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ABSTRACT

cis-regulatory modules(CRMs) formed by clusters of
transcription factor (TF) binding sites (TFBSs) are as
important as coding sequences in specifying phe-
notypes of humans. It is essential to categorize all
CRMs and constituent TFBSs in the genome. In con-
trast to most existing methods that predict CRMs in
specific cell types using epigenetic marks, we predict
a largely cell type agonistic but more comprehensive
map of CRMs and constituent TFBSs in the gnome
by integrating all available TF ChIP-seq datasets. Our
method is able to partition 77.47% of genome re-
gions covered by available 6092 datasets into a CRM
candidate (CRMC) set (56.84%) and a non-CRMC
set (43.16%). Intriguingly, the predicted CRMCs are
under strong evolutionary constraints, while the non-
CRMCs are largely selectively neutral, strongly sug-
gesting that the CRMCs are likely cis-regulatory,
while the non-CRMCs are not. Our predicted CRMs
are under stronger evolutionary constraints than
three state-of-the-art predictions (GeneHancer, En-
hancerAtlas and ENCODE phase 3) and substantially
outperform them for recalling VISTA enhancers and
non-coding ClinVar variants. We estimated that the
human genome might encode about 1.47M CRMs
and 68M TFBSs, comprising about 55% and 22% of
the genome, respectively; for both of which, we pre-
dicted 80%. Therefore, the cis-regulatory genome ap-
pears to be more prevalent than originally thought.

INTRODUCTION

cis-regulatory sequences, also known as cis-regulatory mod-
ules (CRMs) (i.e. promoters, enhancers, silencers and insu-
lators), are made of clusters of short DNA sequences that
are recognized and bound by specific transcription factors
(TFs) (1). CRMs display different functional states in dif-
ferent cell types in multicellular eukaryotes during develop-
ment and physiological homeostasis, and are responsible for

specific transcriptomes of cell types (2). A growing body of
evidence indicates that CRMs are at least as important as
coding sequences (CDSs) to account for inter-species diver-
gence (3,4) and intra-species diversity (5), in complex traits.
Recent genome-wide association studies (GWAS) found
that most complex trait-associated single nucleotide vari-
ants (SNVs) do not reside in CDSs, but rather lie in non-
coding sequences (NCSs) (6,7), and often overlap or are in
linkage disequilibrium (LD) with TF binding sites (TFBSs)
in CRMs (8). It has been shown that GWAS SNVs system-
atically disrupt binding sites of TFs related to the traits (8),
and that variation in TFBSs affects DNA binding, chro-
matin modification, transcription (9–11), and susceptibil-
ity to complex diseases (12,13) including cancer (14–17).
In principle, variation in a CRM may result in changes in
the affinity and interactions between TFs and cognate bind-
ing sites, thereby altering histone modifications and target
gene expressions in relevant cells (18,19). Such alterations
in molecular phenotypes can change cellular and organ-
related phenotypes (20,21). However, it has been difficult to
link non-coding variants to complex traits (18,22), largely
because of our lack of a good understanding of all CRMs,
their constituent TFBSs and target genes in genomes (23).

Fortunately, the recent development of ChIP-seq tech-
niques for locating histone marks (24) and TF bindings
in genomes in specific cell/tissue types (25) has led to the
generation of enormous amount of data by large consor-
tia such as ENCODE (26), Roadmap Epigenomics (27) and
Genotype-Tissue Expression (GTEx) (28), as well as indi-
vidual labs worldwide (29). These increasing amounts of
ChIP-seq data for relevant histone marks and various TFs
in a wide spectrum of cell/tissue types provide an unprece-
dented opportunity to predict a map of CRMs and con-
stituent TFBSs in the human genome. Many computational
methods have been developed to explore these data individ-
ually or jointly (30). For instance, as the large number of
binding-peaks in a typical TF ChIP-seq dataset dwarfs ear-
lier motif-finding tools (e.g. MEME (31) and BioProspec-
tor (32)) to find TFBSs of the ChIP-ed TF, new tools
(e.g. DREME (33), MEME-ChIP (34), XXmotif (35) and
Homer (36)) have been developed. However, some of these
tools (e.g. MEME-ChIP) were designed to find primary
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motifs of the ChIP-ed TF in short sequences (∼200 bp)
around the binding-peak summits in a small number of se-
lected binding peaks in a dataset due to their slow speed.
Some faster tools (e.g. Homer, DREME and XXmotif) are
based on the discriminative motif-finding schema (37) to
find overrepresented k-mers in a ChIP-seq dataset, but they
often fail to identify TFBSs with subtle degeneracy. As TF-
BSs form clusters in a CRM for combinatory regulation
in higher eukaryotes (1,38,39), tools such as SpaMo (40),
CPModule (41) and CCAT (42) have been developed to
identify multiple closely located motifs as CRMs in a sin-
gle ChIP-seq dataset. However, these tools cannot predict
CRMs containing novel TFBSs, because they all depend on
a library of known motifs (e.g. TRANSFAC (43) or JAS-
PAR (44)) to scan for collaborative TFBSs in binding peaks.
Due probably to the difficulty to find TFBS motifs in a
mammalian TF ChIP-seq dataset that may contain tens of
thousands of binding peaks, few efforts have been made to
explore entire sets of an increasing number of TF ChIP-seq
datasets to simultaneously predict CRMs and constituent
TFBSs (45–48).

On the other hand, as a single histone mark is not
a reliable CRM predictor, a great deal of efforts have
been made to predict CRMs based on multiple histone
marks and chromatin accessibility (CA) data from the same
cell/tissue types using various machine-learning methods,
including hidden Markov models (49), dynamic Bayesian
networks (50), time-delay neural networks (51), random
forest (52) and support vector machines (SVMs) (53).
Although CRMs predicted by these methods are often
cell/tissue type-specific, their applications are limited to
cell/tissue types for which the required datasets are avail-
able (26,49,50,54). Many enhancer databases have also been
created either by combining results of multiple such meth-
ods (55–57), or by identifying overlapping regions of CA
and histone mark tracks in the same cell/tissue types (58–
62). For example, the ENCODE phase 3 consortium (26) re-
cently identified 926 535 candidate cis-regulatory elements
(cCREs) based on overlaps between millions of DNase I hy-
persensitivity sites (DHSs) (63) and transposase accessible
sites (TASs) (64), active promoter histone mark H3K4me3
(65) peaks, active enhancer mark H3K27ac (66) peaks and
insulator mark CTCT (67) peaks, in a large number of
cell/tissue types. The resolution of these predictions also
low (49,50,54) and their predicted CRMs often lacks TFBSs
information (26,49,50,54), particularly for novel motifs, al-
though some predictions provide TFBSs locations by find-
ing matches to known motifs (56,57,61). Moreover, results
of these methods are often inconsistent (68–71), e.g. even
the best-performing tools (DEEP and CSI-ANN) have only
49.8% and 45.2%, respectively, of their predicted CRMs
overlap with the DHSs in Hela cells (53); and only 26% of
predicted ENCODE enhancers in K562 cells can be exper-
imentally verified (68). The low accuracy of these methods
might be due to the fact that CA and histone marks alone
are not reliable predictors of active CRMs (53,68,69,71).

It has been shown that TF binding data are more reliable
for predicting CRMs than CA and histone mark data, par-
ticularly, when multiple closely located binding sites for key
TFs were used (53,68,69,71). Moreover, although primary

binding sites of a ChIP-ed TF tend to be enriched around
the summits of binding peaks, TFBSs of collaborator of
the ChIP-ed TFs often appear at the two ends of binding
peaks that are parts of a CRM (72,73). With this recogni-
tion, instead of predicting cell/tissue type specific CRMs
using CA and histone marks data, we proposed to first pre-
dict a largely cell-type agnostic or static map of CRMs and
constituent TFBSs in the genome by integrating all available
TF ChIP-seq datasets for different TFs in various cell/tissue
types (47,48), just as has been done to find all genes en-
coded in the genome using gene expression data from all
cell/tissue types (74). We proposed to appropriately extend
short binding peaks to the typical length of enhancers, so
that more TFBSs for collaborators of the ChIP-ed TF could
be included (72,73) in extended parts, and full-length CRMs
could be identified (47,75). Although we still need a large
number of datasets for diverse TFs from diverse cell type to
predict most, if not all, of CRMs and TFBSs in the genome,
we do not need the volume of data for all TFs from all
cell types due to the extensive reutilizations of CRMs in
different cell types. In fact, the coverage of the genome by
the growing number of datasets is already in the saturation
phase, particularly, if binding peaks are appropriately ex-
tended (47). Once a map of CRMs and constituent TFBSs
in the gnome is available, functional states of CRMs and
constituent TFBSs in cell/tissue types could be predicted
and studied in a more cost-effective way. Although our
earlier implementation of this strategy, dePCRM, resulted
in promising results using even insufficient datasets avail-
able then (47,75), we were limited by three technical hur-
dles. First, although existing motif-finders such as DREME
used in dePCRM worked well for relatively small ChIP-seq
datasets from organisms with smaller genomes such as the
fly (48), they were unable to handle very large datasets from
mammalian cells/tissues, so we had to split a large dataset
into smaller ones for motif finding in the entire dataset (47),
which might compromise the accuracy of motif finding and
complicate subsequent data integration. Second, although
the distances and interactions between TFBSs in a CRM
are critical, both were not considered in our earlier scor-
ing functions (47,48), potentially limiting the accuracy of
predicted CRMs. Third, the earlier ‘branch-and-bound’ ap-
proach to integrate motifs found in different datasets was
not efficient enough to handle a much larger number of
motifs found in an ever-increasing number of large ChIP-
seq datasets from human cells/tissues (47,48). To overcome
these hurdles, we developed dePCRM2 based on an ultra-
fast, accurate motif-finder ProSampler (73), a novel effec-
tive combinatory motif pattern discovery method, and scor-
ing functions that model essentials of both the enhanceo-
some and billboard models of CRMs (76–78). Using avail-
able 6,092 ChIP-seq datasets, dePCRM2 was able to parti-
tion the genome regions covered by extended binding peaks
into a CRM candidate (CRMC) set and a non-CRMC set,
and to predict 201 unique TF binding motif families in the
CRMCs. Both evolutionary and independent experimen-
tal data indicate that at least the vast majority of the pre-
dicted 1,404 973 CRMCs might be cis-regulatory, while at
least the vast majority of the predicted non-CRMCs might
not be.
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MATERIALS AND METHODS

Datasets

We downloaded 6092 TF ChIP-seq datasets from the
Cistrome database (29) (Supplementary Table S1). The
binding peaks in each dataset were called using a pipeline
for uniform processing (29). We filtered out binding peaks
with a read depth score <20. For each binding peak in each
dataset, we extracted a 1000 bp genome sequence center-
ing on the middle of the summit of the binding peak, as
this length yielded the best results among all the lengths
we tested (200, 500, 1000, 1500 and 3000 bp) for find-
ing both the primary motif of the ChIP-ed TF and its
collaborative motifs (73). We downloaded 976 experimen-
tally verified enhancers from the VISTA database (79),
790,888 ClinVar SNVs from the ClinVar database (80),
32 689 enhancers (81) and 184 424 promoters (82) from
the FANTOM5 project website, 255 937 GWAS SNVs
from GWAS Catalog (83), and 122 468 173 DHSs in 1353
datasets (Supplementary Table S2), 29 520 736 transposase-
accessible sites (TASs) in 1059 datasets (Supplementary
Table S3), 99 974 447 H3K27ac peaks in 2539 datasets
(Supplementary Table S4), 77 500 232 H3K4me1 peaks in
1210 datasets (Supplementary Table S5), and 70 591 888
H3K4me3 peaks in 2317 datasets (Supplementary Table S6)
from the Cistrome database (29). For ClinVar and GWAS
SNVs, we excluded those in CDs, leaving 208 065 (26.31%)
and 234 016 (91.44%) SNVs, respectively, in NCSs for the
analysis. We downloaded human protein–protein interac-
tion datasets from the BioGRID (84) and reactome (85)
databases.

