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Intravaginal cytomegalovirus (CMV) challenge
elicits maternal viremia and results in congenital
transmission in a guinea pig model
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Abstract

Background: The objective of this study was to compare intravaginal (ivg) and subcutaneous (sc) administration of
the guinea pig cytomegalovirus (GPCMV) in pregnant and non-pregnant guinea pigs. These studies tested the
hypotheses that ivg infection would elicit immune responses, produce maternal viremia, and lead to vertical
transmission, with an efficiency similar to the traditionally employed sc route.

Results: Four groups of age- and size-matched guinea pigs were studied. Two groups were pregnant, and two
groups were not pregnant. Animals received 5x105 plaque-forming units (PFU) of a GPCMV reconstituted from an
infectious bacterial artificial chromosome (BAC) construct containing the full-length GPCMV genome.
Seroconversion was compared by IgG ELISA, and viremia (DNAemia) was monitored by PCR. In both pregnant and
non-pregnant animals, sc inoculation resulted in significantly higher serum ELISA titers than ivg inoculation at 8
and 12 weeks post-infection. Patterns of viremia (DNAemia) were similar in animals inoculated by either sc or ivg
route. However, in pregnant guinea pigs, animals inoculated by both routes experienced an earlier onset of
DNAemia than did non-pregnant animals. Neither the percentage of dead pups nor the percentage of GPCMV
positive placentas differed by inoculation route.

Conclusions: In the guinea pig model of congenital CMV infection, the ivg route is as efficient at causing
congenital infection as the conventional but non-physiologic sc route. This finding could facilitate future
experimental evaluation of vaccines and antiviral interventions in this highly relevant animal model.

Background
Human cytomegalovirus (HCMV) can be transmitted by
multiple body fluids, including blood, saliva, urine,
breast milk, cervical and vaginal secretions, and semen.
One common route by which HCMV infections are
acquired is through sexual transmission. An increased
number of sex partners and a history of other sexually
transmitted infections both correlate with an increased
risk of HCMV seropositivity [1-3]. Viral shedding has
been demonstrated for protracted periods in both cervi-
cal secretions and semen [4,5]. Sexual routes of trans-
mission in adolescent and adult patients stand in
contrast to routes of transmission among children

between 1-3 years of age, where salivary secretions and
urine are the most common sources of HCMV [6].
What remains unclear is how the route of transmission
affects parameters such as viral load, pathogenesis,
immune response, and risk of vertical transmission to
the fetus.
In the immunocompetent population, HCMV infec-

tion rarely results in clinical illness. In the immunocom-
promised and unborn, however, the consequences can
be severe. HCMV remains the most common infectious
cause of congenital birth defects [7]. Therefore, under-
standing how sexual transmission of HCMV during
pregnancy affects fetal outcome is of significant concern.
Among the animal models of CMV infection, the gui-
nea-pig model has unique advantages compared to
other rodent models, including establishment of infec-
tion in utero with resultant congenital transmission [8].
To date, virtually all studies of vertical transmission of
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guinea pig cytomegalovirus (GPCMV) have utilized sub-
cutaneous (sc), intraperitoneal, or intravascular inocula-
tion of virus, routes which may be of limited clinical
relevance to acquisition of infection in humans. There-
fore, these studies were undertaken to compare mater-
nal and fetal disease following intravaginal (ivg)
inoculation of GPCMV, toward the goal of developing a
model of congenital transmission with greater transla-
tional relevance to human reproductive health.
A previous investigation compared immune responses

to GPCMV in non-pregnant female guinea pigs follow-
ing ivg, sc, or intraperitoneal inoculation [9]. This study
showed that, compared to other routes of inoculation,
ivg inoculation resulted in a lower percentage of inocu-
lated animals developing detectable infection (assessed
by recovery of virus in tissue culture). Vaginally infected
animals also demonstrated lower titers of neutralizing
antibody than animals infected by other routes. How-
ever, these studies did not examine the efficiency of
infection following ivg administration in pregnant ani-
mals, in particular rates of vertical transmission to the
fetus. There is also limited information about the impact
of pregnancy on the natural history of GPCMV immune
response and pathogenesis. In a study comparing
immune responses in pregnant and non-pregnant guinea
pigs, it was observed that pregnant guinea pigs devel-
oped a delayed and weaker overall antibody response
following sc GPCMV inoculation compared to non-
pregnant animals [10]. We therefore aimed to directly
compare, using both routes of inoculation in pregnant
and non-pregnant guinea pigs, the following parameters:
1) IgG response; 2) maternal DNAemia; 3) pup mortal-
ity; 4) placental viral load. In particular, we tested the
hypotheses that the ivg route of infection would elicit
immune responses, produce maternal viremia, and lead
to vertical transmission with an efficiency similar to the
more traditionally used sc route. Defining the response
to ivg GPCMV administration would be of potential
relevance to the study of the biology of HCMV infec-
tions, which are commonly acquired at mucosal sur-
faces. Further development of this model could in turn
be valuable for the study of vaccines designed to elicit
antibody that neutralizes virus at mucosal portals of
entry and epithelial sites of primary infection.

