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Abstract

This paper introduces a series of high resolution (100-meter) population grids for eight differ-

ent sociodemographic variables across the state of California using data from the 2020 cen-

sus. These layers constitute the ‘CA-POP’ dataset, and were produced using dasymetric

mapping methods to downscale census block populations using fine-scale residential tax

parcel boundaries and Microsoft’s remotely-sensed building footprint layer as ancillary data-

sets. In comparison to a number of existing gridded population products, CA-POP shows

good concordance and offers a number of benefits, including more recent data vintage,

higher resolution, more accurate building footprint data, and in some cases more sophisti-

cated but parsimonious and transparent dasymetric mapping methodologies. A general

accuracy assessment of the CA-POP dasymetric mapping methodology was conducted by

producing a population grid that was constrained by population observations within block

groups instead of blocks, enabling a comparison of this grid’s population apportionment to

block-level census values, yielding a median absolute relative error of approximately 30%

for block group-to-block apportionment. However, the final CA-POP grids are constrained

by higher-resolution census block-level observations, likely making them even more accu-

rate than these block group-constrained grids over a given region, but for which error

assessments of population disaggregation is not possible due to the absence of observa-

tional data at the sub-block scale. The CA-POP grids are freely available as GeoTIFF ras-

ters online at github.com/njdepsky/CA-POP, for total population, Hispanic/Latinx population

of any race, and non-Hispanic populations for the following groups: American Indian/Alaska

Native, Asian, Black/African-American, Native Hawaiian and other Pacific Islander, White,

other race or multiracial (two or more races) and residents under 18 years old (i.e. minors).

Introduction

Understanding the spatial distribution of human populations is integral to civic and land use

planning, public policy design and various fields of academic research. For example, many
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public health studies in the United States (U.S.) seek to quantify the number of people residing

near a potential environmental health hazard [1–4]. Similarly, environmental justice and

equity oriented research often evaluates the degree to which people of color and other socially

disadvantaged populations live in closer proximity to environmental contaminants or hazards

[3, 5, 6]. However, the ability to estimate fine-scale spatial distributions of populations in

many prior studies has been limited to the spatial granularity of population estimates that are

made available by public enumerating agencies, such as the U.S. Census Bureau.

In the U.S., the most granular spatial units of enumeration are census blocks, available in

each decennial year (i.e. 2000, 2010, 2020). In non-decennial years, the finest scale estimates

are made at the block group level, which are coarser than census blocks. In California (CA),

for example, blocks have an average land area of roughly 0.8 km2 (~200 acres) and a popula-

tion of about 75 people each, while block groups are roughly twenty times larger, both in aver-

age area and population. Census blocks therefore provide population information at a high

spatial resolution, although in more sparsely populated regions, their areal extents tend to be

much larger, consisting of large open, unpopulated spaces. Without more precise information

about the likely locations of population within these areas, researchers are often forced to

assume that populations are uniformly distributed across the entire area of the given census

spatial unit [5, 7, 8]. Such simplifying assumptions may have significant implications on study

findings, especially for research in rural areas and concerned with precisely quantifying popu-

lations within an area smaller than local census block or block group areas, such as a specified

buffer distance surrounding a polluting facility [5, 9, 10].

To address this issue, many techniques have been developed to disaggregate population

estimates to finer scales. Broadly speaking, this field of population downscaling is a form of

‘dasymetric’ mapping, a methodology which dates back many decades [11–13]. Eicher and

Brewer (2001) [14] formalized many of the techniques and terminology used in modern dasy-

metric mapping studies in their study to disaggregate population from the 1990 U.S. census

from 159 different counties. They refer to the county boundaries where they have observed

population estimates as their “source zones”, then mask out areas likely to be unpopulated

within each county based on higher resolution, ancillary land use datasets, with final populated

area boundaries within each county deemed their “target zones”. Many subsequent studies

emulated the dasymetric mapping techniques detailed in this study, usually employing various

land use datasets as their primary source of ancillary data to reapportion population within

source zones (e.g., [15–17]. Some studies construct multi-class weighting schemes to reappor-

tion population to target zones based on the characteristics of the land use type (e.g. high-den-

sity versus low-density residential) [18–20], and often integrate additional ancillary datasets,

such as tax parcel data [21, 22], home address [17, 23], property records [24], building foot-

prints [25] and/or mobile phone data [26].

More recently, researchers have begun to employ more complex machine learning tech-

niques to predict fine-scale population distributions within source zones, often using a wide

array of ancillary datasets, such as road networks, nighttime lights, infrastructure and building

footprint data, in addition to land use layers as covariates in the models [27–32]. These highly-

modeled approaches can represent a significant improvement from simpler techniques, espe-

cially in regions of the world for which source zone population estimates from official census

surveys are infrequent and/or only exist at very coarse spatial resolutions [33–37]. Leyk et al.

(2019) [11] provide a thorough review of dasymetric mapping methods employed in past stud-

ies, including these highly-modeled approaches, to construct large-scale (i.e. global, continen-

tal) grids of population.

In this paper, we introduce a new suite of publicly available population grids, known as

‘CA-POP’, for the State of California produced using dasymetric mapping methods. The grids
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represent values for eight different demographic variables from the 2020 U.S. Census and are

provided at a pixel resolution of 100 meters. Census blocks from the 2020 census were utilized

as source zones, with high-resolution residential tax parcel boundaries and remotely-sensed,

individual building footprints used as ancillary datasets to construct target zones of population

within each block. A relatively simple, polygon binary method [14] of reapportioning popula-

tion from the block level source zones to parcel and/or building level target zones was utilized.

A qualitative comparison to a few of the more heavily-modeled gridded products available in

California (e.g. LandScan, WorldPop) revealed that CA-POP performs very well in differenti-

ating between populated and unpopulated regions, comparatively. This suggests that in con-

texts where both source zone population estimates and ancillary datasets are available at high

resolutions, simpler, more easily-replicable dasymetric mapping techniques can yield high

quality grids without needing to employ more complex algorithms.

