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A B S T R A C T

Background: The development of therapeutic interventions for Parkinson disease (PD) is challenged by disease
complexity and subjectivity of symptom evaluation. A Parkinson's Disease Related Pattern (PDRP) of glucose
metabolism via fluorodeoxyglucose positron emission tomography (FDG-PET) has been reported to correlate
with motor symptom scores and may aid the detection of disease-modifying therapeutic effects.
Objectives: We sought to independently evaluate the potential utility of the PDRP as a biomarker for clinical
trials of early-stage PD.
Methods: Two machine learning approaches (Scaled Subprofile Model (SSM) and NPAIRS with Canonical
Variates Analysis) were performed on FDG-PET scans from 17 healthy controls (HC) and 23 PD patients. The
approaches were compared regarding discrimination of HC from PD and relationship to motor symptoms.
Results: Both classifiers discriminated HC from PD (p < 0.01, p < 0.03), and classifier scores for age- and
gender- matched HC and PD correlated with Hoehn & Yahr stage (R2=0.24, p < 0.015) and UPDRS
(R2=0.23, p < 0.018). Metabolic patterns were highly similar, with hypometabolism in parieto-occipital and
prefrontal regions and hypermetabolism in cerebellum, pons, thalamus, paracentral gyrus, and lentiform nucleus
relative to whole brain, consistent with the PDRP. An additional classifier was developed using only PD subjects,
resulting in scores that correlated with UPDRS (R2= 0.25, p < 0.02) and Hoehn & Yahr stage (R2= 0.16,
p < 0.06).
Conclusions: Two independent analyses performed in a cohort of mild PD patients replicated key features of the
PDRP, confirming that FDG-PET and multivariate classification can provide an objective, sensitive biomarker of
disease stage with the potential to detect treatment effects on PD progression.

1. Introduction

The complex effects of Parkinson disease (PD), which include multi-
faceted motor symptoms, cognitive effects, and non-motor symptoms,
pose challenges in measuring treatment effect upon disease progression.
Although the Unified Parkinson's Disease Rating Scale III (UPDRS-III)
(Goetz et al., 2008) provides a broadly used measure of motor dete-
rioration, more sensitive, objective measures of decline are needed
(Heldman et al., 2011). Several published reports have explored the

potential of glucose metabolism measurement using 2-deoxy-flor-
oglucose positron emission tomography (FDG-PET) as a biomarker of
PD progression for clinical trials. The present study sought to determine
whether the Parkinson's Disease Related Pattern (PDRP) (Eidelberg
et al., 1994; Ma et al., 2007) observed in previously published FDG-PET
studies could be independently replicated in early stage PD subjects.

Regional cerebral glucose metabolism, the primary energy source
for neuronal activity (Dienel and Hertz, 2001), reflects changes in
neuronal function due to disease, therapeutic intervention, and
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cognitive or physical activity. Using FDG-PET and multivariate machine
learning techniques, a Parkinson's Disease Related Pattern (PDRP) has
been identified, characterized by hypometabolism in parieto-occipital
and premotor cortices concomitant with metabolic preservation or
hypermetabolism in cerebellum, pons, thalamus and lentiform nucleus
(Eidelberg et al., 1994; Ma et al., 2007; Tomše et al., 2017a). The
pattern is consistent with regional findings in other studies in PD pa-
tients (Kuhl et al., 1984; Bohnen et al., 1999; Bohnen et al., 2011). The
PDRP has been demonstrated to correlate with cross-sectional disease
severity and UPDRS motor scores (Eidelberg et al., 1994; Ma et al.,
2007; Huang et al., 2013; Wu et al., 2013), longitudinal disease pro-
gression (Huang et al., 2007), and therapeutic response (Feigin et al.,
2001; Feigin et al., 2007). Subjects with Parkinson's symptoms but
without dopaminergic deficit have been found not to express the PDRP
in contrast to PD patients with dopaminergic deficit (Eckert et al.,
2007). It has also been applied to evaluate scans in comparison to other
similarly derived disease related patterns to discriminate between
idiopathic PD, multiple system atrophy, and progressive supranuclear
palsy (Teune et al., 2013; Mudali et al., 2015; Tripathi et al., 2016). The
pattern has been demonstrated using several different data sets from a
variety of countries and ethnic populations (Eidelberg et al., 1994; Ma
et al., 2007; Teune et al., 2013; Wu et al., 2013; Tomše et al., 2017a),
PET scanners (Moeller et al., 1999), and reconstruction algorithms
(Tomše et al., 2017b). The published PDRP studies to-date share a
common analytic approach and all but one of these studies share at
least one common author/co-author despite evaluating several unique
data sets. The PDRP has yet to be confirmed in a unique data set by an
independent group of authors using different analytic techniques.

