ADCC competent anti-
Env-specific Abs were generated and to the protection conferred 
to infants who remain uninfected despite exposure to breast milk 
from HIV-infected mothers (24, 84).

There is a lack of consensus regarding whether educated 
NK cell populations respond more robustly than their uneducated 
counterparts to stimulation with anti-HIV opsonized autologous 
gp120-coated cells. KIR3DL1+ and KIR2DL1+ NK  cells from 
carriers of KIR/HLA combinations able to support education 
through these receptors have been reported to respond better 
that their uneducated counterparts to HIV Ab-dependent activa-
tion (81, 85). These findings are consistent with results reported 
by Lang et al. (86). These observations have been interpreted as 
evidence that Ab-dependent activation of NK cells can overcome 
inhibitory signals mediated by the interaction of HLA ligand 
binding to self iKIR. However, this is not a general finding in that 
others have noted that ligands on autologous target cells to iNKR 
on educated NK cells suppress the activity of educated NK cells 
compared to that of their uneducated counterparts (87,  88). 
Further research is needed to understand what accounts for these 
discrepant results.

The experiments describing ADNKA in this section have used 
an inclusive gating strategy to compare how NK cell populations 
expressing, or not, one iNKR respond to anti-HIV opsonized 
target cells. When NK cells are stained inclusively for the pres-
ence of a single iNKR, the targeted population includes NK cells 
expressing other iNKRs not stained for. These other iNKRs could 
influence NK  cell responses to HIV Ab opsonized target cells 
depending on which iNKR/HLA receptor ligand pairs contrib-
uted to the education of the NK  cells studied. By using an Ab 
panel detecting KIR3DL1, KIR2DL1, KIR2DL3, and NKG2A on 
CD3−CD56dim NK  cells, it will be possible to focus on NK  cell 
populations expressing one of these iNKR to the exclusion of the 
others. Such Ab panels that also detect multiple NK cell functions 
using Abs conjugated with different fluorochrome have been 
designed (89, 90). In future studies, these Ab panels should be 
used to exclusively gate on NK cell populations expressing single 
iNKRs that detect functions induced by anti-HIV Ab opsonized 
target cells. Such an experimental approach will allow for a more 
precise definition of NK cell responses within population express-
ing single educating receptors to activation through missing self 
recognition of the ligands for these iKIR on allogeneic CEM cells 
in addition to signals received via ligation of CD16 (91).

The frequency of NK  cells responding to stimulation in 
ADNKA assays displays inter-individual variation. One possible 
mechanism underlying the range of NK cell effector responses 
in ADNKA assays is likely related to inter-individual differences 
in iNKR/HLA ligand effects on NK  cell education. KIR3DL1 
allotypes differ in their cell surface expression levels, with high, 

low, and null expression allotype groups (69, 92–95). These 
KIR3DL1 allotypes also differ in their affinity for particular 
HLA-B allotypes (44, 96). KIR2D receptors differ in their 
affinity for C1 and C2 antigens (57, 60). HLA-A, -B, and -C 
antigens also differ in their cell surface expression levels (44, 
72, 97). Thus, these factors, the number of iNKR/HLA pairs 
participating in NK  cell education in each study subject, and 
the presence of ligands on CEM cells that provide, or that fail to 
provide, inhibitory signals to NK cells may all influence NK cell 
activation levels in ADNKA assays. Several authors have tested 
expression levels for HLA-B and C allotypes and have examined 
the avidity of interactions of high and low expression KIR3DL1 
receptor groups for HLA-B antigens with either an isoleucine or 
a threonine at position 80 of the HLA heavy chain (44, 69, 72, 98, 
99). The putative influence of inter-personal immunogenetics 
on ADNKA activity could be explored by correlating ADNKA 
activation levels with KIR3DL1/HLA-B, KIR2DL1/HLA-C2, 
and KIR2DL3/HLA-C1 affinity and expression levels as has 
been described by Boudreau et al. (44). For ADNKA, activation 
through education-dependent missing self-recognition and 
CD16 signaling influence NK  cell activation while for ADCC 
the effect of education-dependent missing self-recognition 
is minimized due to the low frequency of single positive (SP) 
iKIR+ NK  cells positive for CD16. The comparison of assay 
results where one or more of these receptor ligand interactions 
is blocked may provide further insights into the role of signaling 
through iNKR or CD16 in ADNKA and ADCC.