Producing high-resolution CA-POP grids for various demographic variables estimated in

the 2020 census, including racial and ethnic subgroups, can serve as a resource for studies that

seek to evaluate these communities. A precursor to the 2020 CA-POP grids developed by the

authors, based on 2017 American Community Survey block group and 2010 block source

zones, were employed by Casey et al. (2021) [38] to assess social inequalities in residential

proximity to large methane-emitting sites and in Pace et al. (2022) [39] to estimate racial/eth-

nic inequalities in estimated drinking water concentrations of arsenic, nitrate, and hexavalent

chromium from community water systems and areas of potentially high domestic well preva-

lence, demonstrating the utility of CA-POP for environmental equity studies. As more socio-

demographic variables are released by future U.S. Census Bureau’s American Community Sur-

veys from the U.S. Census Bureau, additional grids based on these block group-level values

may be produced and uploaded to the public CA-POP repository (github.com/njdepsky/

CA-POP).

Data and methods

In conjunction with the estimates of census block populations from the 2020 U.S. Census, two

sources of ancillary data were used that represent spatial units at a sub-block level of spatial

granularity: i) residential tax parcel boundaries and ii) estimates of the individual footprint of

every building throughout the state. Both of these ancillary data sources were used to identify

areas within each census block likely to contain populated, residential areas, as opposed to

vacant, commercial or other non-residential space.

Census data

We utilized block level estimates of population collected during the 2020 U.S. Census–the

highest spatial-resolution available from the U.S. Census Bureau–from the (P.L. 94–171)

Redistricting Data Summary File [40]. The tabular block-population data for the Summary

File, as well as the shapefile of block boundaries were obtained from the U.S. Census Bureau in

November 2021 for the entire state of California [41]. Specifically, data were obtained for the

following variables: i) total population, ii) Hispanic/Latinx population of any race, iii) non-

Hispanic/Latinx populations for all major racial subgroups available in the P.L. 94–171 file

and, iv) population of minors (younger than 18 years old) (Table 1). We produced grids for all

racial/ethnic subgroups made available thus far for uniform (single) race classifications, with

respondents identifying as another race or as multiple races grouped into a grid for “other/

multiracial” residents.

In choosing our racial/ethnic groupings, we sought to maximize the utility of CA-POP for

research employing race as a proxy for experiences of racism—particularly racism operating at

PLOS ONE High-resolution population grids from the 2020 census in California

PLOS ONE | https://doi.org/10.1371/journal.pone.0270746 July 14, 2022 3 / 21

https://www.zotero.org/google-docs/?j7XUyC
https://www.zotero.org/google-docs/?j7XUyC
https://www.zotero.org/google-docs/?j7XUyC
https://www.zotero.org/google-docs/?DgRCK8
https://www.zotero.org/google-docs/?DgRCK8
https://www.zotero.org/google-docs/?DgRCK8
https://doi.org/10.1371/journal.pone.0270746


institutional and structural levels—to determine opportunities and risk factors at the neighbor-

hood level. This is in keeping with the understanding of race as a social construct that has been

used to systematically discriminate against and socioeconomically marginalize specific groups

of people [42, 43]. We chose groupings that are typical in the environmental justice literature

and somewhat reflect shared forms of discrimination [44]. However, we recognize that forms

of discrimination vary widely between racial and ethnic groups that we have grouped together

(for example, different immigration policies for Mexicans and Cubans, who might both iden-

tify as “Hispanic” or “Latino/Latinx”). We were limited in our ability to create more fine-

grained categories due to the availability of current data, and grids for additional racial catego-

rizations provided in subsequent 2020 Census or American Community Survey tables (e.g.,

additional sub-categories for Hispanic/Latinx and Asian respondents) can be generated when

these data are released.

The official population enumerated in the 2020 Census for the entire state of California is

39,538,223 people across 519,723 census blocks, with a mean area of 0.79 km2, or 195 acres.

Estimates for each of the above values at the block-group level for the 2020 census were also

obtained for use in an accuracy assessment of the dasymetric mapping method employed for

total population. Block-groups are at a significantly coarser spatial resolution than blocks

(~1:20), with a total count of 25,607 and mean area of 16.0 km2, or 3950 acres.

Residential parcel data

We utilized boundaries for all tax parcels in California from LightBox-Digital Map Products

(accessible at digmap.com/platform/smartparcels/), which contains 12,728,980 parcels classi-

fied by 278 different land use types. This dataset is used by the California Air Resources Board,

among other state agencies, and updated quarterly. The data we utilized for this study was

from the final quarter of 2018 and represents tax parcels that were assessed either in 2018 (55%

of total) or 2017 (45%). Although the vintage (i.e. date of data collection) of these parcel

boundaries is not perfectly consistent with the 2020 census population estimates, obtaining

ancillary data with uniform vintages is challenging and rarely done in a completely harmo-

nized manner [15, 30, 35]. Given the relative recency of this parcel data, it is still a valuable

source of ancillary data for dasymetric mapping of 2020 census populations.

We identified 30 of these 278 land use classes as residential for use as ancillary data in creat-

ing the population grids; 8,839,658 residential parcels represented roughly two-thirds of all

Table 1. Census variables represented as CA-POP grids.