The primary objective of our work was to confirm that the PDRP
could be detected in a mild PD patient population using two different
machine learning approaches by an independent research group. The
second objective was to evaluate the relationship between metabolic
pattern expression and motor scores. The first machine learning ap-
proach used the Standard Subscale Profile (SSP) Method (Moeller and
Strother, 1991) that has identified the PDRP in multiple PD populations
as described above. The second approach used a different image pre-
processing sequence and applied Canonical Variates Analysis within the
Non-parametric Activation and Influence Reproducibility Resampling
(NPAIRS) framework (Strother et al., 2002; Strother et al., 2010).
NPAIRS was previously developed to address the common problem of
overfitting in machine learning, and uses intensive, iterative split half
resampling of the data set to generate metrics of reproducibility (cor-
relation between models derived for each half of the data set) and
prediction (correct classification of test half based upon training half)
for selection of model parameters that optimize classifier stability and
generalizability.

2. Methods

2.1. Study participants

FDG-PET data were acquired in 17 Healthy Controls (HC) and 25 PD
patients at the Tel-Aviv Sourasky Medical Center, between the years
2011 and 2015. The data were collected under Institutional Review
Board approval with informed consent by participants. Subjects were
characterized (in the on medication state) with the Hoehn & Yahr (H &
Y), Unified Parkinson's Disease Rating Scale (UPDRS) and Montreal
Cognitive Assessment (MoCA) scales (Nasreddine et al., 2005). PD pa-
tients were of both sporadic and autosomal dominant genetic origin
(G2019S-LRRK2 mutation).

2.2. Image acquistion

All FDG-PET scans were acquired in the morning at approximately
11 am. Patients were asked to stop anti-Parkinson medication on the
day of the PET scan. Blood glucose levels were measured prior to the

injection of fluorodeoxyglucose and verified to be< 160mg/ml in all
study patients. 3D brain PET acquisition was performed using a GE
Discovery 690 PET-CT scanner 30min after the IV administration of 5-
7mCi (185-259MBq) fluorodeoxyglucose over a period of 15min.
Subjects remained with eyes open at rest in a dimly lit room during the
tracer uptake period. Images were attenuation corrected using a CT
scan of 120 kV and automated mA, and reconstructed using a 2.5mm
slice thickness and the standard PET-CT reconstruction algorithms on
the GE 690 Discovery system.

2.3. Data quality control and processing

Reconstructed images, produced in static form (a single timeframe),
were visually inspected for anatomical completeness and to ensure
suitability for processing. Images were spatially transformed to a
common PET template using a PET to PET transformation in the
Statistical Parametric Mapping software SPM8 (http://www.fil.ion.ucl.
ac.uk/spm/software/spm8). Images were smoothed for group analysis
using an 8mm Gaussian filter kernel, full width at half maximum.

2.4. Multivariate pattern analysis

As noted above, the classifier development was implemented using
two approaches: (1) Scaled Subprofile Model (SSM) analysis (Moeller
and Strother, 1991; Eidelberg et al., 1994; Spetsieris and Eidelberg,
2011) and (2) Canonical Variates Analysis (CVA, a form of linear dis-
criminant analysis) as implemented within NPAIRS (Strother et al.,
2002; Strother et al., 2010). The two approaches are similar in their use
of supervised learning with defined training classes, Principal Compo-
nent Analysis (PCA) to identify differentiating features between groups,
and linear discriminant analysis to combine selected Principal Com-
ponents (PCs) into a final model (set of patterns). The approaches dif-
fered in the intensity normalization methods applied to the images that
were input to the machine learning model (SSM vs. z-scoring), the al-
gorithm applied to mathematically combine selected Principal Com-
ponents, and the method of using iterative data resampling to create a
consensus classifier (NPAIRS).

When applying the SSM approach, the logarithm of each voxel value
was calculated for each scan, the mean of the scan volume was removed
from the voxels within the scan, and the mean of each voxel across all
scans was additionally removed from that voxel (Moeller and Strother,
1991; Spetsieris and Eidelberg, 2011). The pre-processed scans, desig-
nated into training groups, were input to PCA, which identified un-
correlated patterns discriminating groups. Principal Components (PCs)
were chosen and combined using logistic regression. To verify agree-
ment between our implementation of SSM/PCA and that used in other
published studies, analyses were performed using both published soft-
ware (http://www.fil.ion.ucl.ac.uk/spm/ext) (Peng et al., 2014) and in-
house software (www.admdx.com). In the initial analysis, the number
of PCs was selected to include those that accounted for> 5% of var-
iance.

