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BACKGROUND Traditional methods of risk assessment for thoracic aortic aneurysm (TAA) based on aneurysm size

alone have been called into question as being unreliable in predicting complications. Biomechanical function of aortic

tissue may be a better predictor of risk, but it is difficult to determine in vivo.

OBJECTIVES This study investigates using a machine learning (ML) model as a correlative measure of energy loss, a

measure of TAA biomechanical function.

METHODS Biaxial tensile testing was performed on resected TAA tissue collected from patients undergoing surgery.

The energy loss of the tissue was calculated and used as the representative output. Input parameters were collected from

clinical assessments including observations from medical scans and genetic paneling. Four ML algorithms including

Gaussian process regression were trained in Matlab.

RESULTS A total of 158 patients were considered (mean age 62 years, range 22-89 years, 78% male), including 11

healthy controls. The mean ascending aortic diameter was 47 � 10 mm, with 46% having a bicuspid aortic valve. The

best-performing model was found to give a greater correlative measure to energy loss (R2 ¼ 0.63) than the surprisingly

poor performance of aortic diameter (R2 ¼ 0.26) and indexed aortic size (R2 ¼ 0.32). An echocardiogram-derived stiffness

metric was investigated on a smaller subcohort of 67 patients as an additional input, improving the correlative perfor-

mance from R2 ¼ 0.46 to R2 ¼ 0.62.

CONCLUSIONS A preliminary set of models demonstrated the ability of a ML algorithm to improve prediction of the

mechanical function of TAA tissue. This model can use clinical data to provide additional information for risk stratifi-

cation. (JACC Adv 2023;2:100637) © 2023 The Authors. Published by Elsevier on behalf of the American College of

Cardiology Foundation. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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ABBR EV I A T I ON S

AND ACRONYMS

AscAo = ascending aorta

BAV = bicuspid aortic valve

BSA = body surface area

CCPM = cardiac cycle pressure

modulus

GPR = Gaussian process

regression

ML = machine learning

MSE = mean squared error

TAA = thoracic aortic aneurysm

TEE = transesophageal

echocardiography
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T horacic aortic aneurysm (TAA)
dissection and rupture occur acutely
without clinical warning and are

most often fatal. The causes of TAA are mul-
tiple and complex, including both degenera-
tive and genetic factors.1 Presently, the only
treatment for those at risk of dissection or
rupture of a TAA is prophylactic surgical
intervention, for which the current surgical
guidelines are based on aortic diameter with
a threshold of 5.0 to 5.5 cm as the main deci-
sional criterion.2,3 Diameter is used as a crude
estimate of the biomechanical state of the
tissue.4 Unfortunately, diameter is a poor
predictor of risk, with approximately 40% of
all ascending aortic dissections occurring below the
diameter recommendation.5 Dissection and rupture
are localized mechanical failures of the aortic wall
that occur when the stress exceeds the local mechan-
ical integrity.6 Aortic diameter is a poor marker of the
biomechanical state of the tissue, and this critical un-
certainty highlights the need for more robust metrics
to stratify patients for surgery.

Degenerative processes in the medial layer of the
aorta are associated with the occurrence of aortic
dissections.7 Analysis of ex vivo postmortem and
surgical samples of aortic tissue has demonstrated
that when the aorta undergoes pathologic remodeling
(medial degeneration), the resultant biomechanical
capabilities of the tissue are affected, causing the
tissue to stiffen and lose structural function and
integrity.8-10 An accurate assessment of the biome-
chanical function of the aorta in vivo would help
stratify patients for surgery.

Energy loss is a biomechanical metric that corre-
lates with the extent of medial degeneration in the
aortic tissue to a greater extent than aortic diameter.11

More recent studies have also demonstrated energy
loss correlations with multiple aortic wall failure
criteria, including rupture strength and delamination
strength,10,12 distinguishing between patients with
healthy, dilated, and dissected aortas, justifying the
strong clinical capabilities of this parameter. In vivo
interpretation has been attempted through trans-
esophageal echocardiographic (TEE) imaging;13

however, this method remains underdeveloped
owing to the small cohort sizes and the variation of
biomechanics with disease state, patient sex, age, and
genetic variants.14-16

In recent years, there has been increased interest in
machine learning (ML), a subset of artificial intelli-
gence, for its promise for improving patient risk
assessment.17 Many different ML algorithms have
been investigated for a wide range of applications in
cardiovascular disease, including the prediction of
complication risk and mortality.18-20 ML is well placed
to help move surgical guidelines beyond aneurysm
size by leveraging data available in the clinic to
“learn” to predict TAA biomechanical state prior to
aortic resection. This would help identify the truly
high-risk patients on either side of traditional size-
based surgical intervention criteria.