Measurement of the overlap between two different datasets

To evaluate the extent to which the binding peaks in two
datasets overlap with each other, we calculate an overlap
score S0(di , d j ) between each pair of datasets di and d j , de-
fined as,

S0
(
di , d j

) = 1
2

×
(

o
(
di , d j

)
|di | + o

(
di , d j

)∣∣d j
∣∣

)
, (1)

where o(di , d j ) is the number of binding peaks in di and d j
that overlap each other by at least one bp.

Identification of collaborative TF modules

We construct a graph using the TFs as the nodes and con-
necting two nodes with an edge if the two corresponding
TFs physically interact with each other according to the
BioGRID (84) and reactome (85) databases. Then we cut
the graph into smaller community using the ‘node percep-
tion’ program in CDlib, which identifies overlapping net-
work communities in a graph using local group information
(86). We consider each resulting community with at least
three TFs as physical interacting module.

Parameters for accuracy evaluation

We use the following definitions to evalu-
ate the accuracy of predictions. Sensitivity =

recall rate = TPR (true positive rate) =
TP

TP+FN , FNR (false negative rate) = FN
TP+FN ,

Specificity = TN
FP+TN , FPR (false positive rate) =

FP
FP+TN , FDR (false discorery rate ) = FP

TP+FP , precision =
TP

TP+FP , and FOR (false ommision rate) = FN
FN+TN , where

TP is true positives; FN, false negatives; FP, false positives;
and TN, true negatives.

Statistical tests

We used Mann–Whitney U test to evaluate the signifi-
cance of difference between the means of two samples,
χ2-test to evaluate the significance of difference between
ratios/proportions in samples, Kolmogorov–Smirnov (K–
S) test to evaluate the significance of difference between the
distributions of two random variables, and hypergeometric
test to evaluate the overlap between two sets of elements
such as TFs. To evaluate the statistical significance of clus-
ters of overlapping datasets in Figure N1E (Supplementary
Note), we compute a p value to reject the null hypothesis
that a cluster for k ChIP-ed TFs is generated by chance, us-
ing a multinomial distribution,

p(x1, xi , . . . , xk|p1, pi, . . . , pk, N)

= 1 −
x1−1∑
j1= 0

. . .

xi −1∑
ji = 0

. . .

xk−1∑
jk= 0

N!
j1! . . . ji ! . . . jk!

p j1
1 . . . p ji

i . . . p jk
k , (2)

where xi is the number of datasets for the i th ChIP-ed TF in
the cluster, and pi is the probability/frequency of datasets
of the i th ChIP-ed TF in the entire set of N datasets. We
used the Benjamini–Hochberg (BH) procedure to correct p
values for multi-hypothesis tests.

The dePCRM2 pipeline

Step 1: Find motifs in each dataset using ProSampler (73)
(Figure 1A and B).

Step 2. Compute pairwise motif co-occurring scores and
find co-occurring motif pairs (CPs): As true TFBSs are
more likely to co-occur in a binding peak than are spurious
ones, to filter out false positive sites, we find overrepresented
CPs in each dataset (Figure 1C). Specifically, for each pair
of motifs Md (i ) and Md ( j ) in each data set d, we compute
their co-occurring scores Sc defined as,

Sc
(
Mi (i ) , Mj ( j )

) = o (Md (i ) , Md ( j ))
max {|Md (i )| , |Md ( j )| } , (3)

where |Md (i )| and |Md ( j )| are the number of binding peaks
containing TFBSs of motifs Md (i ) and Md ( j ), respectively;
and o(Md (i ), Md ( j )) the number of binding peaks contain-
ing TFBSs of both the motifs in d. We identify CPs with
an Sc ≥ β. We choose β such that the component with the
highest scores in the trimodal distribution Sc is kept (Fig-
ures 1C and 2B) (by default β = 0.7).

Step 3. Construct a motif similarity graph and find
unique motifs (UMs): We combine highly similar motifs in
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Figure 1. Schematic of the dePCRM2 pipeline. (A) Extend each binding peak in each dataset (d1, d2 and d3) to its two ends to reach a preset length, i.e.
1000 bp. Each line represents an extended binding peak. (B) Find motifs in each dataset using ProSampler. The labels on a line represents an identified
TFBS in the peak, and labels with the same shape and color represent an identified motifs in the dataset (C). Find CPs in each dataset. A pair of motifs
in a rectangle is an identified CPs in the dataset. For clarity, only the indicated CPs are shown, while those formed between motifs in pairs P1 and P2 in
dataset d1, and so on, are omitted. (D) Construct the motif similarity graph, cluster similar motifs and find UMs in the resulting motif clusters. Each node
in the graph is a motif, weights on the edges are omitted for clarity. Identified motif clusters are connected by edges of the same color and line type. (E)
Construct UM interaction networks. Each node in the networks is a UM, weights on the edges are omitted for clarity. (F) Project binding sites in the UMs
back to the genome and link adjacent TFBSs along the genome, thereby identifying CRMCs and non-CRMCs. (G) Evaluate each CRMC by computing
its SCRM score and the associated P-value.

the CPs from different datasets to form a UM that is pre-
sumably recognized by a TF or highly similar TFs of the
same family/superfamily (87). Specifically, for each pair of
motifs Ma(i ) and Mb( j ) from different datasets a and b, re-
spectively, we compute their similarity score Ss using the
SPIC metric (88). We then build a motif similarity graph
using motifs in the CPs as the nodes and connecting two
motifs with their Ss being the weight on the edge, if and
only if (iff) Ss> β (Figure 1D). By default, we set β = 0.8,
at which the similarity between the motifs is highly signifi-
cant (TOMTOM q-value < 0.05) (47,75,88). We apply the
Markov cluster (MCL) algorithm (89) to the graph to iden-
tify dense subgraphs as clusters. For each cluster, we merge
overlapping sequences, extend each sequence to a length of
30 bp by padding the same number of nucleotides from the
genome to the two ends, and then realign the sequences to
form a UM using ProSampler (73) (Figure 1D).

Step 4. Construct the interaction networks of the
UMs/TFs: TFs tend to repetitively collaborate with each
other to regulate genes in different contexts by binding to
cognate TFBSs in CRMs. The relative distances between
TFBSs in a CRM often do not matter (billboard model),
but sometimes they are constrained by the interactions
between cognate TFs (enhanceosome model) (76–78). To

model essential features of both the scenarios, we compute
an interaction score between each pair of UMs, Ui and Uj ,
defined as,

SINTER
(
Ui , Uj

) = 1∣∣D
(
Ui , Uj

)∣∣ ∑
d∈D(Ui ,Uj )(

1
|d (Ui )| + 1∣∣d (

Uj
)∣∣

)

∑
s∈S(d(Ui ),(d(Uj ))

150
r (s)

, (4)

where D(Ui , Uj ) is the datasets in which TFBSs of both
Ui and Uj occur, d(Uk) the subset of dataset d, contain-
ing at least one TFBS of Uk, S(d(Ui ), (d(Uj )) the sub-
set of d containing TFBSs of both Ui and Uj , and r (s)
the shortest distance between any TFBS of Ui and any
TFBS of Uj in a sequence s ∈ S(d(Ui ), (d(Uj )). We con-
struct UM/TF interaction networks using the UMs as the
nodes and connecting two nodes with their SINTER being
the weight on the edge (Figure 1E). Therefore, the SINTER
score allows flexible adjacency and orientation of TFBSs
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Figure 2. Prediction of UMs. (A) Relationship between the number of predicted motifs in a dataset and the size of the dataset (number of binding peaks
in the dataset). The datasets are sorted in ascending order of their sizes. (B) Distribution of cooccurrence scores (Sc) of motif pairs found in a dataset. The
inset is a blowup view of the region defined by the vertical axis. The dashed vertical line indicates the cutoff value (0.7) of Sc for predicting cooccurring
pairs (CPs). (C) Number of putative binding sites in each of the UMs sorted in ascending order. (D) Distribution of the lengths of the UMs and known
motifs in the HOCOMOCO and JASPAR databases. (E) Logo and similarity graph of the 250 member motifs of UM44. In the graph, each node in blue
represents a member motif, and two member motifs are connected by an edge in green if their similarity is greater than 0.8 (SPIC score). Four examples
of member motifs are shown in the right panel. (F) UM44 matches known motifs of nine TFs of the ‘ETS’, ‘NFAT-related factor’, and ‘more than three
adjacent zinc finger factors’ families. (G) Heatmap of the interaction networks of the 201 UMs, names of the UMs are omitted for clarity. (H) A blowup
view of the indicated cluster in G, formed by 10 UMs, of which UM126, UM146, UM79, UM223, UM170, UM103 and UM159 match known motifs
of MESP1|ZEB1, TAL1::TCF3, ZNF740, MEIS1|TGIF1|MEIS2|MEIS3, TCF4|ZEB1|CTCFL|ZIC1|ZIC4|SNAI1, GLI2|GLI3 and KLF8, respectively.
Some of these TFs are known collaborators in transcriptional regulation.

in a CRM (billboard model) and at the same time, it re-
wards motifs with binding sites co-occurring frequently in
a shorter distance in a CRM (enhanceosome model), par-
ticularly within a nucleosome with a length of about 150 bp
(76,77,90).

Step 5. Partition the covered regions into a CRM candi-
date (CRMC) set and a non-CRMC set: We project TFBSs
of each UM back to the genome, and link two adjacent TF-
BSs if their distance d ≤ ε. The resulting linked sequence
segments are CRMCs, while sequence segments in the cov-
ered regions that cannot be linked are non-CRMCs (Figure
1F). By default, ε = 300 bp (roughly the length of two nu-
cleosomes).

Step 6. Evaluate each CRMC: We compute a CRM score
for a CRMC containing n TFBSs (b1, b2, . . . , bn), defined as,

SCRM (b1, b2 · · · , bn) = 2
n − 1

×
n∑

i−1

∑
j>i

SINTER

[
U (bi ) , U

(
b j

)] × [
S (bi ) + S

(
b j

)]
, (5)

where U(bk) is the UM of TFBS bk, SINTER[U(bi ), U(b j )]
the weight on the edge between U(bi ) and U(b j ), in the in-
teraction networks, and S(bk) the score of bk based on the
position weight matrix (PWM) of U(bk). Only TFBSs with
a positive score are considered. Thus, SCRM considers the
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number of TFBSs in a CRMC, as well as their quality and
strength of all pairwise interactions.

Step 7. Predict CRMs: We create Null interaction net-
works by randomly rewiring the interaction networks con-
structed in Step 4. For each CRMC, we generate a Null
CRMC that has the same length and nucleotide composi-
tions as the CRMC using a third order Markov chain model
(73). We compute a SCRM score for each Null CRMC using
the Null interaction networks, and the binding site positions
and PWMs of the UMs in the corresponding CRMC. Based
on the distribution of the SCRM scores of the Null CRMCs,
we compute an empirical P-value for each CRMC, and pre-
dict those with a P-value smaller than a preset cutoff as
CRMs in the genome (Figure 1G).

Step 8. Predict functional states of CRMs in a given cell
type: For each predicted CRM, we predict it in a cell type
to be: (i) active (TF binding), if it overlaps the summit of a
called binding peak containing at least a TFBS of a ChIP-
ed TF in the cell type; (ii) non-active (no TF binding), if it
contains at least a TFBS of a ChIP-ed TFs in the cell type,
but the TFBS does not overlap the summit of any binding
peaks of the ChIP-ed TFs and (iii) undetermined (UD), if it
does not overlap the summit of any binding peak available
in the cell type, because it might be bound by some TFs that
have not been ChIP-ed in the cell/tissue type.