Results
ELISA response to sc or ivg infection in pregnant and
nonpregnant guinea pigs
Following ivg and sc inoculation, serial serum samples
were obtained for analysis of IgG response and viral
load by quantitative PCR. The pattern and timing of ser-
oconversion is shown in Figure 1. Complete data was
available for 10/12 non-pregnant animals, and 10/12
pregnant animals. Statistical comparisons were

performed in these animals comparing both the two
routes of inoculation (sc versus ivg), irrespective of preg-
nancy status; and comparing pregnancy status (pregnant
or non-pregnant), irrespective of the route of inocula-
tion route.
All animals in the ivg and sc inoculation groups sero-

converted to GPCMV antigen, irrespective of pregnancy
status. Within each group (i.e., within the pregnant and
non-pregnant groups), ELISA titers were significantly
higher, at some time points, in animals infected by the
sc route compared to the ivg route (Figure 1A). Anti-
body titer in animals inoculated by sc route was signifi-
cantly higher than in animals challenged by the ivg
route at both week 8 (p < 0.01) and week 12 (p < 0.001)
post-infection. However, when titers were compared
across groups as a function of pregnancy (i.e. compari-
son of pregnant to non-pregnant animals following sc
inoculation, or comparison of pregnant to non-pregnant
animals following ivg inoculation), no significant differ-
ences attributable to pregnancy were observed. Animals
inoculated by both routes exhibited trends toward
higher titers and earlier seroconversion if they were
non-pregnant compared to pregnant animals, but these
comparisons were not statistically significant (Figure
1A). In all infected animals, the pattern of polypeptides
noted by western blot analyses after seroconversion,
using GPCMV virus particles as the target antigen, was
similar. However, western blot confirmed and extended
the results observed by ELISA with respect to apparent
differences in the temporal sequence of the antibody
response, and some qualitative aspects of the response
appeared different. Western blots using sera from ani-
mals inoculated by sc route demonstrated a more full
repertoire of bands at earlier time points (weeks 3-7)
than did the corresponding sera from animals inoculated
by the ivg route (Figure 1B), although such differences
were not apparent at later time points.

Pregnancy outcomes following sc and ivg challenge with
GPCMV
Nearly all animals challenged by both routes demon-
strated viremia (DNAemia). Of note, pregnancy was
associated with an earlier onset of DNAemia, irrespec-
tive of route of challenge. Only 1/10 animals in the
non-pregnant group demonstrated DNAemia at day 5
post-challenge (Figure 2A). In contrast, onset of primary
DNAemia occurred within 5 days post inoculation (dpi)
in 9/10 pregnant animals (Figure 2B). Although the tim-
ing of onset of DNAemia was different in pregnant ani-
mals, route of inoculation did not appear to impact the
magnitude of viral load. Among DNAemic sc challenged
pregnant animals, the mean systemic viral load at day
5 was 7.0 +/- 3.1 × 104 genomes/ml, whereas in ivg
challenged pregnant animals, the mean viral load was
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Figure 1 IgG ELISA and immunoblot responses following experimental infection by sc and ivg routes. Panel 1A, Pattern of
seroconversion following inoculation via sc (left panel) and ivg (right panel) routes assessed by ELISA. Data are expressed as reciprocal of
endpoint dilution titer based on limiting dilution ELISA assay as described in the text. Mean +/- SD is shown for each time point. IgG responses
trended higher in non-pregnant compared to pregnant animals but no statistically significant differences were noted. Within both groups, sc
inoculation elicited a higher IgG titer at week 8 post-inoculation (p < 0.01) and week 12 post-inoculation (p < 0.001) by ANOVA. Panel 1B,
representative western blot analysis of temporal sequence of antibody responses in non-pregnant animal inoculated by sc route (left side of
figure) and ivg route (right side of figure).
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5.8 +/- 0.7 × 104 genomes/ml (P = NS). In pregnant ani-
mals, primary DNAemia had cleared by day 11 post-
inoculation, but was followed by a secondary DNAemia
in 4/5 sc inoculated animals; all four of these pregnant
animals in this subgroup demonstrated at least one posi-
tive blood PCR between 15-27 dpi.