MeASURiNG ADCC ACTiviTY

As opposed to ADNKA, ADCC measures target cell phenomena 
arising from the bridging of effector and target cells by an Ab 
whose Fc portion binds CD16 on effector cells and whose Fab 
portion recognizes an antigen on target cells. In the context of 
ADCC function-directed HIV Env gp120-coated target cells, the 
target antigens recognized by ADCC competent Abs are HIV Env 
(30, 78, 100). ADCC activity directed to HIV infected may also 
recognize Tat (100).

Early versions of anti-HIV ADCC assays measured 
51Chromium release from target cells (101–103). These have been 
replaced by flow cytometry-based assays using either CEM cells 
coated with gp120 or gp140, HIV-infected CEM or HIV-infected 
primary CD4+ T cells as target cells. Primary HIV-infected target 
cells have included reactivated CD4+ T cells from HIV-infected 
subjects or CD4+ T cells infected with transmitted/founder (T/F) 
HIV isolates (104–106). The GranToxiLux ADCC (GTL-ADCC) 
assay measures the delivery of granzyme B (GzB) to target 
cells, an early step in the pathway leading to target cell lysis (83, 
107, 108). In the GTL-ADCC assay, target cells are labeled with 
fluorescent and viability dyes before incubation with effector 
cells, either peripheral blood mononuclear cells (PBMCs) or 
NK cells in the presence of HIV-specific ADCC competent Abs 
and a GzB substrate. If ADCC is induced following incubation 
with HIV-specific Abs, effector cells will release GzB that will 
enter target cells and hydrolyze the GzB substrate, activating its 
fluorescence, which can be detected by flow cytometry. Thus, 
the GTL-ADCC assay provides an estimate of ADCC activity 
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by measuring the number of viable targets that are positive for 
proteolytically active GzB.

Read outs for ADCC assays include the loss of target cells 
loaded with a fluorescent marker, infected with green fluorescent 
protein-tagged HIV, luciferase tagged HIV, or Gag p24+ cells (105, 
106, 108–113). The lactate dehydrogenase (LDH) release ADCC 
assay measures the loss LDH from dying target cells by ELISA 
(76, 114). The widely used rapid and fluorometric ADCC has 
been shown to not measure ADCC but rather the uptake of the 
membrane dye PKH-26 used to label target cells by monocyte-
mediated trogocytosis (115, 116).

THe SPeCiFiCiTY OF ANTi-Hiv  
ADCC COMPeTeNT Abs

Both bNAbs and nNAbs can mediate ADCC activity provided 
they can stably bind to target cells (105, 106, 113, 117–121). HIV 
Env epitopes targeted by nNAbs include the immunodominant 
region of gp41 (122) and CD4-induced (CD4i) epitopes exposed 
by CD4 ligation of HIV Env on infected cells (111, 123, 124). 
Examples of prototypic anti-Env-specific Abs specific for a CD4i 
epitope is A32, which belongs to the anti-cluster A Ab group 
targeting the C1/C2 region and 17b, which recognizes the co-
receptor binding site (CoRBS) (119, 125). Other nNAbs have 
been reported to recognize the CD4bs and the V3 loop of gp120, 
which are also targeted by bNAbs, though the nNAbs bind these 
epitopes in a manner that does not prevent HIV entry (126–130). 
At least some of the epitopes targeted by ADCC competent 
nNAbs are poorly exposed on CD4 unliganded cell surface Env 
trimers. This is mainly due to accessory proteins Nef and Vpu that 
downregulate cell surface CD4 making CD4i epitopes unavail-
able for Ab recognition (111, 120, 131, 132). Bruel et al. found 
that CEM cells infected with two laboratory-adapted HIV strains 
bound Abs from several classes of bNAb and nNAbs epitope 
specificity. If binding occurred, these Abs usually also mediated 
ADCC activity against these infected cells (106). However, when 
reactivated, HIV-infected cells from the reservoir of ART-treated 
HIV+ individuals or CD4+ T cells infected with T/F strains were 
used as target cells, several monoclonal nNAbs bound a lower 
frequency of infected cells with a lower affinity than did bNAbs. 
Furthermore, nNAbs, compared to bNAbs, exhibited poor ADCC 
activity against targets infected with such primary HIV strains 
(105, 106, 113, 117, 133). This phenomenon is likely related to 
the inability of nNAbs to access epitopes in the closed unliganded 
conformation of HIV Env (134).