Accordingly, this study seeks to leverage the added
value of a ML approach to predict aortic biomechan-
ical function based on an algorithm that can relate a
wide range of patient-specific clinical data to aortic
energy loss measured ex vivo. The training process of
this model revealed the relative significance and co-
varying trends of various clinical factors with energy
loss. Additionally, the added benefit of integrating an
echocardiography-derived in vivo stiffness metric as
an input factor, when available, was assessed for
model improvement.

METHODS

STUDY COHORT. Informed consent was obtained
from July 2012 to December 2021 from patients un-
dergoing elective aortic valve or aortic resection sur-
gery. Control aortic tissue was obtained from heart
transplant donors and autopsy patients without heart
or aortic disease.

A total of 158 patients were included in this study.
Patient clinical information was collected during
visits with a multidisciplinary aortopathy clinic at the
McGill University Health Centre and retrospectively
from patients’ clinic notes and operation reports. All
included variables are listed in Table 1. To eliminate
inconsistencies between different imaging modal-
ities, all aortic geometries were determined from TEE
images performed at the time of surgery. Missing data
was treated as described in Supplemental Table 1.

GENETIC PANELING. A total of 37 patients were rec-
ommended for genetic testing by the aortopathy
clinic, via the Marfan’s syndrome and Related
Aortopathies Panel (Prevention Genetics)
(Supplemental Table 2).

AORTIC GEOMETRIES. TEE images were performed
after the administration of anesthetic but before the
sternotomy using a GE Vivid 9 echocardiographic
unit (GE Healthcare). The TEE probe was inserted
into the esophagus to the level of the ascending
aorta (AscAo), where an electrocardiogram (ECG)-
gated, 2-dimensional long-axis view of the aortic
valve and AscAo was captured, along with a
2-dimensional short-axis view at the point of
maximum dilation. The largest diameter was
measured at the sinus of Valsalva and the mid
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TABLE 1 Considered Clinical and Echocardiographic Variables

Input Variables Variable Type Input Options

Female Logical

Age (y) Numeric

Height (m) Numeric

BSA (m2) Numeric

BMI (kg/m2) Numeric

Systolic pressure (mm Hg) Categorical 0 ¼ 0-119, 1 ¼ 120-129, 2 ¼ 130-139,
3 ¼ 140-179, 4 ¼ >180

Diastolic pressure (mm Hg) Categorical 0 ¼ 0-79, 1 ¼ 80-89, 2 ¼ 90-119, 3 ¼ >120

History of hypertension Logical

Diabetes (type I/II) Logical

Dyslipidemia Logical

Coronary artery disease Logical

Heavy weightlifting Logical

History of smoking Logical

Regular alcohol consumption Logical

NYHA heart failure symptoms Logical

Bicuspid aortic valve Logical

AscAo diameter (mm) Logical

SoV diameter (mm) Numeric

AscAo diameter/BSA (mm/m2) Numeric

Type II aneurysm Logical

Family history Logical

Clinical featuring Logical

Marfan’s syndrome Categorical 0 ¼ none, 1 ¼ FBN1 VUS, 2 ¼ Positive

Non-Marfan genetic variant Logical

VUS Logical

Aortic stenosis Categorical 0 ¼ none, 1 ¼mild, 2 ¼moderate, 3 ¼ severe

Aortic regurgitation Categorical 0 ¼ none, 1 ¼mild, 2 ¼moderate, 3 ¼ severe

CCPM (mm Hg) Numeric

AscAo ¼ ascending aorta; BMI ¼ body mass index; BSA ¼ body surface area; CCPM ¼ cardiac cycle pressure
modulus; SoV ¼ sinus of Valsalva; VUS ¼ genetic variant of unknown significance.