Generation of control sequences for validation of predicted
CRMs

To create a set of control sequences for validating the pre-
dicted CRMs using experimentally determined elements
used in Figure 5A, for each predicted CRMC, we ran-
domly selected a sequence segment with the same length
as the CRMC from the genome regions covered by the ex-
tended binding peaks. To calculate the SCRM score of a con-
trol sequence, we assigned it the TFBS positions and their
UMs according to those in the counterpart CRMC. Thus,
the control set contains the same number and length of
sequences with similar nucleotide compositions as in the
CRMCs, but with arbitrarily assigned TFBSs and UMs.

RESULTS

The dePCRM2 pipeline

TFs in higher eukaryotes tend to collaboratively bind to
their TFBSs in CRMs (1). Different CRMs of the same gene
are structurally similar and closely located (91). For exam-
ple, in the locus control region (LCR) of the hemoglobin
genes in the mouse genome, multiple enhancers with simi-
lar combinations of TFBSs regulate the expression of dif-
ferent hemoglobin genes in different tissues and develop-
mental stages (92). Moreover, functionally related genes are
often regulated by the same sets of TFs in different cell
types during development and in maintaining physiologi-
cal homeostasis (1). Due to the clustering nature of TF-
BSs of collaborative TFs in a CRM, if we extend the called
short binding peaks in a TF ChIP-seq dataset from the two
ends and reach the typical length of a CRM (500–2000 bp)
(79), the extended peaks would have a great chance to in-
clude TFBSs of collaborative TFs (47,48,73). For instance,
we have shown that extension of binding peaks to 500–1000

bp could substantially increase the chance of finding TF-
BSs of collaborative TFs of the ChIP-ed TF, while the in-
troduced noise had a little effect on identifying the primary
motif of ChIP-ed TF (73). Moreover, if some TFs collab-
oratively bind a set of CRMs in a cell/tissue type, or even
in different cell/tissue types due to the reutilization of the
CRMs, then at least some of the extended peaks of datasets
for these TFs from these cell types might contain their cog-
nate TFBSs, and even have some overlaps. Therefore, if we
have a sufficiently large number of ChIP-seq datasets for di-
verse TFs and from diverse cell types, we are likely to in-
clude datasets for some collaborative TFs, and their TF-
BSs may co-occur in some extended peaks that are at least
parts of CRMs. Based on these observations, we designed
dePCRM (47,48) and dePCRM2 to predict CRMs and con-
stituent TFBSs by identifying overrepresented co-occurring
patterns of motifs found by a motif-finder in a large number
of TF ChIP-seq datasets. dePCRM2 overcomes the afore-
mentioned shortcomings of dePCRM as follows. First, us-
ing an ultrafast and accurate motif-finder ProSampler (73),
we can find significant motifs in available ChIP-seq datasets
of any size (Figure 1A and B) without the need to split
large datasets into small ones (47). Second, after identify-
ing highly co-occurring motifs pairs (CPs) in the extended
binding peaks in each dataset (Figure 1C), we cluster highly
similar motifs in the CPs and find a unique motif (UM) in
each resulting cluster (Figure 1D). Third, to improve predic-
tion accuracy, we model distances and interactions among
cognate TFs of the binding sites in a CRM by constructing
interaction networks of the TFs/UMs based on the cooc-
currence of their binding sites and the distance between
them (Figure 1E). Fourth, we identify as CRMCs closely lo-
cated clusters of binding sites of the UMs along the genome
(Figure 1F), thereby partitioning genome regions covered
by the extended binding peaks (covered regions, hereafter)
into a CRMCs set and a non-CRMCs set. Fifth, we eval-
uate each CRMC using a novel score that considers not
only the number of TFBSs in a CRM, but also the dis-
tances between the TFBSs, their quality scores and all pair-
wise cooccurring frequencies between their motifs (Figure
1G). Lastly, we compute a P-value for each SCRM score,
so that CRMs and constituent TFBSs can be predicted at
different significant levels using different SCRM score or P-
value cutoffs. Clearly, as the number of UMs is a small con-
stant number constrained by the number of TF families en-
coded in the genome, the downstream computation based
on the set of UMs runs in a constant time, dePCRM2 is
highly scalable. The source code of dePCRM2 is available
at http://github.com/zhengchangsulab/pcrm2

Unique motifs recall most known TF motif families and have
distinct patterns of interactions

ProSampler identified at least one motif in 5991 (98.70%)
of the 6092 ChIP-seq datasets (Supplementary Note) but
failed to find any motifs in the remaining 101 (1.66%)
datasets that all contain <310 binding peaks (Supplemen-
tary Table S1), indicating that they are likely of low qual-
ity. As shown in Figure 2A, the number of motifs found in
a dataset generally increases with the increase in the num-
ber of binding peaks in the dataset, but enters a saturation

http://github.com/zhengchangsulab/pcrm2
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phase and stabilizes around 250 motifs when the number
of binding peaks is beyond 40 000. In total, ProSampler
identified 856 793 motifs in the 5991 datasets. dePCRM2
found co-occurring motif pairs (CPs) in each dataset (Fig-
ure 1C) by computing a cooccurring score Sc for each pair
of motifs in the dataset (formula 3). As shown in Figure
2B, Sc scores show a trimodal distribution. We found that
the first and second low-scoring components were largely
due to low-scoring spurious motifs with low information
content, or due probably to by-chance cooccurrence of mo-
tifs as indicated by their low Sc scores. The high scoring
third component is likely due to cooccurrence of collabo-
rative motifs, although there is no clear-cut valley between
it and the second component. To find the optimal Sc cutoff
between the second and third components, thereby largely
separating true CPs from spurious ones, we tested different
values ranging from 0.6 to 0.8. We found that at the Sc cut-
off of 0.7, dePCRM2 identified 4 455 838 CPs containing
226 355 (26 42%) motifs, and these motifs had the highest
proportion (24%) matching one of the 856 annotated mo-
tifs in the HOCOMOCO (93) and JASPAR (94) databases
using TOMTOM (95) (q-value ≤ 0.1). Using this optimal
Sc cutoff, we filtered out 630 438 (73.58%) of possible spu-
rious motifs found in the 5991 datasets. Clustering the 226
355 motifs in the CPs resulted in 245 clusters, each consist-
ing of 2∼72 849 motifs, most of which form a complete sim-
ilarity graph or a clique (Supplementary Figure S1A), indi-
cating that member motifs in a cluster are highly similar to
each other. dePCRM2 found a UM in 201 (82.04%) of the
245 clusters (Supplementary Figure S1B and Table S7), but
failed to do so in 44 clusters due to the low similarity be-
tween some member motifs (Supplementary Figure S1A).
Binding sites of the 201 UMs were found in 39.87–100%
of the sequences in the corresponding clusters, and in only
1.49% of the clusters binding sites were not found in more
than 50% of the sequences due to the low quality of mem-
ber motifs (Supplementary Figure S2). Thus, this step re-
tained most of putative binding sites in most clusters. The
UMs contain highly varying numbers of binding sites rang-
ing from 64 to 13 672 868 with a mean of 905 288 (Fig-
ure 2C and Supplementary Table S7), reminiscent of highly
varying number of binding peaks in the datasets (Supple-
mentary Note). The lengths of the UMs range from 10 to
21 bp with a mean of 11 bp (Figure 2D), which are in the
range of the lengths of known TF binding motifs, although
they are biased to 10 bp due to the limitation of the motif-
finder to find longer motifs. As expected, a UM is highly
similar to its member motifs, which also are highly similar
to each other (Supplementary Figure S1A). For example,
UM44 contains 250 highly similar member motifs (Figure
2E). Of the 201 UMs, 117 (58.2%) match (TOMTOM q-
value ≤ 0.05) at least one of the 856 annotated motifs, and
92 (78.63%) match at least two (Supplementary Table S7),
suggesting that most UMs might consist of motifs of differ-
ent TFs of the same TF family/superfamily that recognize
highly similar motifs, a well-known phenomenon (96,97),
and a UM might represent a motif family/superfamily for
the cognate TF family/superfamily. For instance, UM44
matches known motifs of nine TFs of the ‘ETS’ family
ETV4∼7, ERG, ELF3, ELF5, ETS2 and FLI1, a known
motif of NFAT5 of the ‘NFAT-related factor’ family, and

a known motif of ZNF41 of the ‘more than three adjacent
zinc finger factors’ family (Figure 2F and Supplementary
Table S7). The high similarity of these motifs suggest that
they might form a superfamily. The remaining 84 (43.28%)
of the 201 UMs might be novel motifs recognized by un-
known cognate TFs (Supplementary Figure S1B and Table
S7). On the other hand, 64 (71.91%) of the 89 annotated
TF motif families match (TOMTOM q-value ≤ 0.05) one
of the 201 UMs (Supplementary Table S8), thus, our pre-
dicted UMs include most of the known TF motif families.

To model interactions between cognate TFs of the
UMs, we computed an interaction score SINTER based on
cooccurrence levels and distances between binding sites of
two UMs (formula 4), which largely improves our earlier
score (data not shown) that only considers cooccurring
frequencies of binding sites in two motifs (47,48). As shown
in Figure 2G, there are clear interaction patterns between
putative cognate TFs of many UMs, many of which are
supported by experimental evidence. For example, in a
cluster formed by 10 UMs (Figure 2H), seven of them
(UM126, UM146, UM79, UM223, UM170, UM103
and UM159) match known motifs of MESP1/ZEB1,
TAL1::TCF3, ZNF740, MEIS1/TGIF1/MEIS2/MEIS3,
TCF4/ZEB1/CTCFL/ZIC1/ZIC4/SNAI1, GLI2/GLI3
and KLF8, respectively. At least a few of them are known
collaborators in transcriptional regulation. For example,
GLI2 collaborates with ZEB1 to repress the expression
of CDH1 in human melanoma cells via directly binding
to two close binding sites in the CDH1 promoter (98);
ZIC and GLI collaboratively regulate neural and skeletal
development through physical interactions between their
zinc finger domains (99); and ZEB1 and TCF4 reciprocally
modulate their transcriptional activities to regulate the
expression of WNT (100), to name a few.

Appropriate extension of original binding peaks greatly in-
creases the power of datasets

By connecting closely located binding sites of the UMs
along the genome, dePCRM2 partitioned the covered re-
gions that is 77.47% of the mappable genome (Supplemen-
tary Note) in two exclusive sets (Figure 1F). To find the op-
timal minimal length ε for linking adjacent putative TFBSs
(MATERIALS AND METODS), we tested ε = 100, 150,
250, 300 and 350 bp, and found that 150–300 bp yielded
similar results in terms of the distinct evolutionary behav-
iors of the resulting CRMCs and non-CRMs (see below).
Therefore, we chose the longest value, i.e. ε = 300 bp in
the current application. The resulting CRMC set contain 1
404 973 CRMCs with a total length of 1 359 824 275 bp
(56.84%) covering 44.03% of the genome, and the result-
ing non-CRMC set contain 1 957 936 sequence segments
with a total length of 1 032 664 424 bp (43.16%) cover-
ing 33.44% of the genome (Figure 3A). Interestingly, de-
PCRM2 only predicts 62.18% of nucleotide positions cov-
ered by original binding peaks to be CRMs (kept original),
while abandoning the remaining 37.82% of nucleotide po-
sitions as non-CRMCs (abandoned original) (Figure 3A).
The kept original positions account for 57.87% (776 999 862
bp) of genome positions of the predicted CRMCs (Figure
3A). The abandoned original positions might be not en-
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Figure 3. Prediction of CRMCs and CRMs. (A) Cartoon shows the proportions of the 77.47% of genome covered by originally called binding peaks
and their extended parts as well as their relative contributions to the predicted CRMs (kept original and kept extended, respectively) and non-CRMCs
(abandoned original and abandoned extended, respectively) (percentages below the lines). Percentage above the lines are the proportion of originally called
binding peak and their extended parts that are predicted to be CRMCs and non-CRMCs. (B) Distribution of SCRM scores of the CRMCs and the Null
CRMCs. The inset is a blowup view of the indicated region. The vertical dashed lines indicate the associated P-values of the SCRM cutoffs mentioned in the
main text. (C) Number of CRMs predicted, proportion of the genome predicted to be CRMs and the associated P-value as functions of the SCRM cutoff �.
(D) Proportion of the genome predicted to be CRMs and TFBSs in ESs and NESs using various SCRM cutoffs and associated P-values. (E) Proportion of
NESs that are predicted to be CRMs and TFBSs using various SCRM cutoffs and associated P-values. (F) Distribution of the lengths of CRMs predicted
using different SCRM cutoffs and associated P-values.