In the NPAIRS CVA approach, PCA was applied for feature reduction
to images that had been intensity normalized by z-scoring to whole
brain, grouped into pre-specified training classes (defined as in the SSM
approach), and mean centered. CVA was then performed to combine
selected PCs into a set of intensity patterns that best accounted for
variance across the classes. For comparison to SSM, the same number of
PCs was selected as the basis for CVA as was selected for the SSM ap-
proach. A consensus pattern was produced based upon the multiple
split-half resampling iterations. A numeric canonical variates score (CV
score) was calculated for each scan, reflecting the degree to which the
scan expressed the associated pattern of intensities.

For each classification model, results were tested using a Leave-One-
Out algorithm that allows testing of each data point without in-
corporating that data into model development. For the set of N subjects,
the classifier was developed N times, each time leaving out a different
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subject and using N-1 subjects to develop the model, with PC selection
based upon model performance, against which the Nth subject's scan
was scored. This produced a data set consisting entirely of test scores,
using the limited available number of subjects. As a separate, qualita-
tive assessment, the resulting patterns were compared to those that
have been published using completely different subject cohorts, and
tested using independent subjects.

The same images, smoothing, and whole brain mask were used for
both analysis approaches. Image processing and classifier development
and testing (other than that performed using the on-line SSM software
for verification) were performed using PipelineMAX™ software (www.
admdx.com), which enables configuration of image processing pipe-
lines, implements NPAIRS CVA and other classification approaches,
produces metrics enabling comparison of classifier performance, per-
forms nested Leave-N-Out testing, and creates a complete audit trail.
Fig. 1 in the supplementary material summarizes the SSM and NPAIRS
CVA approaches employed.

2.5. Classifier design

Healthy controls compared to Parkinson's disease. The first analysis
was based upon a comparison of the 17 HC and 23 PD subjects who
passed QC. Two subjects were excluded from analysis: one due to poor
spatial warping and a second because their UPDRS score was in the
normal range despite a clinical diagnosis of PD. Analyses were first
performed without further age-matching, in order to make use of the
subjects available. Initial analyses were also performed without in-
troducing age as a covariate or pattern projection into the model de-
velopment, to systematically examine potential effects. Age influence
was then examined by evaluating classifier scores for correlation with
age within the HC group and separately within the PD group. Using HC
subgroups stratified by age (10 HC age < 50 years of age vs. 7 HC
subjects ≥50 years), an age-focused classifier was developed to com-
pare potential overlap with the PD pattern. The pre-specified age

partition cut-off of (age 50) was selected in order to balance the number
of subjects and age range across groups. An additional classifier com-
paring PD subjects to healthy controls was then developed using a
subset of age and gender matched groups (12 HC, 12 PD).

3. Motor symptom severity within Parkinson's subjects

Given that the PD cohort in the present study were characterized on
the mild end of the PD spectrum, analyses of symptom severity were
focused on discrimination between Hoehn & Yahr Stages I and II and on
correlation to motor scores. Accordingly, a classifier was developed
consisting of two classes: H&Y Stage I (N= 13) and the combination of
H&Y Stage II (N= 9) and III (N= 1). Age and MoCA scores were ba-
lanced across the two classes. Resulting classifier scores from Leave-
One-Out testing were examined in relationship to H&Y score and to
UPDRS scores.

4. Individual subject examination

Z-score images were generated for individual subjects, using the HC
set as the reference set, and dividing the reference set into a younger
and older reference group to minimize age-related impact. The images
of PD subjects were examined to explore whether H&Y stage I subjects
might exhibit asymmetry or other differences relative to stage II sub-
jects.

4.1. Statistical analyses

For each classifier, scores (CV or SSM) were compared across di-
agnostic groups using descriptive statistics. Effect sizes (E.S.) were
calculated using the software tool G*Power (Faul et al., 2007; Faul
et al., 2009). Correlation analyses were performed using Pearson's R (or
Spearman's r when group sizes were 12 or less), and between-group
comparisons and translation of r-values to p-values were performed via

Fig. 1. (a) SSM derived training pattern, (b) NPAIRS CVA derived consensus training pattern, (c) Leave-One-Out consensus test pattern from NPAIRS CVA, and
comparison of Leave-One-Out test CV1 mean (d) and individual (e) scores for HC vs. PD subjects. Higher CV1 scores reflect greater magnitude of expression of the
PDRP pattern. Red regions represent areas of increased metabolism, blue regions represent areas of decreased metabolism (relative to whole brain metabolism). Error
bars show standard error of the mean. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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two-tailed t-test (p < 0.05).