J A C C : A D V A N C E S , V O L . 2 , N O . 8 , 2 0 2 3 Kennedy et al
O C T O B E R 2 0 2 3 : 1 0 0 6 3 7 Machine Learning in Thoracic Aortic Aneurysm Management

3

AscAo from the long axis view using the linear
measurement tool in InteleViewer (4-14-1-P249,
Intelerad). Similarly, aortic surface area was
measured from the short axis view using the ellip-
tical/circular region of interest measurement tool.
Both measurements were taken at the peak of the
QRS complex of the ECG trace.

EX VIVO TENSILE ANALYSIS. Specimens were stored
in physiologic saline at 4 �C until testing was
completed, within 24 hours of tissue collection. The
aortic ring was clipped for orientation upon collec-
tion, and 4 1.5 cm by 1.5 cm squares were sectioned,
equally distributed around the circumference of the
aorta. Five unique thickness measurements were
taken for each testing square using a Mitutoyo Lite-
matic VL-50A constant force digital micrometer
(Mitutoyo Corp). The testing squares were then con-
nected to a TA ElectroForce planar biaxial tensile
tester (TA Instruments) using hooked 4 to 0 silk su-
tures in a 37 �C bath of Ringer’s lactate solution. The
testing squares were oriented for equiaxial stretching
along their circumferential and longitudinal axes.
Each sample was preconditioned for 8 cycles (ie,
stretch and relaxation), followed by 4 cycles of data
acquisition at a constant displacement rate of 0.1 mm/
s in the range of 0% to 60% strain. The resultant
stress-strain relations were analyzed using MATLAB
(vR2021b MathWorks). A more detailed tensile
methodology using this setup has been
described previously.11,21

Energy loss of both axes was calculated from the
engineering stress-strain relation. A mean value was
taken from the 4 test squares. Energy loss is the
percentage of elastic energy needed to stretch the
testing square that is dissipated when the tissue is
relaxed. The physiological interpretation is the
percent of loss of elastic recoil energy in the tissue
that is not returned to blood flow (maintaining
normal Windkessel function).22 The physical defini-
tion is the ratio of the area between the loading and
unloading curve over the area under the loading
curve (Figure 1).

TRANSESOPHAGEAL ECHOCARDIOGRAPHIC ANALYSIS.

TEE analysis was performed on patients from
February 2016 onward. When capturing the
2-dimensional short-axis view at the point of
maximum dilation, an ECG-gated strain cycle was
captured for 3 heartbeats. In tandem, an invasive
arterial pressure trace was taken from the patient’s
radial artery for the same measurement interval.

TEE speckle-tracking strain analysis was per-
formed using GE’s EchoPAC software (GE Health-
care). This analysis has been described in more
detail previously.13 Using the strain definition pro-
vided by Voigt et al23 for 2D speckle track echo (ε ¼
½l � 1�; l ¼ L=L0), radial strain (εRad) was converted
to radial stretch (lRad). The circumferential stretch
(lCirc) profile was calculated using the conservation
of volume: lCirc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=lRadÞ

p
. Cardiac cycle pressure

modulus (CCPM), as defined in Emmott et al13 was
calculated as the slope of a linear interpolation of
the radial blood pressure vs the circumferential wall
stretch (Figure 1).

MACHINE LEARNING ANALYSIS. Four ML models
were trained, using the above-described clinical in-
formation as input variables and energy loss as the
response variable. ML algorithms were performed
using the MATLAB (vR2021b MathWorks) regression
learner application from the Statistics and Machine
Learning Toolbox. Patients were split randomly in a
75:25 ratio to create training and testing data sets (n
¼ 119 and n ¼ 39, respectively). Energy loss was
capped at 2 standard deviations above the



FIGURE 1 Ascending Aorta Mechanics Using Ex Vivo Tensile Analysis and TEE-Derived

Metric

(A) Four testing squares were taken around the circumference of the aortic ring.