In non-pregnant animals (Figure 2A), primary DNAemia
was observed in most animals at day 9 (8/10 animals posi-
tive), irrespective of route of challenge. DNAemia tended
to be persistent in the sc challenged animals, but cleared
rapidly in most ivg challenged animals; for example, in 5/5
non-pregnant ivg-infected animals, DNAemia had cleared

Figure 2 DNAemia in experimentally inoculated animals. At indicated time points, blood (n = 5 animals/group) was obtained from guinea
pigs inoculated by ivg route (squares) or sc route (circles) and subjected to quantitative PCR for viral load determination. Each color represents
an individual guinea pig. Panel 2A, profile of DNAemia following inoculation of non-pregnant animals; Panel 2B, profile of DNAemia in pregnant
animals. DNAemia is noted at earlier time points (day 5 v. day 9) in pregnant animals. Biphasic pattern of DNAemia is noted in some animals.
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by day 20. In two of these animals, DNAemia recurred at
day 35 post-infection. No statistically significant differ-
ences were observed in the mean levels of DNAemia com-
paring sc and ivg challenged animals at any time point
(data not shown).

Pregnancy outcomes following sc and ivg challenge with
GPCMV
Pregnancy outcomes were compared in sc and ivg inocu-
lated dams (Table 1). Notably, pup mortality was no dif-
ferent between the two routes, but was significantly
elevated compared to uninfected historical controls [8].
In sc inoculated animals with evaluable pregnancy out-
comes (n = 5 litters), there were 15 live-born pups and 3
dead pups (mortality rate, 17%). In ivg inoculated animals
with evaluable litters (n = 5 litters), there were 14 live-
born pups and 3 dead pups (mortality rate, 18%; p = NS
vs. sc group). Dams that delivered <7 days after viral
challenge were not included in the analysis [8].
To test whether or not ivg inoculation was as effective as

sc challenge in eliciting placental and fetal infection, infec-
tion rates in live-born pups (based on analysis of pup
blood samples) and in all retrievable placentas were com-
pared using real-time PCR. In live-born pups born to the
ivg challenged dams, 4/14 pups (29%) had congenital
GPCMV infection (mean viral load, 5.6 +/- 2.1 × 104 gen-
omes/ml; Table 2). In those live-born pups born to the sc
challenged dams that were available for analysis, 6/10
(60%) pups had congenital GPCMV infection (p = NS
compared to ivg group). The mean viral load in live-born
pups born to dams in the sc inoculation group was 1.3 +/-
0.8 × 105 genomes/ml (p = NS compared to ivg group).
Placental infection was observed by PCR in both ivg-

and sc-challenged groups. A total of 9 placentas were
retrievable from this study (6 from the ivg group, from
two litters, and 3 from the sc group, from two litters). It
was not possible to match the placentas with individual
pups. All 9 placentas were PCR positive for GPCMV
DNA, with an identical mean viral load in placentas
from each group (1.3 × 104 genomes/mg).

Discussion
In this study, we compared sc and ivg inoculation of
GPCMV with respect to the ability of virus to: 1) elicit

immune responses; 2) establish viremia; 3) produce pup
mortality and congenital GPCMV infection. We found
that both routes of inoculation were able to produce vir-
emia and cause congenital infection. To our knowledge,
congenital GPCMV transmission following ivg challenge
has not previously been described. In a prior report of
ivg challenge in non-pregnant animals, GPCMV was
noted to disseminate to salivary gland, pancreas, and
lymph nodes, but pregnant animals were not examined
[9]. Our study confirmed the ability of GPCMV to
establish viremia following ivg inoculation in pregnant
and non-pregnant animals and extends these observa-
tions by demonstrating, in pregnant animals, the trans-
mission of virus to the placenta and fetus following this
route of challenge.
We found by quantitative blood PCR that both non-

pregnant and pregnant animals demonstrated DNAemia
following inoculation at either sc or ivg sites. Eight of
ten non-pregnant animals were DNAemic at one or
more time points post-inoculation, while ten of ten
pregnant animals were DNAemic. Notably, DNAemia
appeared earlier in pregnant animals than non-pregnant
animals after infection by either route: 9/10 pregnant
animals were DNAemic at day 5 post-inoculation, com-
pared to 1/10 in non-pregnant animals (Figure 2). This
observation suggests possible differences in innate
immune responses in pregnant animals compared to
non-pregnant animals. DNAemia demonstrated a bipha-
sic pattern in some animals. It is of interest to compare
these observations to those previously described in a
study where sc, intracardiac, and intranasal challenge
were compared in pregnant animals [10]. In this study,
a biphasic pattern of viremia was also observed.
In addition to maternal DNAemia, we were able to