5. Results

5.1. Subjects

Demographic and clinical characteristics of the subjects are shown
in Table 1. At time of scan (in the on medication state), fifteen subjects
were clinically diagnosed as Hoehn & Yahr (H&Y) Stage I, 9 as H&Y
Stage II, and 1 as H&Y Stage III (mean=1.44 ± 0.58 S.D.). Age ranged
from 29 to 82 years. The HC group was somewhat younger than the PD
group (HC vs. all PD, p < 0.01; HC vs. PD H&Y stage 1 p < 0.002),
although age varied widely within each group. There was no significant
age difference between PD subjects of H&Y Stage I vs. Stages II and III.

UPDRS scores correlated with and differed between H&Y stages;
Stage I= 10.7 ± 3.1, Stage II= 21.8 ± 4.9, and Stage III= 32 (one
subject). The HC group had higher MoCA scores than the PD group
(p < 0.01). MoCA scores were not significantly different between PD
subjects of H&Y Stage I vs. Stages II and III. Mean scores for each PD H&
Y stage group were similar to the cutoff of 26 to discriminate normal
cognition from impairment identified in the literature (Nasreddine
et al., 2005; Hoops et al., 2009; Dalrymple-Alford et al., 2010; Kandiah
et al., 2014) and higher (more normal) than a recently proposed revised
cutoff of 23 (Carson et al., 2018). Three HC and 12 PD had scores below
26, with a minimum score of 23.

5.2. 2-class analysis of HC and PD

Fig. 1 presents the training patterns produced by SSM (2a) and
NPAIRS CVA (2b), and the Leave-One-Out consensus pattern and nu-
meric group means (and SEM) produced by NPAIRS CVA (2c) for the
two-class comparison of 17 HC and 23 PD subjects (13 H&Y Stage I, 9
Stage II, 1 Stage III). Patterns produced by SSM and NPAIRS CVA were
both characterized by decreased glucose metabolism in posterior par-
ietal, occipital, and premotor (and medial frontal) cortices, and in-
creased glucose metabolism in cerebellum, pons, thalamus, lentiform
nucleus (globis pallidus, putamen), and paracentral gyrus (all relative
to whole brain). Premotor cortex hypometabolism extended into the
anterior cingulate cortex. In Leave-One-Out testing, the patterns dis-
criminated HC from PD (SSM p < 0.016, E.S. = 0.71; NPAIRS CVA
p < 0.003, E.S. = 0.99).

5.3. Age effects

The CV1 scores of both two-class classifiers derived using 17 HC and
23 PD subjects correlated with age, both within the PD group (NPAIRS
classifier R-squared= 0.30, p < 0.007) and within the HC group
(NPAIRS classifier R-squared=0.36, p < 0.011).

The 2-class NPAIRS comparison of 10 HC age < 50 to 7 HC
age≥ 50 from the data set produced a pattern of hypometabolism and
hypermetabolism relative to whole brain that discriminated the two age
groups (p < 0.001). As shown in Fig. 2, this pattern was dominated by
a regional decrease extending across premotor, medial frontal, and

anterior cingulate regions that shared substantial overlap with the
pattern derived in the comparison of HC vs. PD.

5.4. Age and gender matched classifiers

The NPAIRS classifier developed using an age- and gender-matched
subset of the data (12 HC, 12 PD: 6 H&Y stage I, 5 stage II, 1 stage III)
also produced a PDRP like pattern that differentiated HC and PD, shown
in Fig. 3. HC and PD group separation was significant (p < .010, Effect
Size: −1.113, Hedge's g, −1.15, Cohen's d) in Leave-One-Out testing.
Compared to the pattern of Fig. 2, the CV1 pattern derived using the
age-matched training set showed more occipital cortex hypometabo-
lism in transaxial slices, and less hypometabolism in the premotor,
prefrontal, and anterior cingulate structures that dominated the age
pattern.

There was no correlation between CV1 score and age in either HC
subjects or PD subjects. CV1 scores correlated with H&Y stage (R-
squared=0.24, p < 0.015, Fig. 3c) and with UPDRS scores (R-
squared=0.23, p < 0.018, Fig. 3d).

The SSM age- and gender-matched comparison of HC and PD also
produced a pattern that differentiated HC and PD (p < 0.03). As with
the NPAIRS analysis, there was no correlation between pattern scores
and age, but the SSM scores correlated with H&Y stage (R-
squared=0.20, p < 0.029) and UPDRS (R-squared=0.18,
p < 0.039).

5.5. Hoehn & Yahr stage classifier

The Leave-One-Out results of the NPAIRS CVA analysis of two
training classes consisting of PD subjects of H&Y Stage I (N= 13,
UPDRS score 11.1 ± 2.8) and stage II & III (N=9 stage II, 1 stage III,
UPDRS score 22.8 ± 5.6), are shown in Fig. 4. The PDRP pattern
correlated with UPDRS (R-squared= 0.25, p < 0.015) and H&Y score
(R-squared 0.16, p < 0.06). A relationship was observed between CV1
scores and age (R-squared=0.175), but no correlation remained after
removal of one outlier (R-squared=0.02) (data not shown).