2020 Census Block Level Population Totals Obtained (P.L. 94–171 Code) CA-POP Grid Name

Grids created for each variable:

Population (P002001) TOTAL

Hispanic or Latinx (P002002) HISP

Non-Hispanic or Latinx, White (P002005) NHWHITE

Non-Hispanic or Latinx, Black or African American (P002006) NHBLACK

Non-Hispanic or Latinx, American Indian and Alaska Native (P002007) NHAMIND

Non-Hispanic or Latino, Asian (P002008) NHASIAN

Non-Hispanic or Latinx, Native Hawaiian and Other Pacific Islander (P002009) NHHIPI

OTHER/MULTI grid is the combined sum of: NHOTHERMULTI

Non-Hispanic or Latinx, Some Other Race alone (P002010) + Non-Hispanic or Latinx,

Population of two or more races (P002011)
MINORS grid (population< 18 years old) created from: MINORS

Population of adults (P003001) (subtracted from P002001)

https://doi.org/10.1371/journal.pone.0270746.t001

PLOS ONE High-resolution population grids from the 2020 census in California

PLOS ONE | https://doi.org/10.1371/journal.pone.0270746 July 14, 2022 4 / 21

https://www.digmap.com/platform/smartparcels/
https://doi.org/10.1371/journal.pone.0270746.t001
https://doi.org/10.1371/journal.pone.0270746


parcels statewide, and covered 6.7% of the total area represented in the full parcel dataset. The

full list of these residential land use classes is shown in the S1 Table. The average residential

parcel area is 3,500 m2 (~38,000 ft2, ~0.86 acres), approximately 220x smaller than the average

census block, making these parcel boundaries valuable for downscaling population estimates

within blocks. The highest proportion of residential parcel types are ‘SINGLE FAMILY RESI-

DENTIAL’ (n = 7,255,233, 82.1%) and ‘CONDOMINIUM (RESIDENTIAL)’ (n = 330,047,

3.73%).

In terms of area, the most abundant land use types are ‘SINGLE FAMILY RESIDENTIAL’

(12,850 km2, 41.5%) and ‘RURAL RESIDENCE (AGRICULTURAL)’ (12,000 km2, 38.8%).

The amount of populated residential area within each parcel varies greatly, especially between

certain land use types, such as ‘SINGLE FAMILY RESIDENTIAL’ and ‘RURAL RESIDENCE

(AGRICULTURAL)’. For example, the former tends to be fairly small, encompassing a single

house and surrounding lot area, while the latter often includes a farm residence as well as adja-

cent agricultural fields. Therefore, even within many residential parcel boundaries, there is a

need to further distinguish populated versus unpopulated space, which we largely achieve here

through the use of building footprint data.

Building footprint data

Further distinguishing between open space and populated areas within blocks and larger resi-

dential parcels was done using publicly-available, remotely-sensed building footprints produced

by Microsoft for the entire country. The initial version of this dataset was released in 2018,

though a second version was released in early 2021 and was obtained in November of 2021 for

use in this study. These building footprints were identified from publicly-available satellite

imagery of the U.S. and employed a series of machine learning (deep neural net) classification

algorithms to identify likely building rooftops, converting these footprints to a polygon shapefile

for each state. More information on the production of this dataset can be found on its online

source repository (github.com/microsoft/USBuildingFootprints). This dataset contains esti-

mated footprints of 11,542,912 distinct buildings across California, with an average individual

building area of 277 m2 (~2980 ft2, ~0.07 acres), or approximately 13x smaller than the average

size of residential parcels, and ~2,850x smaller than the average census block area statewide.

The approximate date range of the source satellite image used to create each building footprint

is also provided, with 91.6% of all buildings delineated using imagery from 2018 or later.

Despite being the ancillary data source of highest spatial granularity, one inherent limita-

tion of the building footprint data is that it is a single-class dataset, with no distinction between

building types, making it difficult to identify which buildings are residential structures. Addi-

tionally, the classification algorithm used for building delineation is not perfect, with Microsoft

reporting its accuracy in terms of precision and recall at 98.5% and 92.4%, respectively. Preci-

sion pertains to relative error rates of false positives (detecting a building where there is none),

suggesting a false positive rate of 1.5%, while recall pertains to false negative error rates (failing

to detect an existing building), suggesting a false negative rate of 7.6%. This rate of false nega-

tives is not insignificant, and examples of such instances can be seen (S1 Fig). Given the limita-

tions of the building footprint data, we opted to use entire parcel boundaries to represent

populated areas in small residential plots to avoid completely relying on building footprints to

identify populated structures within all residential parcels, described in further detail below.

However, the relative performance of Microsoft’s building detection algorithm is still remark-

able and their footprint dataset allows for substantial spatial downscaling of likely residential

zones, especially in areas where fine-scale residential parcels are absent. Fig 1 presents exam-

ples of census block group boundaries and the ancillary datasets.
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Dasymetric methods

Using the 2020 census blocks as source zones for population estimates across California, the

residential parcel and individual building polygons were used to apportion population to

smaller sub-regions within each block. Therefore, some combination of residential parcels

and/or building boundaries served as the target zones for population within each census block,

with this final vector layer of populated areas then converted to a 100m-resolution statewide

grid. This approach could be classified as a form of ‘polygon binary’ dasymetric mapping,

where vector polygon ancillary data sources are used to define populated versus unpopulated

classifications within source zones, assuming population is homogeneously distributed

amongst the populated target zones regions within each source zone [14].

Other, more complex dasymetric mapping techniques that utilize multi-class information

associated with ancillary data to assign population density weights to each land use region

have been employed in past studies as well [15, 18, 22]. In theory, a similar approach could

have been employed with the residential parcel ancillary data used in this study, assigning rela-

tive population density weights for each of the 30 residential parcel types. However, coming up

with appropriate weights for each parcel type is not straightforward, especially as many of the

residential parcel classes are absent or rare in some counties compared to others. Also, many

of the studies that apply multi-class weighting schemes utilize population source zones and

ancillary land use datasets at much coarser resolutions than the data sources we used (e.g. cen-

sus tracts rather than blocks) [14, 22, 25]. Accounting for likely variation in population densi-

ties between parcel types is less important with smaller source zones like those used in our

Fig 1. Data sources used for the population grid creation process. Examples are shown in in urban (top row) and rural (bottom row) settings. The 2020

census blocks represent the source zones of population and the parcel and building footprint data the ancillary data comprising the target population zones.

(Satellite base-imagery source: USGS (NAIP) from The National Map).

https://doi.org/10.1371/journal.pone.0270746.g001
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study. Furthermore, given that the building footprint data lack classifications of structure type

and the fact that both parcel and building boundaries were often both utilized to apportion

population within a given census block, we opted to treat both ancillary data sources in a

binary fashion.