riched for TFBSs, which is in agreement with earlier find-
ings about the noisy nature of TF ChIP-seq data (101–
103). On the other hand, dePCRM2 predicts 50.84% of nu-
cleotide positions only covered by extended parts of orig-
inal binding peaks to be CRMCs (kept extended), while
discarding the remaining 49.16% of nucleotide positions as
non-CRMCs (abandoned extended) (Figure 3A). The kept
extended positions account for the remaining 42.12% (565
448 583 bp) genome positions of the predicted CRMCs
(Figure 3A), suggesting that TFBSs of collaborative TFs
might be indeed enriched in some extended parts as has
been shown earlier (47,48,72,73), and that dePCRM2 is
able predict CRMs that are not covered by any binding
peaks. Therefore, by appropriately extending original bind-
ing peaks, we could greatly increase the power of datasets.
Based on the overlap between a CRMC and original bind-
ing peaks containing a binding site of ChIP-ed TFs in a
cell/tissue type (Materials and Methods), dePCRM2 pre-
dicts functional states of 57.88% of the CRMCs in at least
one of the cell/tissue types from which binding peaks were
available in the datasets. However, dePCRM2 is not able to
predict the functional states of the remaining 42.12% of the
CRMCs that do not overlap any original binding peaks in
the datasets. The predicted CRMCs and constituent TFBSs
are available at https://cci-bioinfo.uncc.edu/

The CRMCs are unlikely predicted by chance

To further evaluate the predicted CRMCs, we computed
a SCRM score for each CRMC (formula 5). As shown
in Figure 3B, the distribution of the SCRM scores of the
CRMCs is strongly right-skewed relative to that of the
Null CRMCs (Materials and Methods), indicating that the
scores of CRMCs are generally much higher than those of
the Null CRMCs, thus, the CRMCs are unlikely produced
by chance. Based on the distribution of the SCRM scores
of the Null CRMCs, dePCRM2 computes a P-value for
each CRMC (Figure 3B). With the increase in the SCRM
cutoff � (SCRM ≥ �), the associated P-value cutoff drops
rapidly, while both the number of predicted CRMs and the
proportion of the genome covered by the predicted CRMs
decrease slowly (Figure 3C), indicating that most CRMCs
have low P-values. For instance, with � increasing from 56
to 922, P-value drops precipitously from 0.05 to 1.00 ×
10−6 (5 × 105 fold), while the number of predicted CRMs
decreases from 1,155,151 to 327,396 (3.53 fold), and the
proportion of the genome covered by predicted CRMs de-
creases from 43.47% to 27.82% (1.56 fold) (Figure 3C). Pre-
dicted CRMs contain from 20,835,542 (P-value ≤ 1 × 10−6)
to 31,811,310 (P-value ≤ 0.05) non-overlapping putative
TFBSs that consist of from 11.47% (P-value≤ 1 × 10−6)
to 16.54% (P-value ≤ 0.05) of the genome (Figure 3D).

https://cci-bioinfo.uncc.edu/
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In other words, dependent on P-value cutoffs (1 × 10−6–
0.05), 38.05–41.23% of nucleotide positions of the predicted
CRMs are made of putative TFBSs (Figure 3D), and most
of predicted CRMs (93.99∼95.46%) and constituent TF-
BSs (93.20–94.67%) are located in non-exonic sequences
(NESs), comprising 26.66–42.47% and 10.94–16.03% of
NESs, respectively (Figure 3E). Surprisingly, dependent on
P-value cutoffs (1 × 10−6–0.05), the remaining 5.33–6.80%
and 4.54–6.01% of the predicted CRMs and constituent
TFBSs, respectively, are in exonic sequences (ESs, including
CDSs, 5′- and 3′-untranslated regions), respectively (Figure
3D), in agreement with an earlier report (104).

The SCRM score captures the length feature of enhancers

As shown in Figure 3F, the CRMCs with a mean length of
981bp are generally shorter than VISTA enhancers with a
mean length of 2,049bp. Specifically, 621 842 (44.26%) of
the 1 404 973 CRMCs are shorter than the shortest VISTA
enhancer (428 bp), suggesting that they might be short
CRMs (such as promoters or short enhancers) or compo-
nents of long CRMs. However, these shorter CRMCs (<428
bp) comprise only 7.42% of the total length of the CRMCs.
As remaining 733 132 (55.74%) CRMCs comprising 92.58%
of the total length of the CRMCs are longer than the
shortest VISTA enhancer (428 bp), most of them are likely
full-length CRMs, and CRMC positions are mainly cov-
ered by full-length or longer CRMCs. As expected, with
the increase in � (decrease in P-value cutoff), the distribu-
tion of the lengths of predicted CRMs shifts to right and
even surpass that for VISTA enhancers (Figure 3F), indi-
cating shorter CRMCs can be effectively filtered out by a
higher SCRM cutoff � (a smaller P-value). For instance, at
a rather stringent SCRMcutoff � = 676 (P = 5 × 10−6), we
filtered out 976 345 (69.49%) shorter CRMCs with a mean
length of 387 bp (Figure 3F), and the remaining 428,628
(30.51%) CRMCs have similar length distribution (mean
length of 2292 bp) to that of VISTA enhancers (mean length
of 2049 bp) (Figure 3F). VISTA enhancers are mainly in-
volved in development-related functions and are generally
longer than other types of enhancers (105). However, it is
worth noting that a VISTA enhancer may not necessarily
be in its full-length form, because even a portion of an en-
hancer could be still partially functional (1,106), and it is
still technically difficult to validate very long enhancers in
transgene animal models in a large scale. Therefore, it is not
surprising that with even more stringent SCRM cutoffs, the
predicted CRMs could be longer than VISTA enhancers
(Figure 3F, and see later). Taken together, these results sug-
gest that the SCRM score captures the length feature of en-
hancers.

The CRMCs and non-CRMCs show dramatically distinct
evolutionary behaviors

To see how effectively dePCRM2 partitions the covered re-
gions into the CRMC set and the non-CRMC set, we com-
pared their evolutionary behaviors with those of the entire
set of 976 VISTA enhancers using the GERP (107) and phy-
loP (108) scores of their nucleotide positions in the genome.

Both the GERP and the phyloP scores quantify conserva-
tion levels of genome positions based on nucleotide substi-
tutions in alignments of multiple vertebrate genomes. The
larger a positive GERP or phyloP score of a position, the
more likely it is under negative/purifying selection; and a
GERP or phyloP score around zero means that the posi-
tion is selectively neutral or nearly so (107,108). Although a
negative phyloP score is related to positive selection (108),
a negative GERP score is cautiously so (109). For conve-
nience of discussion, we consider a position with a GERP
or phyloP score within an interval centering on 0 [–δ,+ δ]
(δ> 0) to be selectively neutral or nearly so, and a position
with a score greater than δ to be under negative selection.
We define proportion of neutrality of a set of positions to
be the size of the area under the density curve of the distri-
bution of their scores within the window [–δ,+ δ]. Because
ESs evolve quite differently from NESs, we focused on the
CRMCs and constituent TFBSs in NESs, and left those
that overlap ESs in another analysis (Jing Chen, Pengyu
Ni, Jun-tao Guo and Zhengchang Su). The choice of δ =
0.1, 0.2, 0.3, 0.4,0.5, 1 and 2 gave similar results (data not
shown), so we chose δ = 1 in the subsequent analyses. As
shown in Figure 4A, GERP scores of VISTA enhancers
show a trimodal distribution with a small peak around
score -5, a blunt peak around score 0, a sharp peak around
score 3.5, and a small proportion of neutrality of 0.23, indi-
cating that most nucleotide positions of VISTA enhancers
are under strong evolutionary selection, particularly, 37%
of the positions are under strong purifying selection with
a GERP score >1. This result is consistent with the fact
that VISTA enhancers are mostly ultra-conserved (110),
development-related enhancers (111,112). The 0.23 propor-
tion of neutrality of the VISTA enhancer positions indicates
that this proportion of positions might simply serve as non-
functional spacers between adjacent TFBSs. In contrast, the
distribution of the GERP scores of the non-CRMCs (1 034
985 426 bp) in NESs displays a sharp peak around score
0, with low right and left shoulders, and a higher propor-
tion of neutrality of 0.71 than do VISTA enhancers (2.2 ×
10−302, χ2-test) (Figure 4A), suggesting that most positions
of the non-CRMCs are selectively neutral or nearly so, and
thus are likely to lack cis-regulatory functions. The remain-
ing 0.29 portion of positions of the non-CRMCs seem to
be under varying levels of selection with 5% of positions
under purifying selection with a GERP score >1 (Figure
4A), suggesting that they might have other functions than
cis-regulation. Intriguingly, the distribution of the GERP
scores of the 1 292 356 CRMCs (1 298 719 954 bp) in NESs
has a blunt peak around score 0, with high right and left
shoulders, and a smaller proportion of neutrality of 0.31
than the non-CRMCs (0.71) (2.2 × 10−302, χ2-test) (Fig-
ure 4A), indicating that most positions of the CRMCs are
under strong evolutionary selection, and thus, are likely to
be functional, while the small proportion (0.31) of neutral-
ity suggests that this proportion of positions in the CRMCs
might serve as non-functional spacers between TFBSs. No-
tably, unlike the distribution for VISTA enhancers, that for
the CRMCs lack obvious peaks around scores –5 and 3.5
(Figure 4A), indicating the average selection strength on the
CRMCs is weaker than that on VISTA enhancers. For in-
stance, only 14% of CRMC positions are under purifying
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Figure 4. CRMCs and non-CRMCs in NESs show different evolutionary behaviors measured by GERP scores. (A) Distributions of GERP scores of
nucleotide positions of VISTA enhancers, CRMCs, non-CRMCs, covered regions and uncovered regions. The area under the density curves in the score
interval [–1, 1] is defined as proportion of neutrality of the sequences. The distribution for CRMCs is significantly different from that for non-CRMCs,
P < 2.2 × 10−302 (K–S test). (B) Distributions of GERP scores of nucleotide positions of CRMCs, non-CRMCs, CRMCs, the kept-original, the kept-
extended, the abandoned-original and the abandoned-extended. The distributions for kept original positions and kept extended positions are significantly
different from those of abandoned original positions and abandoned extended positions, respectively, P < 2.2 × 10−302 (K–S test). (C) Proportion of
neutrality of CRMCs with a SCRM score in different intervals in comparison with that of the non-CRMCs (a). The inset shows the distributions of GERP
scores of the non CRMCs and CRMCs with SCRM scores in the intervals indicted by the colored curves and letters. (D) Proportion of neutrality of CRMs
predicted using different SCRM score and associated P-value cutoffs in comparison with those of the non-CRMCs (a) and CRMCs (b). The inset shows the
distributions of GERP scores of the non-CRMCs, CRMCs and the predicted CRMs using the SCRM score and P-value cutoffs indicated by the colored
curves and letters. The dashed lines in B and C indicate the saturation levels.

selection with a GERP score >1, which is less than half of
that (37%) for VISTA enhancers (but see the section ‘The
higher the SCRM score of a CRMC, the stronger evolution-
ary constraint it is under’). Nonetheless, this is expected
considering the ultra-conversation nature of the small set of
development-related VASTA enhancers (110–112). K-S test
indicates that the CRMCs and the non-CRMCs have signif-
icantly different GERP score distributions (Figure 4A, P <
2.2 × 10−302). By contrast, two sets of sequences generated
by randomly partitioning the covered regions with matched
numbers and sizes of the CRMCs (CRMC-control) and
of the non-CRMCs (non-CRMC-control) with 100 repeats
have indistinguishable distributions of GERP scores (Sup-
plementary Figure S3A). These results once again strongly
suggest that CRMCs and non-CRMCs cannot be predicted
by any chance factors, and that dePCRM2 is able to parti-
tion the covered regions into the CRMC set that is likely
enriched with sequences with cis-regulatory functions, and
the non-CRMC set that is likely enriched with sequences
without such functions. Similar results were obtained using
the phyloP scores, although they display quite different dis-
tributions than the GERP scores (Supplementary Figures
S3B, S4A).