Specimens were stretched biaxially along the circumferential (circ) and longitudinal

(long) axes to obtain the stress stretch profile. Energy loss is defined as the area between

the loading and unloading curve divided by the area under the loading curve. Energy

loss ¼ Area(i)/[Area(i) þ Area(ii)] � 100%. (B) In vivo, the aorta expands and recoils

with changes in blood pressure. A transesophageal echocardiographic (TEE) speckle-

track strain image of the radial (rad) strain was taken over 1 cardiac cycle and converted to

circumferential (circ) stretch. Blood pressure-stretch curves were determined, with the

slope of the linear fit being defined as the cardiac cycle pressure modulus (CCPM)

(described by Emmott et al13).
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population median, giving a maximum energy loss
of 40%. Supervised learning was performed with 4
algorithms: linear regression, support vector ma-
chines, random forest, and Gaussian process
regression (GPR). Model parameters are summarized
in Supplemental Table 3. Performance was quanti-
fied in terms of the mean squared error (MSE) found
by 5-fold cross-validation of the training data.
Overfitting was assessed using the testing set
through the change in MSE relative to the training
data. An increase in MSE of <10% was acceptable.

Variable selection was conducted on the training
data set (Figure 2). Initially, an F-score ranking
method was used, a univariable selection method
that determines the relationship each variable has to
the output on an independent basis. The interactive
importance of the variables was then determined
through a wrapper method approach as a second
round of variable selection.

A subcohort of 67 patients had sufficient TEE im-
ages to perform the TEE analysis, with some patients
discarded due to poor visualization of the aortic
walls. Supervised learning was performed using the
same variable selection and ML algorithms as the full
cohort. All 67 patients were used for model training,
with validation done by 5-fold cross-validation.

STATISTICAL ANALYSIS. Statistical analyses were
performed using GraphPad Prism, version 5.01
(GraphPad Software, Inc). Correlations were calcu-
lated using linear regression. The t-tests were per-
formed using Welch’s t-test for unequal variance.
Prediction intervals and confidence intervals are
shown on plots with dashed and dotted black lines,
respectively. Results were considered significantly
different when P <0.050.

RESULTS

A total of 158 patients were recruited for the study,
including 11 control patients (Table 2). The aneu-
rysmal and control patients had mean ages of 63 �
14 years and 49 � 16 years (P ¼ 0.020), respectively,
and mean AscAo diameters of 49 � 8 mm and 25 �
5 mm (P < 0.001). Of the included patients, a subset of
67 underwent TEE strain imaging analysis. The TEE
analysis cohort does not include control patients and
had a similar mean age of 63 � 14 years and diameter
of 48 � 9 mm to the full cohort.

From the full cohort, the aneurysmal patients had a
mean energy loss of 31% � 5%, which was signifi-
cantly greater than the mean energy loss for the
healthy controls at 26% � 3% (P < 0.001) (Figure 3),
consistent with previous findings.11 In this cohort,
energy loss was found to correlate significantly with
patient age (r ¼ 0.61, P < 0.001), and with AscAo
diameter (r ¼ 0.51, P < 0.001).

Measured energy loss significantly increased with
aortic diameter >55 mm, with the average energy loss
in aortas <55 mm and >55 mm being 30% � 5% and
34% � 5%, respectively (P < 0.001). There was
considerable variance in energy loss within these
groups. Thus, at >55 mm, the surgical threshold, the
measured energy loss values range from 21%, a
normal value, to 39%, an extreme value.

PREDICTIVE MODEL FROM CLINICAL DATA. Variable
selection was performed using f-test ranking for each
of the 4 ML algorithms, followed by a wrapper-based
feature selection as illustrated in Figure 2. Modeling
performed via a GPR-based model was found to have
the best performance compared to the other ML
models and will be the focus going forward. Results
from the remaining ML model types are provided in
Supplemental Tables 5 and 6.

For the GPR-based model, a total of 13 variables
were selected, including: age, AscAo diameter, AscAo
diameter/body surface area (BSA), hypertension,
bicuspid aortic valve (BAV), female, BSA,
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FIGURE 2 Two-Stage Process for Selecting Significant Clinical Predictors

(A) An f-test was used to assign an importance score for each predictor with energy loss. Importance¼ �log (P value). The number of included

variables for each model type was determined by MSE, exemplified with the GPR model type. Included variables for each model type are

indicated with dotted lines. (B) A wrapper method used to consider the addition of the remaining features. A specific algorithm was retrained

iteratively adjusting the subset of variables included to find an optimum based on minimum MSE. GPR ¼ Gaussian process regression;

MSE ¼ mean squared error; SVM ¼ support vector machine.
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dyslipidemia, sinus of Valsalva diameter, type II
aneurysm, aortic stenosis, Marfan syndrome, and
heavy weightlifting. Final performance metrics are
provided in Table 3.