Creation of the 100m x 100m statewide grids from the 2020 census population estimates

was done for each census block, in a stepwise fashion as follows:

A) Identified all “small” residential parcels to include as eventual target zones in each census
block. “Small” residential parcels were defined as those with an area less than or equal to

one acre (~4050 m2). However, for five high-density residential classes (’APARTMENT

HOUSE (100+ UNITS)’, ’APARTMENT HOUSE (5+ UNITS)’, ’APARTMENTS

(GENERIC)’, ’COOPERATIVE (RESIDENTIAL)’, ’HIGHRISE APARTMENTS’), parcels

of up to 10 acres (~40,500 m2) were included in this “small” categorization. These thresh-

olds were utilized to exclude parcels that contain large areas of open space in addition to

residential structures. This was most commonly seen in RURAL RESIDENCE (AGRICUL-

TURAL) parcels, which have a size (~18 acres) of roughly 40x that of average SINGLE

FAMILY RESIDENTIAL parcels (~0.45 acres), on average, despite both types tending to

encompass just one single family house. Therefore, parcel sizes for most residential parcel

types were limited to one acre so that any open space contained within them would not

exceed the size of a medium to large yard surrounding a single-family home (S2 Fig). This

one-acre threshold corresponds to roughly 40% of the area of a single 100 x 100m grid cell

and therefore, any open yard space within these plots are likely to minimally impact the

eventual gridded output. The 10-acre threshold utilized for the five high-density parcel

types was selected after manual inspection of those parcel classes were determined to often

occupy more area (i.e. a full city block) in urban zones without containing large amounts of

unpopulated space.

These small residential parcels were selected as target zones amongst the ancillary data

because most inaccuracies observed upon manual inspection of several hundred parcels

were instances of large open spaces being assigned a residential use code, masked out here

by selecting only small residential parcels. Given the somewhat common occurrence of

false negatives in the building footprint dataset, we did not want to rely on these footprints

alone to constrain populated area, though other gridded population efforts have employed

such an approach, including the “constrained” WorldPop population grids [28] and those

produced by Huang et al. (2021) [25] for the contiguous U.S. (CONUS) region.

Identified all building footprints within “large” residential parcels not included in step (A)
and combined those footprints with the small residential polygon boundaries from (A) to produce
the final target zones for populations within all census blocks containing some residential parcel
area.

Building footprints within all “large” residential parcels were assumed to be residential and

selected as target zones for population, which masked out open space in these large parcels but

still included likely housing structures. These building polygon geometries were then merged

with the small residential parcel polygons selected in step (A) to produce the final target zone

extents for population apportionment within each census block. Therefore, the target zones

within a single census block could consist of both small residential parcel boundaries as well as

building footprints if both small and large residential parcels are present.

Given the fact that intersecting the census block, residential parcel and building footprint

polygon geometries resulted in some small slivers or fragments of individual parcels or build-

ing footprints being assigned to certain blocks, a sliver-removal algorithm was employed to

remove most of these instances using an upper population density limit of 1 person per 10 m2.
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Slivers are defined as any single-part polygon resulting from the block-parcel intersection that

is less than:

[original residential parcel area] / [2 � # of polygons descendent of a given parcel after inter-
secting with blocks]

In other words, if a residential parcel with an area of 1km2 is split evenly across two differ-

ent blocks into two 0.5km2 portions, they will both be preserved since 0.5km2 > [1km2 / (2 x

2) = 0.25km2]. However, if this same parcel is split across two blocks such that 90% (0.9km2) of

its area is contained in one block and 10% (0.1km2) in the other, the smaller portion would be

considered a sliver and removed since it is less than 0.25km2. This ultimately resulted in the

removal of 3.1% of polygons (in terms of count, not area) resulting from the intersection of

census blocks with residential parcels.

B) This threshold value roughly corresponds to the top 99.9th percentile of observed popula-

tion density in the original census block source zones and was employed to remove errone-

ous target zone geometries composed only of small sliver/fragment polygons. Steps (A) and

(B) were applied to all census blocks that had some amount of residential parcel area.

C) Identified all building footprints within census blocks with a non-zero population, but which
contain no residential parcels, and set as target zones for those blocks.
A small portion of the state’s population resides in census blocks without residential parcels,

largely in sparsely-populated regions. In these instances, the only ancillary data available was the

building footprint data and population was uniformly apportioned across all building geometries

in these cases. The main limitation in this approach is that not all structures are residential, result-

ing in some likely over-apportionment of populations to non-residential structures, an issue that

was largely avoided in step (B) by selecting only buildings within large residential parcels.

D) Identified any remaining blocks that have a non-zero population but do not contain any resi-
dential parcels nor building footprints. We used the census block boundary as the target zone
in this case, assuming uniform population distribution across these blocks.
A tiny fraction of the state’s estimated 2020 population are enumerated in census blocks

with neither residential parcels nor detected building footprints. In these cases, the target

zones were simply treated as equivalent to the source zones (census block boundaries) and

populations were uniformly distributed throughout these areas.

The resultant target zone polygonal geometries produced in steps (A-D) were uniformly

assigned population densities based on their parent source zone populations and then con-

verted to 100m x 100m statewide raster grids, which contain values of people per pixel (Fig 2).

Roughly 34.5 million people in this final grid (87.2% of the state population) fell within small

residential parcels (Step A), 3.6 million (9.1%) resided in large residential parcels and therefore

are represented by building footprints within those parcels (Step B), 1.3 million (3.4%) fell in

blocks with no residential parcels identified and therefore uniformly represented across all

building footprints within these blocks, and for 128,000 people (0.3%) there existed neither

residential parcel boundaries nor building footprints within their census blocks, resulting in a

uniform distribution of those populations across their entire block areas (Fig 3). All geospatial

operations were performed in a PostgreSQL (v13.3) programming environment using the

PostGIS (v2.5) spatial database extension.