5.6. Examination of individual subjects

Inspection of individual subject z-score images showed metabolic
asymmetry in only certain H&Y stage I subjects, with the higher clas-
sifier scores for stage II more attributable to the magnitude and extent
of neurodegeneration as found by Tang et al. (Tang et al., 2010). In
particular, z-score images of Stage II patients as compared to Stage I
had more extensive occipital hypometabolism, previously shown to
correlate with disability in Parkinson's Disease (Bohnen et al., 1999).

6. Discussion

Mounting FDG-PET evidence from several unique Parkinson's pa-
tient cohorts (published in> 15 papers) seems to converge to support a
Parkinson's Disease Related Pattern (PDRP) reflecting distinct regional
cerebral hypo- and hyper-metabolism in Parkinson's disease relative to

Table 1
Subject characteristics (on medication).

Group N Age mean (S.D.) range Sex (%F) Disease duration (years) UPDRS motor H&Y MoCA

Controls (HC) 17 47.6 (11.8) 32 to 73 47% n/a 1.3 (1.7) 0.0 (0.0) 27.4 (2.1)
PD (all) 25 59.0 (13.0) 29 to 82 35% 1.6 (1.3) 15.5 (7.4) 1.4 (0.6) 25.6 (2.0)
H&Y Stage I 15 61.4 (10.0) 42 to 82 40% 1.4 (1.1) 10.7 (3.1) 1.0 (0.0) 25.7 (1.7)
H&Y Stage II 9 57.8 (16.4) 29 to 80 33% 1.9 (1.7) 21.8 (4.9) 2.0 (0.0) 26.1 (2.2)
H&Y Stage III 1 37 0% 1.0 32 (n/a) 3.0 (0.0) 26 (n/a)

Values are mean, (S.D.) and range where applicable
N=number of subjects; S.D. = standard deviation; F= female; UPDRS=Unified Parkinson's Disease Rating Scale; H&Y=Hoehn & Yahr; MoCA=Montreal
Cognitive Assessment; HC=Healthy Controls; PD=Parkinson Disease.
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whole brain (Eidelberg et al., 1994; Ma et al., 2007; Teune et al., 2013;
Wu et al., 2013; Tomše et al., 2017a). However, prior to the present
study, the literature lacked confirmation of the PDRP in more than one
independent data set not associated with landmark author, and the
impact of variation in pre-processing, training models, and model

optimization methods was not explored. The findings from the present
independent analyses on a unique dataset appear to provide the ne-
cessary confirmatory evidence to support the previously published
PDRP. The pattern observed in the present study is robust to the var-
iations applied in preprocessing and pattern optimization, as evidenced

Fig. 2. Age-related pattern identified by NPAIRS CVA in the comparison of HC subjects< 50 and≥ 50 years of age (graph and right image). The yellow oval focuses
on the overlap between the age pattern (right) and the pattern comparing HC and PD subjects (left), where the PD subjects were somewhat older than HC on average.
Results are split-half test results (consensus pattern generated using test results of many iterative data splits). Horizontal bars represent group means.

Fig. 3. Results of NPAIRS CVA Leave-One-Out test results for comparison of age-matched, gender-matched HC and PD subjects. (a) Pattern of regional hypome-
tabolism (blue) and hypermetabolism (red) relative to whole brain glucose metabolism that discriminated groups; b) CV1 scores; c) Correlation between CV1 score
and H&Y stage; and (d) Correlation between CV1 score and UPDRS. higher the CV1 scores reflect greater magnitude of expression of the PDRP relative to whole brain
shown in a). Horizontal bars in (b) represent group means; Effect size=−1.11 (Hedge's g). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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by the comparison between the SSM and NPAIRS CVA implementa-
tions. The key features observed in the present findings are consistent
with published studies including hypometabolism in parieto-occipital
and premotor/prefrontal cortices and hypermetabolism (or preserved
metabolism) in cerebellum, pons, thalamus, lentiform nucleus, and
paracentral gyrus, relative to whole brain.