The performance of currently considered diag-
nostic metrics for predicting energy loss was
assessed. For a direct comparison with the ML
models, linear regressions were created for each of
these metrics using the training data set, and the
same performance metrics were generated (Table 3).
These models were found to be surprisingly poor for
metrics including AscAo diameter (MSE ¼ 17.5,



TABLE 2 Baseline Characteristics of Cohort

Missing Data
Full Cohort
(n ¼ 158)a

TEE-Analysis Cohort
(n ¼ 67)

Basic patient information

Age (y) 0 62 � 14 63 � 14

Female 0 22% (35) 22% (15)

Height (m) <1% 1.7 � 0.1 1.7 � 0.1

BSA (m2) <1% 2.0 � 0.2 2.0 � 0.3

BMI (kg/m2) <1% 27 � 5 27 � 5

Disease specifications

Ascending aortic diameter (mm) 0 47 � 10 48 � 9

Sinus of Valsalva diameter (mm) 7% 40 � 9 40 � 9

Aneurysm location <1%

AscAo 65% (103) 70% (47)

Sov 28% (44) 30% (20)

Nonaneurysmal 7% (11) 0% (0)

Bicuspid aortic valve 0 46% (73) 49% (33)

NYHA symptoms 11% 53% (84) 54% (36)

Aortic stenosis 0

Mild 9% (15) 7% (5)

Mod 6% (9) 4% (3)

Severe 28% (45) 34% (23)

Aortic regurgitation 0

Mild 22% (34) 22% (15)

Mod 22% (35) 24% (16)

Severe 17% (27) 18% (12)

Comorbidities

History of hypertension 0 54% (85) 52% (35)

Diabetes (type I/II) 0 11% (18) 12% (8)

Dyslipidemia 0 26% (41) 24% (16)

Coronary artery disease 0 21% (33) 16% (11)

Life-style factors

Heavy weightlifting 0 3% (5) 4% (3)

History of smoking 3% 16% (25) 7% (5)

Regular alcohol consumption 3% 14% (22) 22% (15)

Genetic information

Family history 37% 26% (41) 24% (16)

Clinical featuring 0 7% (11) 9% (6)

Genetic testing done 0 25% (40) 36% (24)

Marfan’s syndrome 0 3% (5) 3% (2)

Non-Marfan genetic variant 0 3% (5) 7% (5)

Variant of unknown significance 0 8% (12) 10% (7)

Values are mean � SD or % (n). aCharacteristics of training and testing datasets provided in Supplemental
Table 4.

AscAo ¼ ascending aorta; BMI ¼ body mass index; BSA ¼ body surface area; SoV ¼ sinus of Valsalva;
TEE ¼ transesophageal echocardiographic.
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R2 ¼ 0.26), AscAo diameter/BSA (MSE ¼ 16.3,
R2 ¼ 0.32), and AscAo surface area/height
(MSE ¼ 16.8, R2 ¼ 0.29). A multilinear regression of
patient age and diameter was also considered to have
a significant improvement (MSE ¼ 11.4, R2 ¼ 0.51).

A performance plot of the resultant GPR-based
model shows that 90% (107 of 119) of the predicted
data points fall within a 95% prediction interval of the
data (Figure 4). Most of the prediction outliers (6 of
12) occur at energy loss values >35%, with the
predicted values being less than those that were
measured. There is no significant difference in pre-
diction error between the tricuspid aortic valve and
BAV patients (tricuspid aortic valve MSE ¼ 5.48, BAV
MSE ¼ 5.19, P ¼ 0.852).