Comparison to other gridded products

Four different, commonly-used global gridded population products were evaluated against the

CA-POP grids: i) Gridded Population of the World v4.11 (GPW), ii) WorldPop (100m,
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unconstrained) (WPUC), iii) WorldPop (100m, constrained) (WPC), and iv) LandScan (LS). At

the time of writing, each of these products’ population source zones were based on the 2010

census at the block level, with populations in later-year grids estimated via different growth

forecasting and/or inter-census population estimates to extrapolate 2010 values over time [28,

45, 46]. The latest GPW, WPUC and WPC population grids are for 2020 and LS for 2019,

though presumably they will be updated to 2020 census block source zone populations in the

near future. We also assessed two sets of population grids produced for the CONUS region by:

i) Huang et al. (2021) [25], which utilized an earlier version of the Microsoft building foot-

prints as ancillary data, and ii) the SocScape grids, which were produced using census block

population estimates along with two land use ancillary datasets from 2010–2011 [20].

The GPW product employs the simplest methodology of the grids evaluated, apportioning

population from source zones (blocks) to grid pixels through a simple, uniform areal weighting

technique, masking out some unpopulated zones, such as water bodies and is provided at a

1km resolution. WorldPop employs a much more complex approach based on constructing

machine learning models using a wide suite of covariates, such as roads, land cover, nighttime

lights, infrastructure, protected areas, among others to predict population distributions within

source zones [11, 28]. The WPC grids represent the results of these predictive models, but with

population constrained to building footprints as represented in a recent buildings dataset from

Maxar/Ecopia (WorldPop.org, [28]). Both WorldPop datasets are provided at 1km and 100m

grid resolutions. LandScan employs a “smart interpolation” approach to weight pixels by likeli-

hood of containing population based on a large suite of ancillary data and apportioning popu-

lations accordingly, and is provided at a 1km resolution [28, 46].

Therefore, one advantage of CA-POP over the GPW and LS grids is its higher resolution

(100m compared to 1km), made possible from the fine scale parcel and building footprint

Fig 2. CA-POP’s dasymetric mapping method applied to a single census block. Example shown is just north of Modesto, CA. Panel (a) shows the block

boundary; (b) shows the ancillary residential parcel and building footprint boundaries; (c) shows the polygon boundaries used as the final target zones to assign

the block’s population values, retaining the small residential parcel polygons and building footprint polygons within large residential parcels; (d) shows the

100m-resolution grid produced from population apportioned to the final target zones. (Satellite base imagery source: USGS (NAIP) from The National Map).

https://doi.org/10.1371/journal.pone.0270746.g002
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ancillary data utilized in its production. This allows for a more granular representation of pop-

ulation distributions, especially in sparsely populated regions (Fig 4). Also, the dasymetric

mapping techniques used in CA-POP are a significant improvement over GPW’s simple, areal

weighting techniques that assume uniform population distribution throughout census blocks.

The CA-POP techniques are simpler than the more heavily-modeled approaches used in LS

Fig 3. Process workflow illustrating the identification of population target zones. Dasymetric mapping process using the residential parcel and building

footprint ancillary datasets within each census block and producing the final statewide grids for each population variable considered.

https://doi.org/10.1371/journal.pone.0270746.g003

Fig 4. CA-POP compared to the GPW and LS 1km resolution datasets. Examples are shown for the Fresno area, CA. (Satellite base imagery source: USGS

(NAIP) from The National Map).

https://doi.org/10.1371/journal.pone.0270746.g004
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and the WP grids, requiring fewer input datasets and are therefore more easily-reproducible.

The WP and LS products are particularly well-suited for predicting populations in regions of

the world where official population estimates are sparse or more coarsely resolved compared

to U.S. census blocks.

The CONUS level grids produced by Huang et al. (2021) [25] represent the closest, previ-

ously published, methodological approach to CA-POP, apportioning population from census

tract source zones to Microsoft building footprints (v1) that fall within residential areas identi-

fied in a national OpenStreetMap land use database. However, by assigning population solely

to Microsoft building footprint boundaries, the approach is vulnerable to the building detec-

tion errors associated with that dataset, namely the occurrence of false negatives. Additionally,

population values and source zones in the study correspond to 2017 American Community

Survey census tracts, a much coarser geographic unit compared to census blocks. Also, com-

pared to the CONUS grid produced by Huang et al. (2021) [25], which only provides popula-

tion counts, CA-POP offers grids for multiple sociodemographic variables in addition to

population.

The SocScape grids represent the finest resolution population grids we evaluated, with pop-

ulation grids for total population as well as various racial subgroups at a 30-meter resolution

for the CONUS region. These grids were produced using census blocks as source zones and a

pair of national land use/land cover datasets as the ancillary layers to comprise target zones of

population apportionment within blocks [20]. These grids are publicly-available for download

at socscape.edu.pl and appear to have been recently updated to include grids based on 2020

census values. Table 2 summarizes the characteristics of each these gridded datasets that were

compared to CA-POP.

Table 2. Description of gridded datasets assessed. GPW, WPC, WPUC and LS datasets all currently use 2010 census blocks as their source zones, which will likely be

updated to 2020 census blocks in subsequent grids.

Product Resolution Population Apportionment Methods Gridded Variables

Gridded Population of the

World v4.11 (GPW)

1km Areal weighting assuming uniform population distribution using limited land use

data (e.g. water bodies) to mask uninhabited areas

Population count

Population density

Population by age and sex (5-year

age bins)

WorldPop (unconstrained)

(WPUC)

100m Random forest machine learning algorithm using a wide array of gridded and

binary/categorical input covariates (e.g. topography, land cover, nighttime lights,

local climate variables etc.)