In addition to the independent replication, the present study extends
our knowledge of the PDRP by demonstrating evidence of the PDRP in a
PD cohort with early disease, with lower overall average H & Y scores
(mean H &Y=1.44 ± 0.58) than previously reported PD cohorts.
Notably, previously published studies often derived PDRP patterns
using patient cohorts across a broader spectrum of H&Y stages I to V.
The fact that a robust pattern could be derived even from among pa-
tients with mild illness severity suggests that the PDRP can be detected
across all stages of Parkinson's Disease. This finding is consistent with
previous studies however with the following noted caveats. Tripathi
et al., 2016 observed the PDRP to differentiate PD from Multiple System
Atrophy (MSA) and Progressive Supranuclear Palsy (PSP) in similarly
mild subjects (mean H&Y in mild subgroup was 1.7 ± 0.5) (Tripathi
et al., 2016). Huang et al., 2007 observed longitudinal progression of
the PDRP pattern in subjects with a mean H&Y baseline score of
1.2 ± 0.58 (Huang et al., 2007). Direct comparison of these studies to
the current study is limited in by the fact that the PDRP had been pre-
derived using a different set of subjects with a broader spectrum of
disease severity (Ma et al., 2007), whereas the current study demon-
strated that the pattern could also be derived in a mild population.

Our analyses further demonstrated the potential for detecting dis-
ease progression within the most mild H&Y stages. For example, Leave-
One-Out test results from the training of a classifier using subjects from
H&Y Stages I and II (one stage III) correlated with UPDRS motor scores
and H&Y scores (R-squared=0.25 and 0.16, respectively; Fig. 4). Since
this classifier included only subjects with a diagnosis of PD, the corre-
lations were driven by PD severity rather than by a “binary” difference
between HC and PD. The pattern derived using age- and gender-mat-
ched subjects also showed correlation of pattern expression with

UPDRS scores and H&& scores (R-squared=0.24 and 0.23, respec-
tively; Fig. 3). However, although pattern scores generally increased
with motor severity among the PD patient subset, the correlation sig-
nificance was driven by the inclusion of both PD and HC subjects. This
may have been due to the very limited number of 12 subjects in that
subset, and/or to the relative coarseness of the H&Y rating scale.
However, it may also suggest that certain pattern features may be more
sensitive to disease severity at different stages. From Fig. 4 it can be
noted that occipital cortex hypometabolism is prominent, consistent
with findings by Bohnen et al. (Bohnen et al., 1999).

Age was identified as a potential confound when deriving the PDRP
in the present study, sharing medial frontal aspects of the published
PDRP. Removing age bias across groups reduced the medial frontal
component while increasing the prominence of the occipital portions of
the pattern. Although age is a continuous rather than step-wise factor
and could also be modeled using regression approaches, the two group
analysis enabled an exploratory extraction of age-driven effects upon
metabolism. Even though age-pattern projection into the HC vs. PD
classifier was not pursued (due to possible over-compenasation in the
present study population), our findings suggest that refinement of the
overall disease pattern could include adjustment for age as a continuous
variable in studies with larger sample size.

The question of whether the metabolic increases relative to whole
brain represent absolute increases or, alternatively, preservation of
neuronal activity relative to a declining whole brain has been the topic
of multiple studies. Eberling et al. (PD without cognitive impairment)
used quantitative PET with arterial blood sampling and found global
decreases in metabolic rate with greatest decreases in parietal and vi-
sual cortices and thalamus but preservation (rather than an absolute
increase) in striatum relative to healthy controls (Eberling et al., 1994).
Also using quantitative FDG-PET, Bohnen et al. found absolute meaures
of metabolic rate in the thalamus and cerebellum were decreased in PD
as compared to HC, but to a lesser extent than parieto-occipital regions
(Bohnen et al., 2011). Berti et al. found that when using white matter or
other empirically derived reference regions, subcortical region signal

Fig. 4. a) CV1 pattern for classifier trained on PD subjects from Hoehn & Yahr stages I vs. II & III; b) Correlation between CV1 scores and UPDRS motor scores
generated through Leave-One-Out testing; c) Correlation between Leave-One-Out CV1 scores and H&Y stage. Higher CV1 scores reflect greater magnitude of
expression of the PDRP.
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intensities were preserved rather than increased (Berti et al., 2012).
Cerebral perfusion studies with arterial spin labeled (ASL) MRI, which
closely correlates with glucose metabolism (Cha et al., 2013; Verclytte
et al., 2015), have found a perfusion pattern similar to the PDRP
(Melzer et al., 2011; Le Heron et al., 2014; Teune et al., 2014). Global
gray matter perfusion decreased relative to healthy controls and was
absent of regional increases if whole brain normalization was not ap-
plied (Le Heron et al., 2014). Ma et al. (Ma et al., 2009) found that
global metabolic rates were unchanged, aligning with an interpretation
of hypermetabolism, and Dhawan et al. showed that the SSM method or
other mean-centering approaches do not produce spurious regional
increases (Dhawan et al., 2012). In any case, the elevated regions
provide a useful combined reference against which the hypometabolic
portions of the pattern contrast, making an important contribution to
class discrimination and progression measurement. We note that when
whole brain normalization or mean centering approaches are applied,
regional decreases must be interpreted together with elevation in pre-
served regions if the overall reference is decreasing.