Interestingly, the uncovered regions have a GERP score
distribution and a proportion of neutrality (0.59) in be-
tween those of the covered regions (0.49) and those of the
non-CRMCs (0.71) (Figure 4A), indicating that the un-
covered regions are more evolutionarily selected than the
non-CRMCs, but less so than the covered regions. This im-
plies that the uncovered regions contain functional elements
such as CRMs, but their density could be lower than that
of the covered regions. Assuming that the total length of
CRMs in a region is proportional to the total length of
evolutionarily constrained parts in the region, we estimate
the proportion of uncovered regions that might be CRMs
to be (1–0.59)/(1–0.49) = 80.04% of that in the covered
regions. Therefore, existing studies and resulting datasets
are strongly biased to more evolutionary constrained re-
gions due probably to their large effect sizes and more criti-
cal functions that more easily brought the attention of re-
searchers. Similar results were obtained using the phyloP
scores (Supplementary Figure S4A).

As we indicated earlier, dePCRM2 predicts 50.84% of
nucleotide positions that are only covered by the extended
parts of original binding peaks to be CRMCs (kept ex-
tended), accounting for 42.12% of CRMC position, while
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it predicts 37.82% of nucleotide positions covered by origi-
nal binding peaks to be non-CRMCs (abandoned original)
(Figure 3A). To see why these results are possibly true, we
compared the distributions of conservation scores of nu-
cleotide positions of relevant sets. As shown in Figure 4B
and Supplementary Figure S4B, kept extended positions
have conservation score distributions almost identical to
both those of kept original positions (Figure 3A) and those
of the entire set of CRMC positions (Figure 4B and Supple-
mentary Figure S4B). As kept extended positions are largely
under strong evolutionary constraints, they likely to be cis-
regulatory. On the other hand, abandoned original posi-
tions have conservation score distributions almost identical
to both those of abandoned extended positions (Figure 3A)
and those of the entire set of non-CRMC positions (Fig-
ure 4B and Supplementary Figure S4B). Since abandoned
original positions are largely selectively neutral, they are un-
likely to be cis-regulatory. Taken together, these results in-
dicate that dePCRM2 is able to accurately distinguish cis-
regulatory and non-cis-regulatory sequences in the genome
covered by original binding peaks as well as by their ex-
tended parts, and further endorse the merit of appropriately
extending original binding peaks for more complete predic-
tion of CRMs and TFBSs.

The higher the SCRM score of a CRMC, the stronger evolu-
tionary constraint it is under

To see whether the SCRM score of a CRMC captures the
strength of evolutionary selection that it is under, we plot-
ted the distributions of conservation scores of subsets of
CRMCs with a SCRM score in different non-overlapping in-
tervals. Remarkably, even the subset with SCRM scores in the
lowest interval [0, 1) has a significantly smaller proportion
of neutrality (0.56) than the non-CRMCs (0.71) (P < 2.2 ×
10−302, χ2-test) (Figure 4C), indicating that even these low-
scoring CRMCs with short lengths (Figure 3F) are more
likely to be under strong evolutionary constraints than the
non-CRMCs, and thus might be more likely cis-regulatory.
With the increase in the lower bound of SCRM intervals,
proportion of neutrality of the corresponding subsets of
CRMCS drops rapidly, followed by a slow linear decrease
around the interval [1000, 1400) (Figure 4C). The higher the
SCRM score of a CRMC, the more likely it is under strong
evolutionary constraint, suggesting that the SCRM score in-
deed captures the evolutionary behavior of a CRM as a
functional element, in addition to its length feature (Figure
3F). The same conclusion can be drawn from the phyloP
scores (Supplementary Figure S4C).

We next examined the relationship between conservation
scores of the predicted CRMs and the SCRM score cutoffs
� (or P-value cutoffs) used for their predictions. As shown
in Figure 4D, even the CRMs predicted at a low � have
much smaller proportion of neutrality (e.g. 0.31 for the
smallest � = 0, i.e. the entire CRMC set) than the non-
CRMCs (0.71) (P < 2.2 × 10−302, χ2-test), suggesting that
most of the predicted CRMs might be authentic although
some short ones may not be in full-length, while the non-
CRMCs might contain few false negative CRMCs. With
the increase in � (decrease in P-value cutoff), proportion
of neutrality of the predicted CRMs decreases slowly, as

it is already in the saturation phase (Figure 4D). Interest-
ingly, at very high � values, the predicted CRMs evolve like
VISTA enhancers (Figure 4A), with a trimodal GERP score
distribution, and thus might be involved in more conserved
functions such as development (113,114). For instance, at
� = 13,750, the distribution of GERP scores of the pre-
dicted CRMs displays a peak around score -5 and a peak
around score 3.5, with a small proportion of neutrality of
0.24 (Figure 4D) (it is 0.23 for VISTA enhancers, Figure
4A). The infinitesimal decrease in proportion of neutrality
of predicted CRMs with the increase in SCRM cutoffs (Fig-
ure 4D) strongly suggests that the predicted CRMs, particu-
larly those at a low P-value cutoff, are under similarly strong
evolutionary constraints to those on the VISTA enhancers.
Similar results are observed using the phyloP scores (Sup-
plementary Figure S4D). The results suggest that the false
discovery rates(FDRs) of our predicted CRMs might be
very low. However, without the availability of a gold stan-
dard negative CRM set in the genome (23), we could not cal-
culate the false positive rates (FPRs) of the predicted CRMs
at different P-value cutoffs.

dePCRM2 achieves high sensitivity for recalling functionally
validated CRMs and non-coding SNVs

To further evaluate the accuracy of dePCRM2, we calcu-
lated the sensitivity (recall rate or true positive rate (TPR))
of CRMs predicted at different SCRM cutoffs � and asso-
ciated P-values for recalling a variety of CRM function-
related elements located in the covered regions (Supplemen-
tary Tables S2–S6). As a control, we also calculated the sen-
sitivity of a set of control sequences that are randomly se-
lected from the covered regions with the matched numbers
and sizes of predicted CRMs (Materials and Methods) for
recalling these elements. We define that a sequence (a pre-
dicted CRM or a control sequence) recalls an element, if
the sequence and the element overlap each other by at least
50% of the length of the shorter one. As shown in Figure
5A, with the increase in the P-value cutoff, the sensitivity
for recalling the elements in all the 10 datasets increases
rapidly and becomes saturated well before P-value increases
to 0.05 (� ≥ 56). Supplementary Figure S5A–J show exam-
ples of the predicted CRMs overlapping and recalling the
elements in the 10 datasets. Particularly, at P-value cutoff
5 × 10−5 (� = 412), the predicted 593 731 CRMs (Figure
3C) recall 100% of VISTA enhancers (79) and 89.26% of
non-coding ClinVar SNVs (79) (Figure 5A), located in the
covered regions (Supplementary Note). The rapid satura-
tion of sensitivity for recalling these two types of validated
functional elements at such a low P-value cutoff once again
strongly suggests that true CRMs might be highly enriched
in our predicted CRMs, particularly those with a low P-
value or a high SCRM score. On the other hand, even at a
higher P-value cutoff 0.05 (� = 56), the predicted 1 155
151 CRMs only achieve varying intermediate levels of sen-
sitivity for recalling FANTOM5 promoters (FPs) (88.77%)
(82), FANTOM5 enhancers (FEs) (81.90%) (81), DHSs
(74.68%) (63), TASs (84.32%) (29), H3K27ac (82.96%)
(29), H3K4me1 (76.77%) (29), H3K4me3 (86.96%) (29) and
GWAS SNVs (64.60%) (83). However, in all the cases, the
control sequences (MATERIALS AND METHODS) only
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Figure 5. Validation of the predicted CRMs by 10 experimentally determined sequence elements datasets. (A) Sensitivity (recall rate or TPR) of the predicted
CRMs and control sequences as a function of P-value cutoff for recalling the elements in the datasets. The dashed vertical lines indicate the P-value ≤0.05
cutoff. The sensitivity of CRMs predicted at all the indicated P-value cutoffs are significantly higher (P < 2.2 × 10−302, χ2-test) than the control sequences
for recalling all the ten types of elements. (B) Distributions of GERP scores of the recalled and unrecalled elements in each dataset in comparison with those
of the predicted CRMs at P ≤ 0.05 and non-CRMCs. The difference between the distributions of recalled elements and unrecalled elements in each dataset
is significant, P < 2.2 × 10−302 (K–S test). Note that there are no unrecalled VISTA enhancers. The curve labeled by VISTA-CRMs is the distribution of
CRMs that overlap and recall the 785 VISTA enhancers.

recall much smaller portions of the 10 type of elements at
all the P-value cutoffs (P < 2.2 × 10−302, χ2-test) (Figure
5A). For example, at P-value ≤5 × 10−5 and 0.05, the con-
trol sequences recall about 7% and 15%, respectively, of all
the 10 types of elements.

To find out the reasons for such varying sensitivity of de-
PCRM2 for recalling the 10 types of elements, we plotted
the distribution of GERP scores of the recalled and un-
called elements in each dataset by our predicted CRMs at
P-value ≤0.05. Since we have already plotted the distribu-
tion of the entire set of the 976 VISTA enhancers (Figure
4A), to avoid redundancy, we instead plotted the distribu-
tion for the CRMs that recall the 785 VISTA enhancers
located in the covered regions (VISTA-CRMs). As shown
in Figure 5B, like the predicted CRMs, the recalled ele-
ments in all the datasets are under strong evolutionary selec-
tions, thus are likely functional. However, VISTA-CRMs,
recalled ClinVar SNVs and recalled FPs evolve more like
VISTA enhancers, all with a trimodal GERP score distri-
bution (Figure 5B), suggesting that they are under stronger
evolution constraints than the other recalled element types.
These results are not surprising, as we mentioned earlier,
VISTA enhancers are mostly ultra-conserved (110–112),
while ClinVar SNVs were identified for their larger effect
sizes duo to conserved critical functions (80), and promot-
ers are well-known to be more conserved than are enhancers
(115). In stark contrast, like the non-CRMCs, all unre-
called elements in the 10 datasets are largely selectively neu-
tral, and thus, are unlikely to be functional, with the ex-
ception that the 74 222 (3.82%) unrecalled ClinVar SNVs
display a trimodal distribution, and that there are no un-
recalled VISTA enhancers (Figure 5B). Notably, propor-
tion of neutrality of unrecalled PEs (0.59) and PFs (0.63)
are smaller than that of the non-CRMCs (0.71) (Figure
5B), suggesting we might miss a small portion of authen-
tic PEs and PFs (see below for false negative rate (FNR)
estimations of our CRMs). Assuming that at least most of
unrecalled elements in the datasets except the VISTA and
ClinVar datasets, are non-cis-regulatory, we estimated that

the FDR of the remaining eight datasets might be up to
11.23% (FP), 18.10% (FEs), 25.32 (DHSs), 15.68% (TASs),
13.04% (H3K4m3), 23.23% (H3K4m1), 17.04% (H3K27ac)
and 35.40% (GWAS SNVs). The high FDRs for CA (DHSs
and TASs) and histone marks are consistent with an earlier
study (69). Interestingly, the trimodal distribution of GERP
scores of the 3.82% of unrecalled ClinVar SNVs displays
a large peak around score 0 and two small peaks around
–5 and 3.5, with a proportion of neutrality 0.45 (Figure
5B), indicating that about 45% of the relevant SNVs might
be selectively neutral, and thus non-functional. We there-
fore estimated the FDR of the ClinVar SNV dataset to be
about 0.45 × 3.82% = 1.72%. Therefore, Like VISTA en-
hancers, non-coding ClinVar SNVs are a reliable set for
evaluating CRM predictions. The peak of the unrecalled
ClinVar SNVs around score 3.5 (Figure 5B), indicates that
the relevant SNVs are under strong purifying selection, and
thus might be functional, but were missed by dePCRM2.
We thus estimate our predicted CRMs (at P-value ≤0.05)
might have a FNR < 3.82%-1.72% = 2.10%. In other words,
the estimated real sensitivity (= 1 – FNR = 97.9%) for
dePCRM2 to recall authentic causal ClinVar SNVs might
be slightly higher than the calculated 96.18% (Figure 5A).
These estimates are supported by the zero FNR and 100%
sensitivity for our predicted CRMs to recall VISTA en-
hancers (Figure 5A) and a simulation to be described later.