demonstrate pup mortality and congenital GPCMV
infection in live-born pups delivered to dams infected
by both the sc and ivg route. Pup mortality, irrespective
of route of inoculation, was 17-18%, statistically signifi-
cantly higher than the baseline stillbirth rate observed in
guinea pigs, ~ 4% (p < 0.05, Fisher’s exact test; [8]).
A total of 4/14 pups (29%) born to ivg inoculated dams
had congenital GPCMV infection, compared to 6/10
(60%) of pups born to sc inoculated dams. In this study,
there was no discernable correlation between the timing
or magnitude of maternal DNAemia and the risk of pup
infection. While congenital infection rates and pup viral
DNA loads both trended higher in pups born to the sc
inoculated dams, these differences were not found to be
statistically significant.
It was of interest to compare the IgG responses by

ELISA following ivg and sc routes of infection. Animals
infected by the ivg route tended to demonstrate delayed
seroconversion to GPCMV, compared to the sc route,
regardless of their pregnancy status. Within both the

Table 1 Pregnancy outcomes in experimentally infected
dams

Route of Inoculation Pup Mortality

Litters Dead/Total (%)

Subcutaneous 5 3/18 (17%)

Intravaginal 5 3/17 (18%)

Total 10 6/35 (17%)*

*p < 0.05 compared to spontaneous miscarriage rate of 4% [8].

Olejniczak et al. Virology Journal 2011, 8:89
http://www.virologyj.com/content/8/1/89

Page 5 of 9



pregnant and non-pregnant groups, ELISA titers at week
8 and week 12 post-inoculation were significantly higher
in animals infected by the sc route, compared to the ivg
route. In the only other study that examined ivg inocu-
lation of GPCMV, antibody titers were comparable to
those following intraperitoneal or sc inoculation, but
temporal patterns of antibody response were not for-
mally compared [9]. Our data suggest that ivg infection
of guinea pigs may be associated with a delayed or
diminished IgG response compared to other routes of
infection. If a similar delay in the antibody response to
HCMV infection occurs in the setting of human preg-
nancy, this observation in the guinea pig model may be
of relevance to pregnant women who acquire primary or
recurrent infection through sexual transmission [1-4].
In this preliminary report, we chose to perform viral

challenge with GPCMV reconstituted from an infectious
BAC designated N13R10. The advantage of using
GPCMV reconstituted from the N13R10 BAC, com-
pared to the first generation GPCMV BAC, is that it
contains a more authentic and complete genome [11].
Unfortunately, serial passage of recombinant CMVs gen-
erated in fibroblasts results in selection for genomic var-
iants that are highly attenuated [12]. In particular,
HCMV and rhesus CMV rapidly lose epithelial and
endothelial cell tropisms upon serial passage in fibro-
blasts due to acquisition of mutations in one of three
viral proteins (in HCMV UL128, UL130, and UL131)
that are necessary for epithelial cell entry but dispensa-
ble for replication in fibroblasts [13-17]. An ATCC-
derived GPCMV lacking homologs to the HCMV
UL128-131 locus, GP129/GP131, is impaired for replica-
tion in vivo following sc inoculation, relative to virus
that retains GP129/GP131 [18,19]. That the GPCMV
generated from the N13R10 BAC retains virulence was
evidenced in this study by the ability of this virus to dis-
seminate and cause fetal transmission and disease, in
contrast to the first-generation GPCMV BAC, which
contains deletions, rearrangements, and mutations, and
is impaired in its pathogenic potential. Subsequent to
the initiation of this study, we identified that the
N13R10 BAC used to generate the virus stock used for
these inoculations has a 4-bp deletion/frame shift in
GP129 [20]. What role, if any that this 4-bp deletion
plays in modifying pathogenesis, compared to the
sequence in salivary gland-passaged virus, will be
addressed in future studies.

We are also in the process of determining the
sequence of N13R10, as well as salivary gland-passaged
GPCMV sequenced directly from tissue homogenate.
This evaluation will help identify sequence variability
that might play a role in pathogenesis, as well as provide
information about the viral genome sequence as it exists
in the context of the living animal. The FJ355434
sequence, although useful in providing a preliminary
outline of the structure of the genome, has been recog-
nized by ourselves [20] and others [21] to have limita-
tions, due to sequence errors as well as drift from
previous stocks. The FJ355434 sequence was predomi-
nately derived from overlapping plasmids constituting
Hind III and EcoR I restriction fragments and subclones
repeatedly passaged over 20 years in E. coli [22], the
only technically feasible source of template available for
sequence analysis at the time those studies were con-
ducted. Some plasmid clones dated back to the 1980 s
[23] and were maintained in E. coli strain HB101, a
recA13 strain in which the recombination frequency is
known to be substantially greater than that observed in
more contemporary recA1 strains [24]. It is therefore
not surprising that we have noted in current studies,
using deep sequencing, that there are sequence differ-
ences between the sequence derived largely from cloned
plasmids; sequence from the N13R10 BACmid; and,
more recently, sequence from viral DNA purified
directly both from salivary gland as well as from infected
fibroblasts [20]. The usefulness of N13R10 stems from
the fact that it is a defined, stable reagent, which can be
readily mutagenized or repaired for future in vivo stu-
dies. The demonstration of pathogenicity of this virus in
the current study will be useful in future studies dissect-
ing mechanisms of infection at mucosal sites of
infection.
In summary, the development of a model for ivg