Non-neutralizing Abs, particularly those specific for CD4i 
epitopes, preferentially bind HIV-uninfected bystander cells 
present in cultures with HIV+ CD4+ T cells (106, 135, 136). HIV-
infected CD4+ T cells can shed HIV Env gp120 leaving behind 
gp41 stumps (136). The shed gp120 binds CD4 on the surface 
of uninfected bystander CD4+ T  cells. This interaction has the 
potential to open the closed Env conformation exposing CD4i 
epitopes, making bystander enhanced targets for CD4i-specific 
ADCC competent Abs.

Strategies to improve the targeting of the open Env conforma-
tion by ADCC competent nNAbs has prompted exploring the use 

of CD4 mimetics to increase the susceptibility of HIV-infected 
cells to ADCC (106, 135, 137, 138). Richard et al. worked with 
CD4 mimetics that were unable to enhance the recognition of 
HIV-infected cells to A32 Abs by themselves (138). However, 
these small molecules initiated the opening of Env trimers 
enough to permit the binding of Abs such as 17b with specificity 
for a conserved epitope overlapping the CoRBS. Once 17b bound, 
the trimeric Env structure opened sufficiently to allow binding of 
A32 and susceptibility to ADCC activity (138).

It should be noted that most studies measuring anti-HIV 
ADCC activity have used gp120- or gp140-coated CEM cells as 
targets. While such targets are easy to prepare and convenient 
to use, the HIV Env on coated cells is monomeric and differs 
quantitatively and conformationally from trimeric Env found on 
the surface of HIV-infected cells. On coated cells, CD4 remains 
on the target cell surface while it is downregulated on infected 
cells unless Nef and/or Vpu HIV deletion mutants are used for 
infection. This needs to be kept in mind when interpreting the 
results of studies using coated cells as targets.

THe iNFLUeNCe OF NK CeLL 
eDUCATiON ON ADCC ACTiviTY

The GTL-ADCC assay using gp120-coated CEM cells as targets 
was used to show that education of effector populations through 
KIR3DL1 had no significant effect on the percent of GzB+ 
(%GzB+) target cells generated in a GTL-ADCC assay (139). 
There may be several explanations for this observation. One 
possibility is that NK cells are not the main effector cell in the 
GTL-ADCC assay. A drawback of using PBMCs as effector cells 
in ADCC assays is that it is difficult to draw conclusions regarding 
which effector population is responsible for GzB delivery to the 
target cells. Several Fcγ receptor-expressing cell types, including 
NK cells, monocytes/macrophages, and γδ T cells, are capable of 
mediating ADCC (107, 115, 140–144). To confirm that NK cells 
are the source of ADCC activity in the GTL-ADCC assay, Pollara 
et al. used effector PBMCs depleted of CD56+CD16+ NK cells and 
observed that ADCC responses declined by over 66% (145, 146). 
Purified NK cells and PBMCs from the same donors produced 
similar %GzB+ target cells (107). Together, these findings indicate 
that the GTL-ADCC assay is measuring NK cell-mediated ADCC 
responses.