Population count

Population density

Population by age and sex (5-year

age bins)

WorldPop (constrained)

(WPC)

100m Similar modeling approach and input datasets as WPUC but with population

limited to Maxar/Ecopia building footprint boundaries

Population count

Population by age and sex (5-year

age bins)

LandScan (LS) 1km “Smart interpolation” modeling approach to weight pixels based on their

likelihood of containing population using a large suite of ancillary datasets (e.g.

topography, land cover, climate, infrastructure etc.)

Population count

Huang et al. 2021 100m Assigns population to Microsoft building footprints (v1) that are masked to

residential areas using OpenStreetMap land use data using census tracts as source

zones

Population count

SocScape 2010, 2020 30m National Land Cover and Land Use Datasets as ancillary layers and census blocks

as source zones

Population count Six racial

subgroups

CA-POP 100m Uses high resolution statewide tax parcel dataset from LightBox-DMP and

Microsoft building footprints (v2) as ancillary datasets to apportion populations

from 2020 census block source zones

Population count (total)

Hispanic/Latinx population

Non-Hispanic/Latinx population for

six racial subgroups and minors

https://doi.org/10.1371/journal.pone.0270746.t002
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The incongruity of population source zone vintage between many of these alternative

gridded products and CA-POP made direct comparisons to most of these grids challenging,

and producing an earlier (i.e. 2010) version of CA-POP would be infeasible given the more

recent vintage of its ancillary data. Additionally, once the census block source zone popula-

tions underpinning each of the other gridded products are updated to the 2020 census, block-

level errors should in theory be zero and equal to those associated with the CA-POP grids.

Given the fact that each of these grids utilize the highest resolution observed population esti-

mates available, there is no straightforward way to estimate errors in their apportionment of

population from source to target zones.

Therefore, we conducted a qualitative assessment of the advantages and disadvantages of

CA-POP to the four global products based on their underlying data, methods and final grid

resolutions, as well as through a series of manual accuracy assessments using contemporary

satellite base-imagery from 2020–2021. However, reported metrics of relative errors as

reported in the SocScape documentation were also compared to CA-POP, as the accuracy

assessment employed by Dmowska and Stepinski (2017) [20] represents the most similar accu-

racy assessment to the one we employed for the CA-POP grids.

Accuracy assessment

Census blocks are the finest spatial unit of population estimation tabulated in the census, and

therefore represent the highest resolution set of “ground-truth” population estimates available

to evaluate population estimation accuracy for different dasymetric modeling exercises. Given

the fact that these block-level populations are used to constrain population totals in these

grids, there is not an easy way to assess the relative accuracy of the dasymetric mapping

approach aside from physically visiting the areas or manual inspection of the final product

against recent satellite imagery and with contextual knowledge about likely populated areas.

More highly-modeled, machine learning based prediction models of population can perform

accuracy assessments using a cross-validation process, whereby certain observed population

constraints are withheld from the modeling process and errors at those omitted locations rela-

tive to observed values are measured [30, 47]. However, past applications of traditional dasy-

metric mapping techniques, like those employed in this study, have often evaluated accuracy

of their techniques by producing population grids that are constrained by observed popula-

tions at a spatial unit that is coarser (e.g. block groups or tracts) than the finest unit available,

then evaluating how well the disaggregated population in the resultant grids matches observed

population values within the finest spatial unit of ground-truth data (e.g. blocks) [15, 17, 25].

We performed this form of accuracy assessment for our mapping technique by producing a

statewide grid using 2020 population estimates at the block-group level (~20x larger than

blocks) but using the same ancillary datasets and dasymetric mapping process described

above. Block-level errors were then calculated by comparing values from this grid within each

census block’s census population value. Generally, the highest percent errors at the block-level

in this analysis occurred in blocks with low population totals, both due to the lack of residential

parcel data within them and their small population values (i.e. small denominator in the per-

cent error calculations) (S3 Fig). However, these errors are not exactly analogous to those that

exist in the block-constrained grids comprising the final CA-POP products, which are likely

lower in magnitude due to the finer resolution of the input data.

We assessed the relative accuracy of our methods compared to simple uniform, areal popu-

lation weighting. The errors in each block-level estimate between the modeled (block group

constrained grid) and observed (census block level data) are reported in terms of root mean-

squared errors (RMSE) and the squared Pearson correlation coefficient (R2) across all
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populated blocks. Median block-wise percent errors were also calculated for both raw and

absolute percent error magnitudes, following a similar accuracy analysis approach employed

by Dmowska and Stepinski (2017) [20], in which they term the median absolute percent error

a measure of ‘relative error’. Given the skewed nature of the percent error distribution across

population blocks, the median was deemed a more informative metric as opposed to the mean

or standard variation [20].

The same procedure was carried out for a simple uniform, areal weighting technique,

which estimates block level population values assuming a homogenous population distribution

across the entire spatial area of each block group. Unfortunately, comparison of CA-POP grids

produced using this ‘second-best’ ground-truth source zone population data (block-groups) to

other products (e.g. WorldPop, LandScan) is not possible due to the fact that those data pro-

viders do not provide versions of their grids that utilize anything besides the best-available

source zone data as their ground-truth population constraints (blocks). However, SocScape’s

documentation reports error estimates for a version of their 2010 population grid constrained

by block groups instead of blocks, allowing for a roughly analogous error comparison between

CA-POP and SocScape [20].

Results

Statewide, 100-meter resolution raster grids were produced for each of the eight 2020 U.S.

Census demographic variables listed in Table 1 for the entire state of California, comprising

the CA-POP dataset. Examples of these grids for four demographic variables at different loca-

tions across the state are provided in Fig 5 and are publicly available online (see Data

Availability).