transmission of GPCMV could have translational impor-
tance for the study of primary HCMV infection in
women. In this model, we found that all retrievable pla-
centas were infected. Since HCMV infection of the pla-
centa [25-27] makes a major contribution to fetal injury,
this observation further underscores the potential rele-
vance of this model. These studies suggested that ivg
infection with GPCMV was associated with a delayed
and diminished IgG response, compared to the more
traditional (but less physiologic) route of sc challenge.
Also of interest, pregnant guinea pigs demonstrated

Table 2 Congenital GPCMV transmission (pup DNAemia) in live-born pups

Route of Inoculation Pups Tested PCR+/Total Transmission Rate Mean Viral Load (Genomes/ml blood)

Subcutaneous 10 6/10* 60% 1.3 +/- 0.8 × 105

Intravaginal 14 4/14 29% 5.6 +/- 2.1 × 104

*Only 10 of the 15 live-born pups were available for analysis.
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earlier onset of DNAemia than non-pregnant animals,
regardless of the route of inoculation. The intrinsic
immunosuppression associated with pregnancy may
modify the maternal response to a primary HCMV
infection in the pregnant individual [28]. Strategies
designed to augment innate and/or adaptive immune
responses following ivg GPCMV challenge may have
relevance to future interventions for prevention of
HCMV infection in women and newborn infants.

Conclusions
Ivg challenge with GPCMV can produce infection, as
evidenced by an IgG response, DNAemia, and, for preg-
nant animals, placental and fetal infection, as well as
fetal disease and mortality. The timing and magnitude
of the antibody response differs between sc and ivg chal-
lenge, irrespective of the pregnancy state of the animal.
DNAemia ensues earlier in pregnant animals, both in
animals challenged by sc and ivg route. Finally, an infec-
tious GPCMV reconstituted from a full-length genomic
BAC cloned in E. coli is capable of inducing disease in
guinea pigs by both routes of challenge. Further devel-
opment of this model may have relevance to HCMV
infection, which is commonly transmitted sexually at
mucosal surfaces. Animal model studies using ivg inocu-
lation may be of greater translational value than the
more traditional but less biologically relevant sc route of
challenge.

Methods
Animal studies
Age-matched, Hartley strain female guinea pigs (both
pregnant and non-pregnant) were purchased from Har-
lan Industries Laboratories (Indianapolis, IN). At study
outset, non-pregnant animals were 200-300 g; pregnant
animals were 700-900 g, and gestation was estimated at
45 days. Animals were confirmed to be GPCMV-serone-
gative by ELISA prior to viral challenge. Experiments
were conducted using protocols approved by the
University of Minnesota Institutional Animal Care and
Use Committee (IACUC). Animals were weighed weekly
to monitor overall health.

Cells and virus
Virus used in this study was derived from bacterial arti-
ficial chromosome (BAC) clone of the GPCMV genome
designated N13R10 [11]. This BAC contains the full
GPCMV genome. Virus was reconstituted by transfec-
tion of N13R10 BAC DNA into guinea pig lung fibro-
blasts (GPL; ATCC CCL-158) as previously described.
Viral stocks were prepared by centrifugation and
titrated by inoculating 10-fold serial dilutions on to
GPL cells and counting fluorescent foci 48 hours
post-inoculation [29].

Viral challenge
A total of twelve non-pregnant guinea pigs were chal-
lenged with GPCMV (six by the sc inoculation, and six
by the ivg inoculation). A total of twelve pregnant gui-
nea pigs were also similarly challenged (six by ivg chal-
lenge, and six by the sc route). Complete data was
available for 10 animals (five by each route of infection)
in each group. Guinea pigs were matched for timed
pregnancies at ~45 days estimated gestation (approxi-
mately at the end of the second trimester of guinea pig
pregnancy). For viral infections, animals were inoculated
with 5 × 105 PFU of viral stock. For ivg inoculation, ani-
mals were anesthetized using isoflurane, and inoculation
was performed by inserting a lubricated polypropylene
catheter into the vagina at a depth of 5 cm. The volume
of the ivg inoculum did not exceed 100 μl. To ensure
that minimal leakage would occur following ivg infec-
tion, anaesthetized animals were maintain in a supine
position for one hour post-inoculation. Inoculation by
the sc route was performed in the dorsal neck in the
posterior occipital region. Following establishment of
infection, blood for serology and quantitative, real-time
PCR measurement of viral load was obtained by toenail
clip at weekly or biweekly intervals. Blood samples were
also collected from liveborn pups by toenail clip within
72 hours of delivery.