The zero, very low (<1.72%) and low (11.23%) FDRs of
VISTA enhancers, ClinVar SNVs and FPs datasets, respec-
tively, are clearly related to the high reliability of the ex-
perimental methods used to characterize them. However,
these low FDRs might also be related to the highly con-
served nature of these elements (Figure 5B), as their criti-
cal functions and large effect sizes may facilitate their cor-
rect characterization. In this regard, we note that the inter-
mediately high FDRs of the FEs (18.10%), DHSs (25.32),
TASs (15.68%), H3K4m3 (13.04%), H3K4m1 (23.23%) and
H3K27ac (17.04%) datasets might be due to the facts that
bidirectional transcription (116), CA (69,71,117) and his-
tone marks (69,71) are not unique to active enhancers. The
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very high FDR of GWAS SNVs (35.5%) might be due to
the fact that a lead SNV associated with a trait may not
necessarily be located in a CRM and causal; rather, some
variants in a CRM, which are in LD with the lead SNV, are
the culprits (83,118). Example of GWAS SNVs in LD with
positions in a CRM are shown in Supplementary Figure
S5K and S5L. Interestingly, many recalled ClinVar SNVs
(42.59%) and GWAS SNVs (38.18%) are located in critical
positions in predicted binding sites of the UMs (e.g., Sup-
plementary Figure S5D and F).

dePCRM2 outperforms state-of-the-art methods for predict-
ing both CRM positions and lengths

We compared our predicted CRMs at P-value ≤ 0.05
(SCRM ≤ 56) with three most comprehensive sets of pre-
dicted enhancers/promoters, i.e. GeneHancer 4.14 (57), En-
hancerAtals2.0 (61) and cCREs (26) predicted by their re-
spective methods. The GeneHancer set is the most updated
prediction containing 394,086 non-overlapping enhancers
covering 18.99% of the genome (Figure 6A). These en-
hancers were predicted by integrating multiple sources of
both predicted and experimentally determined CRMs us-
ing a voting schema. The sources of data include VISTA
enhancers (79), ENCODE phase 2 enhancer-like regions
(119), ENSEMBL regulatory build (55), dbSUPER (120),
EPDnew promoters (121), UCNEbase (122), Craniofa-
cialAtlas (123), FPs (82) and FEs (81). Enhancers from EN-
CODE phase 2 and ENSEMBL were predicted based on
multiple tracks of epigenetic marks using the well-regarded
tools ChromHMM (49) and Segway (124). Of the Gene-
Hancer enhancers, 388 407 (98.56%) have at least one nu-
cleotide located in the covered regions, covering 18.89% of
the genome (Figure 6A). The EnhancerAtlas set contains
7 433 367 overlapping cell/tissue-specific enhancers in 277
cell/tissue types, which were predicted using an unsuper-
vised machine-learning method based on 4159 TF ChIP-
seq, 1580 histone mark, 1,113 DHS-seq, and 1153 other
enhancer function-related datasets, such as FEs (125). Af-
ter removing redundancy (identical enhancers in difference
cell/tissues), we ended up with 3 452 739 EnhancerAtlas
enhancers that may still have overlaps, covering 58.99% of
the genome (Figure 6A), and 3 417 629 (98.98%) of which
have at least one nucleotide located in the covered regions,
covering 58.78% of the genome (Figure 6A). The cCRE
set represents the most updated prediction of CRMs by
the ENCODE phase 3 consortium (26), containing 926 535
non-overlapping cell type agnostic enhancers and promot-
ers covering 8.20% of the genome. cCREs were predicted
based on overlaps among 703 DHS, 46 TAS and 2,091 his-
tone mark datasets in various cell/tissue types produced by
ENCODE phases 2 and 3, as well as by the Roadmap Epige-
nomics project (26). Of these cCREs, 917 618 (99.04%) have
at least one nucleotide located in the covered regions, cov-
ering 8.13% of the genome (Figure 6A). Both the number
(1,155,151) and genome coverage (43.47%) of our predicted
CRMs (P-value≤0.05) are larger than those of GeneHancer
enhancers (388 407 and 18.89%) and of cCREs (917 618 and
8.12%), but smaller than those of EnhancerAtlas enhancers
(3 417 629 and 58.78%), in the covered regions.

To make the comparisons fair, we first computed the sen-
sitivity of these three sets of enhancers for recalling VISTA
enhancers, ClinVar SNVs and GWAS SNVs in the cov-
ered regions. We omitted FPs, FEs, DHSs, TASs and the
three histone marks for the valuation as they were used
in predicting CRMs by GeneHancer 4.14, EnhancerAtlas
2.0 or ENCODE phase 3 consortium. We also excluded
VISTA enhancers for evaluating GeneHancer enhancers as
the former were compiled in the latter (57). Remarkably,
our predicted CRMs outperform EnhancerAtlas enhancers
for recalling VISTA enhancers (100.00% versus 94.01%)
and ClinVar SNVs (96.18% versus 23.35%) (Figure 6B),
even though our CRMs cover a smaller proportion of the
genome (43.47% versus 58.78%) (Figure 6A). However, En-
hancerAtlas enhancers outperform our CRMs for recalling
GWAS SNVS (73.53% versus 64.60%) (Figure 6B). As we
indicated earlier, the lower sensitivity of our CRMs for re-
calling GWAS SNVs might be due to the fact that an asso-
ciated SNV may not necessarily be causal (Supplementary
Figure S5K and S5L). The higher sensitivity of Enhancer-
Atlas enhancers for recalling GWAS SNVs might be sim-
ply thanks to their higher coverage of the genome (58.78%)
than that of our predicted CRMs (43.47%) (Figure 6A). Our
predicted CRMs outperform cCREs for recalling VISTA
enhancers (100% versus 85.99%), ClinVar SNVs (96.18%
versus 17.50%) and GWAS SNVs (64.60% versus 18.21%)
(Figure 6B). Our predicted CRMs also outperform Gene-
Hancer enhancers for recalling ClinVar SNVs (96.18% ver-
sus 30.93%) and GWAS SNVs (64.60% versus 38.05%) (Fig-
ure 6B). However, no conclusion can be drawn from these
results, because our predicted CRMs cover a higher propor-
tion of the genome than both (43.47% versus 18.89% and
8.20%).

As shown in Figure 6C, overlaps between nucleotide posi-
tions of the four sets of predicted CRMs/enhancers/cCREs
are quite low. For instance, EnhancerAtlas enhancers,
GeneHancer enhancers and cCREs share 50.85%,
70.72% and 76.86% of their positions with our predicted
CRMs, corresponding to 69.01%, 30.90% and 14.51% of
the positions of our CRMs (Figure 6C), respectively. The
positions shared by all the four sets make up only 5.80%,
18.00%, 41.69% and 7.87% of positions of EnhancerAtlas
enhancers, GeneHancer enhancers, cCREs, and our CRMs,
respectively. As expected, the 50.85%, 70.72% and 76.86%
of positions of EnhancerAtlas enhancers, GeneHancer
enhancers and cCREs, which they share with our CRMs,
respectively, evolve similarly to our predicted CRMs,
although those of GeneHancer enhancers and cCREs are
under slightly higher evolutionary constraints than our
CRMs (Figure 6D). However, at a higher SCRM cutoff, e.g.
� = 3,000, our predicted CRMs are even under stronger
evolutionary constraints than the shared GeneHancer
enhancers and cCREs positions (Figure 6D). As the
positions that GeneHancer enhancers or cCREs share with
our predicted CRMs evolve like subsets of our CRMs pre-
dicted with higher SCRM scores, they are likely functional.
By stark contrast, like the non-CRMCs, the remaining
49.14%, 29.28% and 23.13% of positions of EnhancerAtlas
enhancers, GeneHancer enhancers and cCREs that they
do not share with our CRMs, respectively, are largely
selectively neutral, although they all have slightly smaller



14 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 2

Figure 6. Comparison of the performance of dePCRM2 and three state-of-the-art methods. (A) Proportion of the genome that are covered by
enhancers/CRMs/cCREs predicted by the four methods (all), and proportion of genome regions covered by predicted enhancers/CRMs/cCREs that
at least partially overlap the covered regions (With overlap). (B) Sensitivity for recalling VISTA enhancers, ClinVar SNVs and GWAS SNVs, by the pre-
dicted enhancers/CRMs/cCREs that at least partially overlap the covered regions. (C) Upset plot showing numbers of nucleotide positions shared among
the predicted CRMs, GeneHancer enhancers, EnhancerAtlas enhancers and cCREs. (D) Distributions of GERP scores of nucleotide positions of the
CRMs predicted at P-value ≤ 0.05 and P-value ≤ 2.2 × 10−308, and the non-CRMCs, as well as of nucleotide positions that GeneHancer enhancers, En-
hancerAtlas enhancers and cCREs share and do not share with the predicted CRMs at P-value ≤ 0.05. The difference between the distributions of shared
and unshared positions is significantly different for all the datasets, P < 2.2 × 10−302, K–S test. (E) Distributions of lengths of the four sets of predicted
enhancers/CRMs/cCREs. The inset is a blow-up view of the axes defined region.

proportion of neutrality than that of the non-CRMCs
(0.66, 0.63 and 0.61 versus 0.71, respectively) (Figure 6D),
due probably to the small FNR (<2.10%) of our predicted
CRMs. As the vast majority of unshared positions of the
three sets of predicted enhancers/cCREs are selectively
neutral or nearly so, they might be false positives. Based
on the proportion of these unshared positions in the three
sets, we estimate the FDR of EnhancerAtlas enhancers,
GeneHancer enhancers and cCREs to be around 49.14%,
29.28% and 23.13%, respectively. With a much smaller of
coverage of the genome by the GeneHancer enhancers
(18.99%) and cCREs (8.13%) than by our predicted CRMs
(43.47%, at P-value ≤0.05) (Figure 6A), it is highly likely
that both GeneHancer and ENCODE phase 3 largely
under-predict enhancers, even though they have rather
high FDRs (29.28% and 23.12%, respectively). On the
other hand, with a much higher coverage of the genome
by EnhancerAtlas enhancers (58.99%) than by our pre-
dicted CRMs (43.47, at P-value ≤0.05) (Figure 6A), it is
highly likely that EnhancerAtlas might largely over-predict
enhancers due to a very high FDR (49.14%).