Assessing the accuracy of the block group-constrained CA-POP grid to the simple uniform

areal weighting technique demonstrates the improved accuracy of using these dasymetric

mapping techniques, in terms of lower absolute error magnitudes (RMSE) and higher agree-

ment of population distribution (R2) at the block level compared to uniform areal weighting

(Table 3). In terms of median percent errors, the CA-POP method yields much higher accu-

racy compared to the simple uniform method both in raw (-4.1% compared to -25.9%) and

absolute terms, or ‘relative error’, (30.1% compared to 46.4%). This median relative error of

30.1% is also lower than the 44% relative error value reported for SocScape’s 2010 national

population grid, calculated using the accuracy assessment exercise of comparing block group-

constrained grid performance to observed block values [20]. Although SocScape’s relative

error is a CONUS-wide value and CA-POP’s value of is solely for California, making an analo-

gous comparison impossible, CA-POP’s lower error value suggests that it, on average, likely

outperforms SocScape.

However, it is important to consider that these accuracy values only reflect the improved

accuracy of the block group-constrained grid compared to uniform areal weighting, and not

the block-constrained grid, which is how the final grids in this study were produced. By design,

the block level errors of the block-constrained grid are zero, and calculating an analogous set

of accuracy measures would require ground-truth estimates of population at the sub-block tar-

get zones (i.e. residential parcels and buildings), which are not available. Therefore, the accu-

racy improvements as compared to uniform areal weighting shown in Table 3 are simply to

demonstrate the value of utilizing the dasymetric mapping techniques in CA-POP generally,

and do not reflect exact accuracy values of the final, block-based grids, which by definition are

more accurate across space than block group-based grids.

We also assessed pixel-level differences between the 2020 SocScape and CA-POP total pop-

ulation grids across the state to better evaluate how apportionment of population at the sub-
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block scale differs between the two methods. Fig 6 displays SocScape pixel values subtracted

from CA-POP as a grid, and demonstrates that SocScape distributes low population counts

across the majority of open space within blocks, whereas CA-POP more accurately sets these

Fig 5. Final CA-POP grids. Examples are shown for four demographic population variables at three different locations in California. (Satellite base imagery

source: USGS (NAIP) from The National Map, Ocean boundary layer source: Natural Earth).

https://doi.org/10.1371/journal.pone.0270746.g005
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regions to zero. This is evident in the figure’s first two panels, where the light red zones span-

ning large areas represent regions in SocScape with small population counts across primarily

open space, for which CA-POP does not apportion population. In more densely-populated

urban zones where blocks are smaller and the two grids are therefore constrained to equal one

another at a smaller spatial scale, much of the pixel-level differences emulate random noise,

although some patterns appear to suggest that SocScape overly-apportions populations along

major streets and roadways where CA-POP does not. The final panel in Fig 6 demonstrates

this in South Los Angeles, where red areas (SocScape greater than CA-POP) tend to reflect the

pattern of major streets in this neighborhood, a difference that is likely due to CA-POP’s use of

ancillary datasets that exclude street surfaces from the population target zones.

In comparing CA-POP to other gridded products, given the high resolution of the popula-

tion source zones and ancillary datasets used in CA-POP, it is not apparent that WP and LS

approaches produce more accurate grids than CA-POP in a California context. In fact, the

global Maxar/Ecopia building footprint dataset used to constrain the population apportion-

ment extents in WPC looks to poorly capture residential structures in many areas of California,

especially in medium to low density settings, compared to the Microsoft building footprint

data used in CA-POP (Fig 7). Conversely, the WPUC, which utilizes nighttime lights and

Table 3. Summary error statistics of block group-constrained CA-POP grid.

Block Population Estimation Method RMSE (people) R2 Median Percent

Error

Median Absolute Percent Error (Relative

Error)

Block group-constrained, dasymetric population grid (CA-POP

method)

76.9 0.76 -4.1% 30.1%

Uniform, areal weighting of block group population 114.6 0.54 -25.9% 46.4%

Differences between the block group constrained dasymetric population grids and simple, uniform areal population estimation techniques for populated blocks only

(unpopulated blocks excluded).

https://doi.org/10.1371/journal.pone.0270746.t003

Fig 6. Pixel-wise differences between the CA-POP and 2020 SocScape total population grids. SocScape’s 2020 total population grid was converted to

population density, aggregated from 30m to 100m resolution using an average resampling approach and then re-converted to units of people per cell prior to

differencing with CA-POP’s total population grid. Blue areas represent regions where CA-POP pixel values are greater than SocScape and red areas are those

where SocScape is greater.

https://doi.org/10.1371/journal.pone.0270746.g006

PLOS ONE High-resolution population grids from the 2020 census in California

PLOS ONE | https://doi.org/10.1371/journal.pone.0270746 July 14, 2022 15 / 21

https://doi.org/10.1371/journal.pone.0270746.t003
https://doi.org/10.1371/journal.pone.0270746.g006
https://doi.org/10.1371/journal.pone.0270746


topography covariates in its predictive modeling algorithm seems to routinely assign popula-

tion values to pixels based on the pattern of light scatter from street lights or topographic char-

acteristics of the landscape, resulting in the allocation of low population densities across vast

swaths of uninhabited space (Fig 7).

Discussion

Overall, the CA-POP grids look to perform well when compared against other available

gridded population products (e.g. GPW, WorldPop, LandScan, SocScape) in terms of its high

resolution and ability to capture known residential areas in its population apportionment.

CA-POP also contains additional demographic variables compared to many alternative

Fig 7. Comparison of CA-POP with the unconstrained and constrained WorldPop grids. Example shown for three locations in California. The first two

rows represent populated areas and the third row represents largely unpopulated, open space. Over-apportionment of population across open space is seen in

the unconstrained WorldPop grid and under-apportionment to buildings footprints detected by Microsoft (yellow area) in residential parcels is evident in the

constrained WorldPop grid, as compared to CA-POP. (Satellite base imagery source: USGS (NAIP) from The National Map).

https://doi.org/10.1371/journal.pone.0270746.g007
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products, which can be of use in many research applications concerned with specific demo-

graphic subgroups, such as environmental health, equity and justice-oriented research.

Gridded raster products allow for easier spatial analysis of values within a given zone of inter-

est compared to vector polygon layers due to the relative ease of summing or averaging pixels

within an area as opposed to intersecting multiple vector polygon layers and conducting some

form of subsequent areal weighting within the zone of interest.