Immune assays
Enzyme linked immunosorbent assay (ELISA) for IgG
antibody was performed as previously described, utiliz-
ing GPCMV infected cell lysates as the target antigen.
Lysates from uninfected cells were used as a negative
control antigen [29]. For determination of antibody
titers, sera were initially diluted 1:80, then titrated by
additional 2-fold serial dilutions. The ELISA titer was
defined as the reciprocal of the highest dilution that
produced an absorbance >0.10 and was twice the
absorbance observed against the control antigen.
Western blots were performed on sera as described
elsewhere [30].

Viral load analysis and real-time quantitative PCR
DNA was extracted from whole blood or placental tissue
extracts (10% w/v) in 15% buffered sodium citrate using
a MagNA Pure® LC Total Nucleic Acid Isolation Kit
(Roche, Mannheim, Germany), following the manufac-
turer’s specifications. Primers and LC probes were
designed using Roche Lightcycler® Probe Design 2.0
software. These primers, based on the GP55 (encoding
glycoprotein B), were used: Forward, 5’-CTTC
GTGGTTGAACGGG-3’; Reverse, 5’-GTAGTCGAAAG
GACGTTGC-3’; Probe 1, 5’-TGGTGACCTTCGTTAC
CAATCCGTTTGGA-fluorescein; Probe 2, 5’-LC Red
640-CTTCGTGGTGTTCCTGTTCTGCGT-Phosphate.
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The PCR reaction mixtures were prepared using the
Lightcycler® Fast Start Master hybridization probes
(Roche Applied Sciences) supplemented with additional
2.5 mM MgCl2, 0.5 μM primers and 0.2 μM probes.
PCR was performed on the Lightcycler® instrument
using the following parameters: an initial 95°C for 10
minutes, then 45 cycles of denaturation at 95°C for 10 s,
annealing at 56°C for 15 s, elongation at 72°C for 15 s.
Data was collected by ‘single’ acquisition during the
annealing step. A melting curve analysis was also per-
formed and data acquired in the ‘continuous’ mode dur-
ing an increase in temperature from 45°C to 85°C. Copy
number was calculated based on signal ratio to control
DNA as described elsewhere [31]. DNA load was
expressed as total copy number/ml of blood or copy
number/mg of tissue (for placental analyses).

Statistical comparisons
Statistical comparisons were performed by ANOVA,
using the InStat 3.0 software program (GraphPad Soft-
ware, San Diego, CA). Following log transformation
antibody and viral load data were compared across all
groups. All comparisons were two-tailed.

Acknowledgements
This work was supported by grants R01HD044864, HD038416 and
R03AI083919-0109 from the National Institutes of Health, and an Infectious
Diseases Society of America summer research fellowship (to MJO).

Author details
1Center for Infectious Diseases and Microbiology Translational Research,
University of Minnesota Medical School, 2001 6th Street SE, Minneapolis, MN
55455, USA. 2Virginia Commonwealth University, Department of Pediatrics,
Division of Infectious Diseases, Richmond, VA 23298, USA.

Authors’ contributions
MJO conducted the experiments described in the paper. KYC developed
and carried out the real-time PCR assays. MAM conceptualized the N13R10
virus, and assisted in manuscript preparation and data analysis. XC
generated the N13R10 virus. MRS developed the concept for the study,
analyzed data, and prepared the manuscript. All authors read and approved
the manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 28 January 2011 Accepted: 3 March 2011
Published: 3 March 2011

References
1. Handsfield HH, Chandler SH, Caine VA, Meyers JD, Corey L, Medeiros E,

McDougall JK: Cytomegalovirus infection in sex partners: evidence for
sexual transmission. J Infect Dis 1985, 151:344-8.

2. Collier AC, Handsfield HH, Roberts PL, DeRouen T, Meyers JD, Leach L,
Murphy VL, Verdon M, Corey L: Cytomegalovirus infection in women
attending a sexually transmitted disease clinic. J Infect Dis 1990,
162:46-51.