Next, we compared the lengths of the four sets of the
predicted CRMs/enhancers/cCREs. As shown in Figure
6E, the distribution of the lengths of cCREs has a nar-

row high peak at 345 bp with a mean length of 273 bp
and a maximal length of 350bp. Such short lengths of
cCREs strongly suggest that the vast majority of even au-
thentic cCREs are just components of long CRMs, because
even the longest cCREs (350bp) is shorter and the shortest
VISTA enhancer (428 bp). The highly uniform lengths of
the predicted cCREs also indicate the limitation of the un-
derlying prediction pipeline (26). The distribution of Gene-
Hancer enhancers oscillates with a period of 166bp (Fig-
ure 6E), which might be an artifact of the underlying al-
gorithm for combining results from multiple sources (57).
Moreover, with a mean length of 1,488bp, GeneHancer en-
hancers are generally longer than our predicted CRMs at
P-value ≤0.05 with a mean length of 1,162 bp, while the lat-
ter are generally longer than the EnhancerAtlas enhancers
with a mean length of 680bp (Figure 6E). This high incon-
sistency in CRM length predictions highlights the difficulty
of the problem.

Finally, we compared dePCRM2 with the EnhancerAt-
las and the ENCODE phase 3 methods (26) for predicting
the lengths of VISTA enhancers by computing a ratio of the
length of a predicted CRM/enhancer/cCRE over that of its
recalled VISTA enhancer. As show in Figure 7A, with a me-
dian ratio of 0.12, all recalling cCREs are only a fraction of
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Figure 7. Comparison of the three methods for predicting the lengths of
VISTA enhancers. (A) Boxplots of distributions of the ratio of the length
of a CRM, an EnhancerAtlas enhancer or a cCRE over that of its recalled
VISTA enhancer. The significant levels were calculated using the Mann–
Whitney U test. (A) Venn diagrams showing the number of nucleotide po-
sitions shared by recalling CRMs and recalled VISTA enhancers, and the
number of positions specific to the recalling CRMs and the recalled VISTA
enhancers. (C and D) Distribution of GERP (C) and phyloP (D) scores of
the positions shared by the CRMs and the VISTA enhancers, and spe-
cific to the CRMs or VISTA enhancers. The difference between the distri-
butions of shared and VISTA specific positions is significantly different,
P < 2.2 × 10−302, K–S test.

the lengths of their 675 (85.99%) recalled VISTA enhancers
(Figure 6B), as expected from the aforementioned results.
With a median ratio of 1.03 (Figure 7A), most recalling En-
hancerAtlas enhancers largely have the similar lengths to
those of their 738 (94.01%, Figure 6B) recalled VISTA en-
hancers. With a median ratio of 2.23 (Figure 7A), most of
our recalling CRMs are at least twice as long as their 785
(100%, Figure 6B) recalled VISTA enhancers. However, the
vast majority (90.26%) of VISTA enhancer positions are
covered by our recalling CRMs (Figure 7B), and only 9.74%
of VISTA enhancer positions are missed by our recall-
ing CRMs. On average, our recalling CRMs (mean length
4395 bp) are 2.98 times as long as recalled VISTA enhancers
(mean length 1477 bp). To see whether dePCRM2 over pre-
dicts the length of VISTA enhancers, or VISTA enhancers
are actually only a part of otherwise longer super-enhancers
whose parts can still have some enhancer activities (106),
we compared conservation scores of positions shared by
our recalling CRMs and recalled VISTA enhancers, of po-
sitions specific to the recalling CRMs, of positions specific
to the recalled VISTA enhancers (Figure 7B). As expected,
shared positions are under strong selection constrains mea-
sured either by GERP (Figure 7C) or by phyloP scores (Fig-
ure 7D). To our surprise, CRMs specific positions (69.66%)
are also under strong evolutionary constraints though less
conserved than shared positions, while VISTA specific po-
sitions (9.74%) are largely evolutionarily neutral or nearly
so (Figure 7C and D). These results strongly suggest that
VISTA enhancers might be the most conserved parts of re-

siding longer super-enhancers, while a small portion (on
average 9.47%) of some VISTA enhancers might be non-
functional. Taken together, these results unequivocally in-
dicate that dePCRM2 is much more accurate than the three
state-of-the-art methods for predicting both the nucleotide
positions and the lengths of CRMs.

At least half of the human genome might code for CRMs

What is the proportion of the human genome coding for
CRMs and TFBSs? Our predicted CRMs and constituent
TFBSs in the covered regions might position us to ad-
dress this interesting and important, yet unanswered ques-
tion (126,127). To this end, we took a semi-theoretic ap-
proach. Specifically, we calculated the expected number of
true positives and false positives in the CRMCs in each
non-overlapping SCRM score interval based on the predicted
number of CRMCs and the density of SCRM scores of Null
CRMCs in the interval (Figure 8A), yielding 1,383,152
(98.45%) expected true positives and 21 821 (1.55%) ex-
pected false positives in the CRMCs (Figure 8B). The vast
majority of the 21,821 expected false positive CRMCs have
a low SCRM score < 4 (inset in Figure 8A) with a mean
length of 28bp, comprising 0.02% (21 821 × 28 bp/3 088 269
832 bp) of the mappable genome and 0.05% (0.0002/0.4403)
of the total length of the CRMCs, i.e. a FDR of 0.05%
for nucleotide positions (Figure 8C). On the other hand,
as the CRMCs miss 3.72% of noncoding ClinVar SNVs
in the covered regions (the point at P-value = 1 in Figure
5A), the FNR of predicting CRMCs would be <3.72% ×
(1 – 0.45) = 2.05%, given the proportion of neutrality of
0.45 for the unrecalled ClinVar SNVs (Figure 5B). False
negative CRMCs would be 2.05% × 44.03 = 0.90% of the
genome, which is 0.090/33.44% = 3.02% of the total length
of the non-CRMCs, meaning a false omission rate (FOR)
of 3.02% for nucleotide positions (Figure 8C). Hence, true
CRM positions in the covered regions would be 44.03% –
0.02% + 0.90% = 44.91% of the genome (Figure 8C). In
addition, as we argued earlier, the CRMC density in the
uncovered 22.53% genome regions is about 80.04% of that
in the covered regions, CRMCs in the uncovered regions
would be about 0.2253 × 0.4491 × 0.8004/0.7747 = 10.45%
of the genome (Figure 8C). Taken together, we estimated
about 44.91% + 10.45% = 55.36% of the genome to code for
CRMs, for which we have predicted (44.03 – 0.02)/55.36 =
79.50%. Moreover, as we predicted that about 40% of CRCs
are made up of TFBSs (Figure 3D), we estimated that about
0.4 × 55.36% = 22.14% of the genome might encode TFBSs.
Furthermore, assuming a mean length 1162 bp for CRMs
(the mean length of our predicted CRMs at P-value ≤0.05),
and a mean length of 10 bp for TFBSs (Figure 2D), we es-
timated that the human genome would encode about 1 471
313 CRMs (3 088 269 832 × 0.55.36/1162) and 68 374 294
TFBSs (3 088 269 832 × 0.2214/10).

DISCUSSION

Identification of all functional elements, in particular,
CRMs in genomes has been the central task in the postge-
nomic era, and enormous CRM function-related data have
been produced to achieve the goal (23,128). Great ef-
forts have been made to predict CRMs in the genomes
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Figure 8. Estimation of the portion of the human genome encoding CRMs. (A) Expected number of true positive and false positive CRMCs in the predicted
CRMCs in each one-unit interval of the SCRM score. The inset is a blow-up view of the axes defined region. (B) Expected cumulative number of true positives
and false positives with the increase in SCRM score cutoff for predicting CRMs. The inset is a blow-up view of the axes defined region. (C) Proportions
of the covered regions (77.47%) and uncovered regions (22.53%) in the genome and estimated proportions of CRMCs in them. Percentages in the braces
are the proportions of the indicated sequence types in the genome, and percentages in the boxes are the proportions of the indicated sequence types in the
covered regions or in the uncovered regions.

(26,55,57,61,129) using these data. Most existing meth-
ods attempt to predict cell/tissue specific CRMs using CA
and multiple tracks of histone marks collected in the same
cell/tissue types (26,49,57,61,124). Though conceptually at-
tractive, these methods are limited by the scope of ap-
plications (26,49,124), low resolution of predicted CRMs
(26,61), lack of constituent TFBS information (26,61), and
high FDRs (69). To overcome these limitations, we pro-
posed a different approach to predict a largely cell type ag-
nostic or static map of CRMs and constituent TFBSs in
the genome (47,48) by identifying repeatedly cooccurring
patterns of motifs found in appropriately expanded bind-
ing peaks in a large number of TF ChIP-seq datasets for
different TFs in various cell/tissue types. Since it is mainly
TFBSs in a CRM that define its structure and function, it
is not surprising that TF ChIP-seq data are a more accu-
rate predictor of CRMs than CA and histone mark data
(53,69,71). Another advantage of our approach is that we
do not need to exhaust all TFs and all cell/tissue types of
the organism in order to predict most, if not all, of CRMs
and constituent TFBSs in the genome as we demonstrated
earlier (47,75), because CRMs are often repeatedly used in
different cell/tissue types, developmental stages and physi-
ological homeostasis (1), and binding sites of collaborative
TFs are closely located in CRMs. Moreover, by appropri-
ately extending the called binding peaks in each dataset,
we could largely increase the chance to identify collabora-
tive motifs and full-length CRMs, thereby increasing the
power of existing data, and further reducing the number of
datasets needed as we have demonstrated in this and previ-
ous studies (47,48). We might only need a large, but limited,
number of datasets to predict most, if not all, CRMs and

TFBSs in the genome, as the numbers of predicted UMs
and CRMs enter a saturation phase when more than few
hundreds of datasets were used for the predictions as we
showed earlier (47). Our earlier application of the approach
resulted in very promising results in the fly (48) and hu-
man (47) genomes even using a relatively small number of
strongly biased datasets available then. However, the earlier
implementations were limited by computational inadequa-
cies of underlying algorithms to find and integrate motifs
in ever increasing number of large TF ChIP-seq datasets
in mammalian cell/tissues (47,48). In this study, we cir-
cumvent the limitations by developing the new pipeline de-
PCRM2 based on an ultrafast and accurate motif finder
ProSampler, an efficient motif pattern integration method,
and a novel CRM scoring function that captures essential
features of full-length CRMs.

A limitation of dePCRM2 is that although it can pre-
dict a CRM’s functional state in a ChIP-probed cell type
if the CRM overlaps original binding peaks of the ChIP-
ed TFs in the cell type, the fraction of CRMs whose func-
tional states can be so predicted in most cell types could
be quite low or even 0, since only few or even no ChIP-seq
datasets are available in most cell types due to the strong
bias of current datasets (Supplemental Note). Moreover, to
predict functional states of all CRMs in a cell type in this
way, one might need ChIP-seq data for all TFs working in
the cell type, and this can be too costly or is currently un-
feasible. For this reason, our predicted CRMs are largely
cell-type agnostic. Fortunately, it has been shown that when
the locus of a CRM is correctly anchored by multiple TFs’
binding peaks, one or few epigenetic marks at the locus can
accurately predict the CRM’s functional state (69). We are
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in the process to develop such capability. Thus, this two-step
approach might be more cost-effective for predicting both a
static map of CRMs and constituent TFBSs in the genome
and their functional states in various cell/tissue types.

It has been estimated that the human genome encodes
from 2,000 to 3,000 TFs belonging to 100–200 protein fam-
ilies (96,130). However, the exact number of TFs and TF
families encoded in the genome remains unknown (96,131).
Our prediction of the 201 UM families in the covered re-
gions provides us an opportunity to estimate the number
of TFs families encoded in the genome. As different TFs
of the same protein family/superfamily bind similar motifs
(97,132), it is highly likely that a predicted UM is recognized
by multiple TFs of the same family/superfamily. Indeed,
92 (78.63%) of the 117 (58.21%) UMs matching at least a
known motif, match at least two. The cognate TF families
of the remaining 84 (41.79%) UMs remain to be elucidated.
On the other hand, as 64 (71.91%) of the 89 known motif
families match one of our UMs, we might have recovered
most known motif families. Based on these results, we esti-
mate the lower bound of the number of TF/motif families
encoded in the human genome to be around 200, consider-
ing that the uncovered 22.53% regions of the genome might
harbor novel UMs that do not appear in the covered re-
gions.