PREDICTIVE MODEL WITH TEE DERIVED STIFFNESS. To
demonstrate model improvement with additional
in vivo strain imaging data, a subcohort (n ¼ 67) with
an estimated CCPM modulus was added as an addi-
tional variable to the same variable selection deter-
mined in the previous section. The best-performing
model for this data set was found again to be the GPR-
based model (MSE ¼ 8.60, R2 ¼ 0.62), noting that the
performance of the original model using the full cohort
(MSE ¼ 8.69, R2 ¼ 0.63) was decreased (MSE ¼ 12.0,
R2 ¼ 0.46) with the significantly smaller TEE cohort.
Once again, for a direct comparison with the models, a
linear regression of CCPM was trained (MSE ¼ 10.6,
R2 ¼ 0.53). Performance plots for the linear regression
of CCPM, the original GPR model, and combined GPR
model with CCPM are shown in Figure 5.

DISCUSSION

A ML approach was used to predict the biomechanical
function of human TAA tissue from patient-specific
clinical data (Central Illustration). We have focused
on energy loss as a measure of aortic tissue biome-
chanical function based on associations with medial
degeneration and delamination strength.10,11 Super-
vised learning techniques were used to computa-
tionally uncover relationships between the clinical
data and energy loss. A regression-based ML model
was found to have a much greater correlative measure
with energy loss than simpler size-based metrics on
their own (Table 3). Compared to the low correlation
of AscAo diameter with energy loss (MSE ¼ 17.5,
R2 ¼ 0.26), a ML GPR-based model including 13 clin-
ical variables has an improvement in MSE of up to
67% (MSE ¼ 8.69, R2 ¼ 0.63) while justifying the
added benefit of considering a broader range of pa-
tient information. In addition to age, genetic variants
of the FBN1 gene and traditional cardiac risk factors
such as hypertension were shown to have a positive
influence on prediction. In a subgroup of subjects,
prediction was further improved with the addition of
a medical imaging-derived stiffness metric, CCPM, as
an input variable.

IMPORTANCE OF AGE. The results of the f-test
ranking of variable importance reveal that patient
age, by far, has the strongest relationship to energy
loss. Meaning the effect of the aorta’s natural
remodeling and stiffening with age is responsible for
the largest amount of variation within this patient
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FIGURE 3 Overview of Measured Energy Loss for Study Cohort

(A) Overlapping histogram of measured energy loss values for aneurysmal and control patients. (B) Scatter plots comparing ex vivo measured

energy loss to common clinical metrics. (Left) Patient age at the time of surgery. (Right) In vivo measured ascending aortic diameter. Surgical

diameter threshold indicated at 55 mm.
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population. A recent study by Durbak et al16 found
similar evidence that age is the most influential factor
in elastic energy storage in the thoracic aorta, with
other studies finding similar relationships between
age and mechanical testing indexes in both
diseased24 and healthy tissue.25

Energy loss predictions can be considered with
respect to the population average for their age group.
Levels of predicted risk can be assigned with respect
to deviation from the population mean. This is
exemplified by Figure 6, showing 2 groups of patients
of similar age levels, indicated i-v. For example, pa-
tients iii and iv present as having degenerative aort-
opathy at 71 and 66 years old. Patient (#3) presents
with a mildly dilated aorta of 46 mm, below the sur-
gical cutoff; however, the energy loss is predicted at
36%, well above the population mean for this
respective age level. By contrast, patient (#4) pre-
sents with similar diameter, age, and comorbidities
but has a predicted energy loss much lower, at 30%.
Here, the model demonstrates a capability to
TABLE 3 Summary of Model Performance With Full Cohort

Model Name CV R2 CV MSE Testing MSE

Gaussian process regression model 0.63 8.69 8.78

AscAo diameter 0.26 17.5 15.7

AscAo diameter/BSA 0.32 16.3 13.5

AscAo surface area/height 0.29 16.8 15.9

Age, AscAo diameter 0.51 11.4 10.7

Characteristics of training and testing datasets provided in Supplemental Table 4.