3. Staras SA, Flanders WD, Dollard SC, Pass RF, McGowan JE Jr, Cannon MJ:
Influence of sexual activity on cytomegalovirus seroprevalence in the
United States, 1988-1994. Sex Transm Dis 2008, 35:472-9.

4. Collier AC, Handsfield HH, Ashley R, Roberts PL, DeRouen T, Meyers JD,
Corey L: Cervical but not urinary excretion of cytomegalovirus is related

to sexual activity and contraceptive practices in sexually active women.
J Infect Dis 1995, 171:33-8.

5. Lang DJ, Kummer JF: Cytomegalovirus in semen: observations in selected
populations. J Infect Dis 1975, 132:472-3.

6. Cannon MJ, Davis KF: Washing our hands of the congenital
cytomegalovirus disease epidemic. BMC Public Health 2005, 5:70.

7. Whitley RJ: Congenital cytomegalovirus infection: epidemiology and
treatment. Adv Exp Med Biol 2004, 549:155-60.

8. Schleiss MR: Nonprimate models of congenital cytomegalovirus (CMV)
infection: gaining insight into pathogenesis and prevention of disease in
newborns. ILAR J 2006, 47:65-72.

9. Barron AL, Menna JH, Moses EB, Rank RG, Ryu H, White HJ: Response of
guinea pigs to intravaginal inoculation with guinea pig cytomegalovirus.
Sex Transm Dis 1989, 16:41-6.

10. Griffith BP, Chen M, Isom HC: Role of primary and secondary maternal
viremia in transplacental guinea pig cytomegalovirus transfer. J Virol
1990, 64:1991-7.

11. Cui X, McGregor A, Schleiss MR, McVoy MA: Cloning the complete guinea
pig cytomegalovirus genome as an infectious bacterial artificial
chromosome with excisable origin of replication. J Virol Methods 2008,
149:231-9.

12. Dargan DJ, Douglas E, Cunningham C, Jamieson F, Stanton RJ, Baluchova K,
McSharry BP, Tomasec P, Emery VC, Percivalle E, Sarasini A, Gerna G,
Wilkinson GW, Davison AJ: Sequential mutations associated with
adaptation of human cytomegalovirus to growth in cell culture. J Gen
Virol 2010, 91:1535-46.

13. Hahn G, Revello MG, Patrone M, Percivalle E, Campanini G, Sarasini A,
Wagner M, Gallina A, Milanesi G, Koszinowski U, Baldanti F, Gerna G:
Human cytomegalovirus UL131-128 genes are indispensable for virus
growth in endothelial cells and virus transfer to leukocytes. J Virol 2004,
78:10023-33.

14. Ryckman BJ, Jarvis MA, Drummond DD, Nelson JA, Johnson DC: Human
cytomegalovirus entry into epithelial and endothelial cells depends on
genes UL128 to UL150 and occurs by endocytosis and low-pH fusion. J
Virol 2006, 80:710-22.

15. Ryckman BJ, Rainish BL, Chase MC, Borton JA, Nelson JA, Jarvis MA,
Johnson DC: Characterization of the human cytomegalovirus gH/gL/
UL128-131 complex that mediates entry into epithelial and endothelial
cells. J Virol 2008, 82:60-70.

16. Wang D, Shenk T: Human cytomegalovirus UL131 open reading frame is
required for epithelial cell tropism. J Virol 2005, 79:10330-8.

17. Lilja AE, Shenk T: Efficient replication of rhesus cytomegalovirus variants
in multiple rhesus and human cell types. Proc Natl Acad Sci USA 2008,
105:19950-5.

18. Nozawa N, Yamamoto Y, Fukui Y, Katano H, Tsutsui Y, Sato Y, Yamada S,
Inami Y, Nakamura K, Yokoi M, Kurane I, Inoue N: Identification of a 1.6 kb
genome locus of guinea pig cytomegalovirus required for efficient viral
growth in animals but not in cell culture. Virology 2008, 379:45-54.

19. Yamada S, Nozawa N, Katano H, Fukui Y, Tsuda M, Tsutsui Y, Kurane I,
Inoue N: Characterization of the guinea pig cytomegalovirus genome
locus that encodes homologs of human cytomegalovirus major
immediate-early genes, UL128, and UL130. Virology 2009, 391:99-106.

20. McVoy M, Schleiss MR, Tamburro K, Yang D, Cui X, Dittmer D: Mutations
associated with attenuation identified by sequencing a pathogenic
guinea pig cytomegalovirus (GPCMV) genome from infected salivary
gland extracts. American Society for Virology Abstracts (30th Annual Meeting)
2011, 925.