In multivariate machine learning applications, pre-processing,
model selection, and parameter optimization can greatly influence
performance. Although two approaches were compared here, class de-
finition, which has major impact upon classifier output, was identical.
Both methods also used mean centering and PCA with a discriminant
linear model. Yet the consistent features of the PDRP pattern despite
differences in specific preprocessing and models, and its regional
agreement with univariate studies, suggest that it is robust. We note
that for any classifier design and model selection, the choice of re-
sampling strategy (such as that employed in NPAIRS), the quality of the
input data, and the parameter choices will further impact signal to noise
ratio, reproducibility, and prediction, suggested by the slight differ-
ences in our analyses.

Limitations in this study included the relatively small sample size
and diagnostic constraint to the mild end of the H&Y spectrum.
However, the multivariate machine learning approaches employed re-
vealed robust, metabolic patterns in this dataset. Further, the results of
this data set are strikingly similar to several larger published data sets
from which this data was completely independent. Another limitation
was the varied medication status of the subjects. As noted, Parkinson's
medications were not taken on the day of the scan. In addition, prior
studies have shown that chronically dosed subjects in the “levodopa-
on” condition exhibit decreased metabolism in those regions that are
elevated (or preserved relative to whole brain) in PD (Berding et al.,
2001), which may also arise from mitigation of decreases in other re-
gions. This would have muted the presence of the PDRP-like results in
PD subjects, decreasing discrimination between HC and PD, and be-
tween H&Y stages. We therefore speculate that a study in medication-
naive subjects may likely show discrimination as well. Interpretation of
the present findings is also limited by the fact that the PD cohort studied
had varied autosomal-dominant and sporadic disease origins.

The tight range of MoCA scores, with mean greater (more normal)
than the published mean for MCI subjects (Nasreddine et al., 2005;
Hoops et al., 2009; Dalrymple-Alford et al., 2010; Kandiah et al., 2014),
precluded identification of a significant cognitive related pattern in this
data set. A larger cohort representing a broader cognitive range, may
well have permitted the derivation of the cognitive-related pattern.
Likewise, the inclusion of additional subjects having a broader spec-
trum of motor symptoms (e.g. tremor vs. bradykinesia vs. freezing gait)
may also have enabled determination of phenotype-specific neurode-
generative patterns.

Since the subjects in the current study did not have amyloid mea-
sures, it cannot be confirmed whether certain aspects of posterior cin-
gulate and inferior parietal hypometabolism were associated with co-
morbid presymptomatic or prodromal Alzheimer's pathology. However,
the PD subjects who were age 55 or younger also exhibited these me-
tabolic characteristics, and the probability of AD as a contributor was
considered to be low.

In summary, the findings from the present study serve to provide
confirmatory evidence that multivariate classification analyses of FDG-
PET data can provide a robust, objective, sensitive biomarker of
Parkinson's disease. Given this validation, the present findings invite
further study of the PDRP. Substantially larger studies could help to
identify potential pattern differences associated with disease subtype,
and further refine patterns associated with longitudinal disease pro-
gression within PD patients. Taken together, these suggest that the
Parkinson's Related Disease Pattern has the potential to aid in the
measurement of therapeutic effects upon disease progression.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2018.08.006.

Author’s roles

Dawn Matthews participated in the data analysis and was the pri-
mary author on the manuscript. Ana Lukic performed the NPAIRS and
SSM analyses and developed the necessary software for implementa-
tion. Stephen Strother and Miles Wernick provided scientific direction
regarding implementation of the SSM and NPAIRS models. Randolph
Andrews performed data quality control and processing. Anat Mirelman
provided the imaging and clinical data to ADMdx, and Nir Giladi
oversaw its collection. Einat Even-Sapir and Hedva Lerman directed the
image acquisition. Jesse Cedarbaum directed the project and its
funding. Karleyton Evans provided input and editing to the manuscript.

Financial disclosures

The analyses in this study were performed by a commercial entity
(ADM Diagnostics, Inc.) and funded by Biogen. Dawn Matthews, Ana
Lukic, Randolph Andrews, Miles Wernick, and Stephen Strother are
employees of ADM Diagnostics, Inc. Jesse Cedarbaum and Karleyton
Evans are employees of Biogen. Dr. Giladi serves as consultant to Teva,
NeuroDerm, Biogen, Pharma2B, Denali, Abbvie, AccelMed, Monfort
and UCB. He receives royalties from LTI and payment for lectures at
Teva, UCB, Abbvie, Bial, and the Movement Disorder Society. Prof.
Giladi has received research support from the Michael J Fox
Foundation, the National Parkinson Foundation, the European Union
7th Framework Program and the Israel Science Foundation as well as
from the Teva NNE program, Biogen, LTI, and Pfizer.