AscAo ¼ ascending aorta; BSA ¼ body surface area; CV ¼ cross validation;
MSE ¼ mean squared error.
differentiate between patients having elevated
biomechanical dysfunction. This can be particularly
useful when considering patients in the diameter
range of 4.5 to 5.5, especially now that recent guide-
lines are further reducing aortic diameter thresholds,
exposing a larger population of patients to surgery.26

Old age is typically seen as a potential contradic-
tion to surgery; however, here it is demonstrated that
the biomechanical function of the aortic wall signifi-
cantly worsens with old age, and as a result, the
biomechanical burden associated with aneurysms can
be much greater. This model provides a method of
risk stratification that may assist in identifying older
patients who may be at an elevated risk of aortic
complications.

IMPORTANT CLINICAL PREDICTORS. It is important
to note that variable selection in ML models repre-
sents factors that are correlative to the output but not
necessarily causative. Many of the variables selected
to be significant for this model are likely beneficial for
their ability to establish the patient’s phenotype as
representative of the driving force for their disease.
For example, comorbidities such as hypertension and
dyslipidemia are associated with more acquired,
degenerative forms of TAA. Different pathologies of
aortopathy have differing mechanical characteristics,
therefore being significant to this model. Guidelines
currently rely principally on aortic diameter as the
surgical guideline to determine timing of surgical
intervention.2 In this cohort, this relation was weak,
confirming its known limitations in clinical care and
implying a weak relationship between the biome-
chanical function of the tissue and its diameter.

https://doi.org/10.1016/j.jacadv.2023.100637


FIGURE 4 Predictive Performance of GPR Model Trained on

Full Cohort

Predicted values shown for training data set, with MSE and R2

found by cross validation. Solid black line indicates line of

perfect prediction at y ¼ x. Dashed lines represent 95% pre-

diction interval, with a width of 7.3% to 7.4%. BAV ¼ bicuspid

aortic valve, GPR ¼ Gaussian process regression;

TAV ¼ tricuspid aortic valve.
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Further, it was found to be less significant than pa-
tient age, despite a lack of acknowledgment of age in
the current guidelines for treatment.

IMPORTANCE OF IN VIVO ESTIMATES. From the
performance plot of the model (Figure 4), in the high
energy loss region (>35%), it can be suggested that
with extreme disease progression, mechanical func-
tion may be more heavily influenced by another
driving force that is not being adequately represented
by the considered factors. The lack of information on
the growth rate of the aneurysm is potentially the
FIGURE 5 Comparison of Prediction Performance of Considering Cli

Performance plots for (left) linear regression model trained on CCPM as

and (right) GPR model trained on clinical predictors and CCPM. MSE and R

perfect prediction, 95% prediction interval shown with dashed line, havin

GPR ¼ Gaussian process regression; MSE ¼ mean squared error.
missing piece in this problem. With the high rate of
incidental findings in TAA patients, the rate of growth
is unknown in most cases. Growth rate is known to be
an important indicator of risk and has been specu-
lated to correspond to different driving forces of
medial degeneration.14,27

The integration of an in vivo estimate of biome-
chanical function (CCPM) into the model helps over-
come the lack of real-time information. The metric
CCPM, on its own, has the advantage of being directly
related to the function of the aortic tissue at the time
of surgery. However, the complexity of the image and
lack of robustness of stiffness on its own make its
correlative power to energy loss limited. The inclu-
sion of CCPM in the ML model gives a greater pre-
diction of energy loss than either individual method
produces on its own.

FUTURE CONSIDERATIONS. The further develop-
ment of this method would be clinically useful as a
decision-support system. Particularly in low-resource
centers, where a model of this type can be used as a
screening tool for recommending patients to be
considered more closely by a specialist. This approach
can be easily integrated into the clinical environment
as a desktop application in which patient data is
inputted within the clinic or office, immediately
generating biomechanical functional score.