Remarkably, dePCRM2 enables us to partition the cov-
ered regions into two exclusive sets, i.e., the CRMCs and the
non-CRMCs. Multiple pieces of evidence strongly suggest
that the partition might be highly accurate. First, although
evolutionary information is not used in our prediction of
the CRMCs and the non-CRMCs, yet the two sets display
dramatically different evolutionary behaviors (Figure 4A
and Supplementary Figure S4A). More specifically, the vast
majority of nucleotide positions of the CRMCs are under
strongly evolutionary constraints (Figure 4B and Supple-
mentary Figure S4B), and a subset of which with higher
SCRM scores are under even stronger evolutionary con-
straints that are comparable to the ultra-conserved, mostly
developmentally related VISTA enhancers (Figure 4C and
Supplementary Figure S4C). In stark contrast, positions of
the non-CRMC positions are largely selectively neutral or
nearly so, thus are likely to lack cis-regulatory functions
(Figure 4A and Supplementary Figure S4A). Second, our
control studies (Supplementary Figure S3) together with
the small P-values for the vast majority of the CRMCs (Fig-
ure 3C), strongly suggest that the partition could not be
generated by virtually any serendipity. Third, all experimen-
tally validated VISTA enhancers and almost all (96.28%)
of well-documented non-coding ClinVar SNVs in the cov-
ered regions are recalled by the CRMCs at a very stringent
P-value 5 × 10−5 (Figure 5A), while the control sequences
randomly selected from the covered regions could only re-
call a small portion (7%) of these elements (Figure 5A), in-
dicating that the CRMCs have a very high sensitivity, and
are highly enriched for true CRMs. Finally, our simulation
studies indicate that the CRMCs have a very low FDR of
0.05% (or a high precision of 99.95%), and the non-CRMCs
have a low FOR of 3.02% (Figure 8C). To the best of our
knowledge, dePCRM2 is the first of its kind to partition a
large portion (77.47%) of the genome into two sets such that

one (CRMCs) are highly likely to be cis-regulatory, and the
other (non-CRMCs) are not.

Accurate prediction of the length of CRMs is also criti-
cal, but this appears to be a difficult problem as evidenced
by the peculiar distributions of the lengths of GeneHancer
enhancers and cCREs (Figure 6E). The problem can be
further complicated by the difficulty to accurately validate
the lengths of predicted CRMs, because even experimen-
tally validated VISTA enhancers may not necessarily be in
their correct full-length forms, as a portion of an enhancer
could be still partially functional (1,106). Interestingly, we
found that our predicted CRMs that recall VISTA en-
hancers are on average twice longer than the recalled VISTA
enhancers (Figure 7A), and the ‘extra’ sequences in the re-
calling CRMs are under strong evolutionary constraints
(Figure 7C and D), suggesting that most VISTA enhancers
might be only a part of longer enhancers. Meanwhile, as an
average of 10% of VISTA enhancer positions, which do not
overlap the recalling CRMs, are largely evolutionally neu-
tral, they might not be cis-regulatory (Figure 7C and D).
Therefore, it is highly likely that dePCRM2 is able to pre-
dict full-length CRMs. On the other hand, as 44.26% (621
841) of our predicted 1 404 973 CRMCs are shorter than the
shortest (428bp) VISTA enhancer, they might not be in full
length. However, these potential CRM components com-
prise only 7.42% of the total length of the CRMCs, while
the remaining 55.74% (783 132) of the CRMCs that com-
prise 92.58% of the total length of the CRMCs are likely to
be in full-length. However, as very short CRMCs tend to
have small SCRM scores and to be under weak evolutionary
constraints, they can be effectively filtered out using more
stringent SCRM cutoffs (Figures 3F, 4D and Supplementary
Figure S4D). It has been shown that an enhancer’s length
and evolutionary behavior are determined by its regulatory
tasks (105), and conserved enhancers are active in develop-
ment (113,114), while fragile enhancers are associated with
evolutionary adaptation (113). CRMCs with different SCRM
scores might belong to different functional types as indi-
cated by their different evolutionary behaviors (Figure 4A,
C, Supplementary Figure S4A and C) and length distri-
butions (Figure 3F). For example, as CRMs predicted at
high SCRM cutoffs tend to be longer (Figure 3F) and un-
der stronger evolutionary constrains (Figure 4D and Sup-
plementary Figure S4D), they might be mainly involved
in development and other more conserved functions. Since
CRMs predicted at lower SCRM cutoffs tend to be shorter
(Figure 3F) and under weaker evolutionary constrains (Fig-
ure 4D and Supplementary Figure S4D), they might be
mainly involved in non-development related and other less
conserved functions. This conclusion is further supported
by our finding that the CRMs recalling VISTA enhancers
that are mostly developmentally related, have a much longer
mean length (4395 bp) than do the entire set of CRMs (1162
bp) predicted at P-value ≤0.05. Our failure to predict full-
length CRMs of short CRM components might be due to
insufficient data coverage on the relevant loci in the genome.
This is reminiscent of our earlier predicted, even shorter
CRMCs (mean length = 182 bp) using a much smaller num-
ber and less diverse 670 datasets (47). As we argued earlier
(47) and confirmed here by the much longer CRMCs (mean
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length = 981 bp) predicted using the much larger and more
diverse datasets albeit still strongly biased to a few TFs and
cell/tissue types (Supplementary Note). We anticipate that
full-length CRMs of these short CRM components can be
predicted using even larger and more diverse TF ChIP-seq
data. Therefore, efforts should be made in the future to in-
crease the genome coverage and reduce data biases by in-
cluding more untested TFs and probed cell types in the TF
ChIP-seq data generation.

Interestingly, our predicted CRMs even at a stringent P-
value ≤5 × 10−5 achieve perfect (100.00%) and very high
(96.28) sensitivity for recalling VISTA enhancers (79) and
noncoding ClinVar SNVs (80), respectively, but varying
intermediate sensitivity ranging from 64.60% (for GWAS
SNVs) to 88.77% (for FPs) for recalling other eight types
of CRM function-related elements at a high P-value≤0.05
(Figure 5A). It appears that such varying sensitivity is
due to varying FDRs ranging from 0% (for VISTA en-
hancers) to 35.4% (for GWAS SNVs) of the methods used
to characterize the elements (Figure 5B). Our finding that
DHSs, TASs, and histone mark (H3K4m1, H3K4m3 and
H3K27ac) peaks have high FDRs for predicting CRMs is
consistent with an earlier study showing that histone marks
or CA were less accurate predictor of active enhancers than
TF binding data (69). Thus, it is not surprising that our pre-
dicted CRMs substantially outperform the three state-of-
the-art sets of predicted enhancers, i.e. GeneHancer (57),
EnhancerAtlas (61) and cCREs (26), for recalling ClinVar
SNVs and VISTA enhancers (we excluded GeneHancer en-
hancers for this evaluation since VISTA enhancers were a
part of it) (Figure 6B), as well as for predicting the lengths
of CRMs (Figures 6E and 7), because these three sets were
mainly predicted based on overlaps between multiple tracks
of CA and histone marks in various cell/tissue type.

Although originally called binding peaks is strongly bi-
ased to few cell types and TFs (Supplementary Note), and
the 6,092 TF ChIP-seq datasets cover only 40.98% of the
genome, after appropriately extending the binding peaks,
we increased the genome coverage to 77.47%. Nucleotide
positions of the extended parts of the called peaks con-
tribute 42.13% positions of the predicted CRMCs (Fig-
ure 3A). Like the other 57.87% of CRMC positions cov-
ered by original binding peaks(Figure 3A), these 42.13%
of CRMC positions covered by the extended parts also
are under strong evolutionary constraints (Figure 4B), and
thus are likely to be functional. Therefore, appropriate ex-
tension of called binding peaks in the datasets can indeed
substantially increase the power of available data. On the
other hand, we abandoned 37.82% of positions covered by
the original binding peaks(Figure 3A), which might lack
cis-regulatory functions, as like the non-CRMCs, they are
largely selectively neutral (Figure 4B and Supplementary
Figure S4B). This result is consistent with the earlier finding
that called binding peaks cannot be equivalent to CRMs or
parts of CRMs (101–103), and highlights the necessity to
integrate a large number of diverse TF ChIP-seq datasets
for accurate genome-wide prediction of CRMs and TFBSs
as demonstrated in this study.

The proportion of the human genome that is functional
is a topic under hot debate (127,133–135), and a wide range
from 3% to 80% of the genome has been suggested to be

functional based on different sources of evidence and def-
inition of functions (126,136–138). For instance, the EN-
CODE consortium argued that 80% of the genome might
be functional based on their biochemical activities, while
Graur (138) mentioned that functional sequences cannot
exceed 15% of the genome based on their evolutionary
constrains. The major disagreement is for the proportion
of functional NCSs in the genome, mainly CRMs, which
have been estimated to comprise from 5% to 40% of the
genome (126,136–138). Most of these estimates were based
on proportions of the genome that were inferred to be un-
der purifying selection using various evolutionary models
(134,135,138), resulting in such highly varying estimates.
Since some parts of a CRM and even the entire CRM
might not be conserved, it is highly likely that these meth-
ods underestimated the regulatory genome (139). More-
over, a wide range of CRM numbers have been suggested
to be encoded in the human genome, from tens of thou-
sands to a few million (61,119,129). For example, ENCODE
phase 2 identified 469 416 CRMs in the human genome,
while ENCODE phase 3 recently updated the number to
926,535 using more datasets (26), and this number may in-
crease further when the current ENCODE phase 4 is com-
plete in the future. As we indicated earlier, GeneHancer (57)
and EnhancerAtlas (57) predicted 394,086 and 3,452,739
enhancers, respectively, although both sets might suffer
FDRs. Our predicted CRMCs cover 44.03% of the genome,
which is higher than cCREs (7.9%) and GeneHancer en-
hancers (18.99%) do, but lower than EnhancerAtlas en-
hancers (58.99%) (61) do. The higher accuracy of our pre-
dicted CRMs suggests that cCREs and GeneHancer might
underpredict CRMs, whereas EnhancerAtlas might over-
predict them even using limited data. Based on the esti-
mated FDR and FNR in predicting the CRMCs as well as
the estimated density of CRMCs in the uncovered regions
relative to the covered regions (Figure 8C), we estimated
that about 55.36% and 22.14% of the genome might code
for CRMs and TFBSs, respectively, which encode about
1.47 million CRMs and 68 million TFBSs. As about 14%
of CRMC positions are under purifying selection (Figure
4A and Supplementary Figure S4A), they account for about
7.6% (= 0.14*55.36) of the genome. This result is consistent
with the earlier estimates that about 5–15% of the genome
positions are under purifying selection (23,126,136–138).
Since 86% of CRMC positions are not under purifying se-
lection (Figure 4A and Supplementary Figure S4A), it is
not surprising that the cis-regulatory genome appears to be
more prevalent (55.36%) than originally thought (8∼40%)
(126,136–138). We estimated that our true positive CRMs
cover 44.01% of the genome, thus, we might have pre-
dicted 79.5% (44.01/55.36) CRM positions encoded in the
genome.

With the availability of more diverse and balanced data
covering more regions of the genome in the future, it is pos-
sible to predict a more complete map of CRMs and con-
stituent TFBSs in the genome. However, even in its cur-
rent form, this unprecedentedly complete map of CRMs
and constituent TFBSs in the human genome may facilitate
the community’s efforts to functionally characterize the reg-
ulatory genome and identify causal noncoding variants of
complex diseases. To assist such usages of the map, we have
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created database (https://cci-bioinfo.uncc.edu/), where var-
ious queries to the map can be made, such as what is the
nearest CRMs to a gene and vice versa; what TFBSs are
in a CRM; what are CRMs that contain binding sites of a
motif, and so on. The map also enables genome-wide inves-
tigations of structures, landscape, evolution and functions
of CRMs and TFBSs in various contexts.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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