21. Kanai K, Yamada S, Yamamoto Y, Fukui Y, Kurane I, Inoue N: Re-evaluation
of the genome sequence of guinea pig cytomegalovirus. J Gen Virol ,
2011, 92.

22. Schleiss MR, McGregor A, Choi KY, Date SV, Cui X, McVoy MA: Analysis of
the nucleotide sequence of the guinea pig cytomegalovirus (GPCMV)
genome. Virol J 2008, 5:139.

23. Gao M, Isom HC: Characterization of the guinea pig cytomegalovirus
genome by molecular cloning and physical mapping. J Virol 1984,
52:436-47.

24. Willetts NS, Clark AJ, Low B: Genetic location of certain mutations
conferring recombination deficiency in Escherichia coli. J Bacteriol 1969,
97:244-9.

25. Yamamoto-Tabata T, McDonagh S, Chang HT, Fisher S, Pereira L: Human
cytomegalovirus interleukin-10 downregulates metalloproteinase activity

Olejniczak et al. Virology Journal 2011, 8:89
http://www.virologyj.com/content/8/1/89

Page 8 of 9

http://www.ncbi.nlm.nih.gov/pubmed/2981937?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2981937?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2162370?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2162370?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18354346?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18354346?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7798680?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7798680?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/171317?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/171317?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15967030?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15967030?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15250528?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15250528?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16391432?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16391432?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16391432?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2547250?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2547250?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2157867?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2157867?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18359520?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18359520?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18359520?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20479471?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20479471?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15331735?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15331735?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16378974?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16378974?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16378974?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17942555?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17942555?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17942555?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16051825?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16051825?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19064925?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19064925?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18656220?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18656220?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18656220?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19559454?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19559454?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19559454?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21270288?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21270288?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19014498?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19014498?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19014498?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6092669?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6092669?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4884815?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4884815?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14990702?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14990702?dopt=Abstract


and impairs endothelial cell migration and placental cytotrophoblast
invasiveness in vitro. J Virol 2004, 78:2831-40.

26. LaMarca HL, Nelson AB, Scandurro AB, Whitley GS, Morris CA: Human
cytomegalovirus-induced inhibition of cytotrophoblast invasion in a first
trimester extravillous cytotrophoblast cell line. Placenta 2006, 27:137-47.

27. Schleiss MR, Aronow BJ, Handwerger S: Cytomegalovirus infection of
human syncytiotrophoblast cells strongly interferes with expression of
genes involved in placental differentiation and tissue integrity. Pediatr
Res 2007, 61:565-71.

28. Lilleri D, Fornara C, Furione M, Zavattoni M, Revello MG, Gerna G:
Development of human cytomegalovirus-specific T cell immunity during
primary infection of pregnant women and its correlation with virus
transmission to the fetus. J Infect Dis 2007, 195:1062-70.

29. Bourne N, Schleiss MR, Bravo FJ, Bernstein DI: Preconception immunization
with a cytomegalovirus (CMV) glycoprotein vaccine improves pregnancy
outcome in a guinea pig model of congenital CMV infection. J Infect Dis
2001, 183:59-64.

30. Bu FR, Griffith BP: Immunoblot analysis of the humoral immune response
to cytomegalovirus in non-pregnant and pregnant guinea pigs. Arch
Virol 1990, 110:247-54.

31. Crumpler MM, Choi KY, McVoy MA, Schleiss MR: A live guinea pig
cytomegalovirus vaccine deleted of three putative immune evasion
genes is highly attenuated but remains immunogenic in a vaccine/
challenge model of congenital cytomegalovirus infection. Vaccine 2009,
27:4209-18.

doi:10.1186/1743-422X-8-89
Cite this article as: Olejniczak et al.: Intravaginal cytomegalovirus (CMV)
challenge elicits maternal viremia and results in congenital transmission
in a guinea pig model. Virology Journal 2011 8:89.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Olejniczak et al. Virology Journal 2011, 8:89
http://www.virologyj.com/content/8/1/89

Page 9 of 9

http://www.ncbi.nlm.nih.gov/pubmed/14990702?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14990702?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15921739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15921739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15921739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17413859?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17413859?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17413859?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17330798?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17330798?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17330798?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11087203?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11087203?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11087203?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2156487?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2156487?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19389443?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19389443?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19389443?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19389443?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	ELISA response to sc or ivg infection in pregnant and nonpregnant guinea pigs
	Pregnancy outcomes following sc and ivg challenge with GPCMV
	Pregnancy outcomes following sc and ivg challenge with GPCMV

	Discussion
	Conclusions
	Methods
	Animal studies
	Cells and virus
	Viral challenge
	Immune assays
	Viral load analysis and real-time quantitative PCR
	Statistical comparisons

	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