In the GTL-ADCC assay, PBMC effector cells are a heteroge-
neous population that includes NK cells educated through 1, 2, 
or more iKIR and/or NKG2A. An Ab panel detecting KIR3DL1, 
KIR2DL1, KIR2DL3, and NKG2A on CD3−CD56dim NK cells was 
used to gate exclusively on SPiNKR+ NK cells. NK cells SP for 
iKIR had significantly lower frequencies of CD16+ cells than did 
SPNKG2A+ or NKG2A−iKIR− NK cells (147). iKIR+ NK cells are 
educated if they develop in a setting in which the iKIR’s ligand is 
co-expressed. The implication of this observation is that educated 
SPiKIR+ NK cells would be poor ADCC effector cells as a median 
of <5% of them are CD16+ (Figure 1). This could account for the 
lack of an effect of KIR3DL1-mediated NK cell education on the 
%GzB+ target cells generated in the GTL-ADCC assay (139, 147). 
Thus, it would be expected that NKG2A+ NK cells are superior 
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FiGURe 1 | Comparison of the frequency of CD16+ cells among CD3−CD56dim natural killer (NK) cells stained for antibodies with NKG2A, KIR3DL1 (3DL1+), 
KIR2DL1 (2DL1+), and KIR2DL3 (2DL3+). Comparison of single-positive (SP)NKG2A with SP3DL1 (A), SPNKG2A with SP2DL1 (b), and SPNKG2A with SP2DL3 
(C). Each point represents a single individual, bar height, and error bars represent median and interquartile range for the data set. Wilcoxon matched pairs tests 
were used to determine the significance of between group differences (****p < 0.0001).
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to iKIR+NKG2A− NK  cells as effector cells in the GTL-ADCC 
assay. NKG2A/HLA-E interactions educate NKG2A+ NK  cells 
and these receptor ligand pairs are widely expressed with limited 
inter-individual variation. Their influence on NK cell education 
would have limited between-subject variation. If ADCC activity 
is an important correlate of protection against HIV, these find-
ings suggest that inter-individual variation in NK effector cell 
education based on which iKIR/HLA receptor/ligand pairs are 
present would have a minimal impact on ADCC potency at the 
level of HIV-infected target cell lysis or suppression of replica-
tion. Together, these findings illustrate that the potency of NK cell 
education and functional activation of NK effector cells does not 
predict the %GzB+ generated by ADCC.

In summary, factors important in determining ADNKA 
and ADCC activity differ from each other. The role of NK cell 
education in ADCC activity is limited by the low frequency of 
CD16+ NK cells among SPiKIR+ NK cells that have the potential 
to be educated through iKIR/HLA ligand interactions. Thus, 
a higher frequency of either uneducated NK  cells or NK  cells 
educated through NKG2A than those educated through iKIR 
are CD16+ and able to mediate ADCC. On the other hand, both 
CD16 engagement and missing self-recognition contribute to 
ADNKA. The consequences of these findings for HIV vaccines 
is that NK cell education should contribute minimally to inter-
individual differences in target cell lysis by ADCC. Furthermore, 
NK cell activation by Ab-dependent HIV-infected cell stimuli will 
vary depending on how NK cells are educated, the nature of the 
stimulatory cell and effect of HIV infection on cell surface MHC-I 
expression (90, 148).

CONCLUDiNG ReMARKS

Arguing for a role for anti-HIV ADNKA and/or ADCC activity 
in protection from infection are the findings from the RV144 
vaccine trial, which identified ADCC activity as a correlate 
of protection that was frequently linked to ADNKA activity 
(24, 27, 28). Moreover, antigenic drift from ADCC targeting Env 
epitopes has been documented, highlighting a role for ADCC 
being able to exert anti-HIV immune pressure (149). Of note, it 
is unlikely that bNAbs contributed to either of these findings as 

neither RV144 vaccinated individuals (24) nor most HIV+ per-
sons make HIV-specific bNAbs. Suppression of HIV viral load in 
HIV-infected persons receiving the bNAb 3BNC117 is likely not 
solely due to virus neutralization as this treatment also appears to 
clear infected cells (133). Also, the beneficial effect of treatment 
with several bNAbs depends on IgG Fc region effects (17–19). On 
the other hand, several attempts to show that nNAbs can protect 
against infection in rhesus macaques infected with SHIV have 
failed, though passive transfer of these Abs may have suppressed 
viremia or restricted the number of T/F viruses in some cases 
(122, 150–152). By contrast, the passive transfer of the most active 
bNAbs mediates sterilizing protection in primate models (1–6). 
The protective role of anti-HIV nNAbs and/or how to manipulate 
the ability of these Abs to protect from HIV infection or how to 
use them therapeutically is an active area of research with several 
questions left to answer.
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