Limitations and potential improvements

Though CA-POP represents a fairly accurate and easily-replicable method of gridding differ-

ent census variables, there are a number of known limitations and improvements that could

still be made. For one, the accuracy of the CA-POP grids relates to the certainty of the 2020 U.

S. census values, which was unique for a number of reasons, including the COVID-19 pan-

demic, a potential citizenship question, natural disasters, and various operational changes to

the census enumeration process that may have led to an undercount of particular groups, espe-

cially marginalized populations [48]. Recently, The Urban Institute approximated this possible

bias by state and urban area through a process of statistically simulating the likely “true” census

values, with their results suggesting that the 2020 census in California is biased low by roughly

345,097 people (-0.87%) [48]. Nationally, the study indicates that these undercounts are pro-

portionally higher in certain population subgroups, such as Black and Hispanic communities

and for young children (-2.45%, -2.17% -4.86%, respectively) [48]. Therefore, the CA-POP

grids based on these census values should be interpreted with the knowledge that statewide

totals are likely lower than true populations, especially in certain disadvantaged communities.

Other future improvements to CA-POP could include updating ancillary datasets as they

are made available, such as residential tax parcel boundaries of a more recent vintage than

2017–2018, or more accurate building footprint data. In theory, perfectly accurate building

footprint data could be used for all final populated target zone boundaries, with tax parcels or

other land-use ancillary data layers solely used to identify residential zones within which build-

ings should be selected, therein avoiding minor inaccuracies associated with regions of open

space within small residential parcels currently present in our methodology. Additional types

of ancillary data could also be considered to further inform the apportionment of population

to eventual target zones within census blocks, such as home address data [17, 23] or mobile

phone usage data [26]. The ancillary building footprint data that is utilized can also be poten-

tially further analyzed to infer additional information about likely building types based on pat-

terns and characteristics of building geometry and proximity to one another, analyses for

which Jochem and Tatem (2021) [49] constructed the R package foot.
Additionally, some form of multi-class weighting technique could be employed to appor-

tion population between different residential parcel types, as is done in similar studies [14, 18,

22]. This would require estimating the different relative population density in each of the 30

residential parcel types and then distributing population within a single source zone according

to those weights, rather than distributing population evenly across the target zones within each

block. Also, additional demographic census variables to the eight initial CA-POP grids pro-

vided here are planned to be produced as they are released from the U.S. Census.

Finally, the methods we utilize here are inherently limited in geographic scope given that

only California is represented. The feasibility of constructing a U.S.-wide product using these

dasymetric methods, however, is limited by the absence of national, high-quality, publicly-

available tax parcel data. Tax parcel data are instead disparately gathered, maintained and pro-

vided by different state and local agencies, with a freely-available nationwide product with har-

monized land use classifications not currently available for public use [20, 50]. A number of
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proprietary options are maintained by various data retailers, though licensing fees often make

access cost-prohibitive. Tax parcel boundaries are valuable ancillary datasets in many socie-

tally-beneficial demographic research contexts and we believe a publicly-funded effort to gen-

erate a well-maintained and open-access, national tax parcel dataset should be initiated to help

facilitate this work.

Conclusion

In this study, we present a set of high-resolution gridded population products using values

from the 2020 U.S. Census for the entire state of California, known as ‘CA-POP’. These grids

were produced via dasymetric techniques, using census blocks as the population source zones,

with population estimates from the 2020 census redistricting Summary File (P.L. 94–171), and

leveraging two high-resolution ancillary datasets (residential parcel boundaries and building

footprints), to reapportion the estimated population distributions at the sub-block scale.

Assessing the accuracy the CA-POP dasymetric mapping methodology for a population

grid constrained by block group census observations instead of blocks yielded a block-wise

median absolute relative error of approximately 30% for block group-to-block disaggregation,

which is lower than national error rates reported in the CONUS-wide SocScape grids, the

product that reports the most analogous form of accuracy assessment for block group-to-block

population disaggregation grids derived from U.S. census values. Additionally, given that the

final CA-POP grids are not constrained by block groups, but by higher-resolution census

block observations, they are likely even more accurate than their block group-constrained

counterparts over a given region, though a proper error assessment of these final grids is not

possible due to the absence of observational data at the sub-block scale.

The statewide CA-POP population grids are publicly-available at a 100-meter resolution for

eight population variables of interest provided by the 2020 census: total population, Hispanic/

Latinx population of any race, and non-Hispanic populations of: American Indian/Alaska

Native, Asian, Black/African-American, Native Hawaiian and other Pacific Islander, White,

other race or multiracial (two or more races), and residents under 18 years old (i.e. minors).

Supporting information

S1 Table. Land use codes from tax parcel dataset identified as residential.

(DOCX)

S1 Fig. False negatives in the Microsoft building footprint data. Examples shown in urban

and rural contexts. Locations were chosen based on the presence of false negatives and do not

generally reflect the typical proportion of false negative instances around the state.

(DOCX)

S2 Fig. Examples of 1-acre residential parcels. 1-acre (~4050 km2) was used as the upper area

threshold for low-density residential parcels.

(DOCX)

S3 Fig. Percent errors of block group-constrained CA-POP population grid relative to cen-

sus block population observations. Values represent the percent difference between block-

level estimates from the block group-constrained CA-POP total population grid and census

block population values. Note that these errors do not reflect the block-level errors of the final

CA-POP grids themselves, as those were constrained by the block-level census observations,

which by definition makes block-level errors zero. Errors in the final grids instead occur at the

sub-block level of population apportionment, for which there are no ground-truth population

PLOS ONE High-resolution population grids from the 2020 census in California

PLOS ONE | https://doi.org/10.1371/journal.pone.0270746 July 14, 2022 18 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0270746.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0270746.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0270746.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0270746.s004
https://doi.org/10.1371/journal.pone.0270746


observations available for assessing CA-POP’s ability to apportion population within blocks.
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