The relative success of this method, compared to
the currently considered methods of diameter-based
thresholds and echocardiographic-derived stiffness
metrics, justifies the validity of this approach. The
addition of more patients to the study cohort will help
the model to “learn” and narrow the prediction in-
tervals of the correlation.
nical Predictors and CCPM

only predictor, (middle) GPR model trained on 13 clinical predictors,
2 values based on cross validation. Solid black line indicating line of

g a width of 6.2% to 6.4%. CCPM ¼ cardiac cycle pressure modulus;
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A model for predicting the relative risk level of a patient was produced. Input data to the model included clinically accessible information such as past medical history,

genetic paneling, and observations from echocardiographic images. A biomechanical metric measured by ex vivo tensile testing of the resected tissue was used as the

output. Predicted biomechanical index was considered with reference to patient age to interpret relative risk. Some images were created using Biorender.
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STUDY LIMITATIONS. Energy loss has been shown to
be a robust mechanical property describing biome-
chanical states and is directly correlative of the
pathological remodeling in the aortic wall.11 However,
the pathogenesis of dissection is multifactorial. Tis-
sue material properties are not the sole factor at
play.6,7,28 Assessing the risk of dissection requires a
multivariate approach. This work demonstrates that
ML can be used to improve the prediction of aortic
energy loss, a measurable property that we believe
provides information on the integrity of the aortic
wall. Meta-analysis of registries and ongoing clinical
trials (IRAD and TITAN:SvS; NCT03536312) using the
methods described in this paper could provide a more
direct link to dissection and rupture given proper
curation of the available data.

This approach is limited by the need for consis-
tency within the data. For this reason, only TEE was
used for geometric measurements, as every patient
underwent imaging on the day of surgery. Size dis-
crepancies between different imaging modalities,
along with the further issue of inconsistencies in

https://classic.clinicaltrials.gov/ct2/show/NCT03536312


FIGURE 6 Clinical Interpretation of Model Predictions by Indexing With Patient Age

(Left) Energy loss predictions are made using the Gaussian process regression model trained on TEE-analysis cohort with cardiac cycle

pressure modulus included. (Right) Predicted energy loss values can be represented as a function of patient age at the time of surgery. Linear

regression line represents population average, dotted line showing 99% confidence interval, providing potential risk categories while

illustrating increased uncertainty of the model near the ends of the age range. Example patients (i) to (v) are indicated by red square.

AscAo ¼ ascending aorta; CAD ¼ coronary artery disease; TEE ¼ transesophageal echocardiography.
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measuring techniques across centers present an
obstacle when applying this to a clinical
environment.

This study is also limited by the size of the patient
cohort, causing heterogeneous groups, such as pa-
tients with BAV or genetic abnormalities, to be over-
simplified. It should also be noted that socioeconomic
data is not considered by this study, though it is
becoming increasingly evident that economic class
plays a significant role in a patient’s likely risk fac-
tors.29 Additionally, given the location of this study,
the patient cohort is disproportionately made up of
Caucasian patients. Therefore, these findings cannot
be assumed to be applicable to all demographics.

CONCLUSIONS

This ML analysis demonstrates that an approach that
integrates various clinical metrics provides a more
accurate prediction of aortic mechanical function
than the simpler size-based metrics currently
employed. Preliminary models were able to incorpo-
rate common traditional cardiac risk factors such as
comorbidities and Marfan’s syndrome. Nevertheless,
the limitations in prediction by this approach high-
light the heterogeneous and complex nature of this
disease. However, our results demonstrate that these
limitations can be addressed at least in part with a
combined approach using TEE speckle tracking-
derived metrics as additional inputs to the model.

Overall, this study indicates the relative success of
this method compared to those which are currently
used. Our results provide strong support for the
collection of mechanical data of this nature on a
larger scale to further improve in vivo prediction of
biomechanical function for clinical decision-making
support.
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE 1:

Biomechanical indexes for TAA tissue can be better pre-

dicted by integrating a range of patient-specific data than

with diameter-based metrics alone, with relevant addi-

tional metrics including patient age, sex, BSA, valve type,

comorbidities, and genetic profile.

COMPETENCY IN MEDICAL KNOWLEDGE 2: The

mechanical state of TAA tissue is dependent on patient

age to a greater extent than disease progression and must

be considered when interpreting data of this nature.

TRANSLATIONAL OUTLOOK 1: Although the cohort

of this study is relatively small (n ¼ 158), a larger-scale

collection of biomechanical data on TAA tissue will lead

to a better understanding of the relationships influencing

patient risk and facilitate systems for better patient care.

TRANSLATIONAL OUTLOOK 2: An investigation is

needed to compare the accuracy of risk levels assigned by

an integrated ML approach compared to that of diameter

thresholding by means of histopathological classification

of tissue.
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