Study funded

Biogen

Acknowledgement

We wish to acknowledge the departments of Neurology and Nuclear
Medicine at Tel-Aviv Sourasky Medical Center for supporting the ac-
quisition of FDG-PET data, and the patients and healthy volunteers who
underwent imaging.

References

Berding, G., Odin, P., Brooks, D.J., et al., 2001. Resting regional cerebral glucose meta-
bolism in advanced Parkinson's disease studied in the off and on conditions with
[(18)F]FDG-PET. Mov. Disord. 16 (6), 1014–1022.

Berti, V., Polito, C., Borghammer, P., Ramat, S., Mosconi, L., Vanzi, E., De Cristofaro,
M.T., De Leon, M., Sorbi, S., Pupi, A., 2012 Jun. Alternative normalization methods
demonstrate widespread cortical hypometabolism in untreated de novo Parkinson's
disease. J. Nucl. Med. Mol. Imaging. 56 (3), 299–308.

Bohnen, N.I., Minoshima, S., Giordani, B., Frey, K.A., Kuhl, D.E., 1999 Feb. Motor cor-
relates of occipital glucose hypometabolism in Parkinson's disease without dementia.
Neurology 52 (3), 541–546.

Bohnen, N.I., Koeppe, R.A., Minoshima, S., Giordani, B., Albin, R.L., Frey, K.A., Kuhl,
D.E., 2011 Jun. Cerebral glucose metabolic features of Parkinson disease and incident
dementia: longitudinal study. J. Nucl. Med. 52 (6), 848–855.

Carson, N., Leach, L., Murphy, K.J., 2018 Feb. A re-examination of Montreal Cognitive
Assessment (MoCA) cutoff scores. Int. J. Geriatr. Psychiatry. 33 (2), 379–388.

D.C. Matthews et al. NeuroImage: Clinical 20 (2018) 572–579

578

https://doi.org/10.1016/j.nicl.2018.08.006
https://doi.org/10.1016/j.nicl.2018.08.006
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0005
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0005
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0005
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0010
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0010
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0010
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0010
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0015
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0015
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0015
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0020
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0020
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0020
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0025
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0025


Cha, Y.H., Jog, M.A., Kim, Y.C., Chakrapani, S., Kraman, S.M., Wang, D.J., 2013 Dec.
Regional correlation between resting state FDG PET and pCASL perfusion MRI. J.
Cereb. Blood Flow Metab. 33 (12), 1909–1914.

Dalrymple-Alford, J.C., MacAskill, M.R., Crucian, G.P., Melzer, T.R., Kirwan, J., Keenan,
R., Wells, S., Porter, R.J., Watts, R., Anderson, T.J., et al., 2010 Nov 9. The MoCA:
well-suited screen for cognitive impairment in Parkinson disease. Neurology 75 (19),
1717–1725.

Dhawan, V., Tang, C.C., Ma, Y., Spetsieris, P., Eidelberg, D., 2012 Dec. Abnormal network
topographies and changes in global activity: absence of a causal relationship.
NeuroImage 63 (4), 1827–1832.

Dienel, G.A., Hertz, L., 2001. Glucose and lactate metabolism during brain activation. J.
Neurosci. Res. 66, 824–838.

Eberling, J.L., Richardson, B.C., Reed, B.R., Wolfe, N., Jagust, W.J., 1994 May-Jun.
Cortical glucose metabolism in Parkinson's disease without dementia. Neurobiol.
Aging 15 (3), 329–335.

Eckert, T., Feigin, A., Lewis, D.E., Dhawan, V., Frucht, S., Eidelberg, D., 2007 Jan 15.
Regional metabolic changes in parkinsonian patients with normal dopaminergic
imaging. Mov. Disord. 22 (2), 167–173.

Eidelberg, D., Moeller, J.R., Dhawan, V., et al., 1994 Sep. The metabolic topography of
parkinsonism. J. Cereb. Blood Flow Metab. 14 (5), 783–801.

Faul, F., Erdfelder, E., Lang, A.G., Buchner, A., 2007 May. G*Power 3: a flexible statistical
power analysis program for the social, behavioral, and biomedical sciences. Behav.
Res. Methods 39 (2), 175–191.

Faul, F., Erdfelder, E., Buchner, A., Lang, A.G., 2009 Nov. Statistical power analyses using
G*Power 3.1: tests for correlation and regression analyses. Behav. Res. Methods 41
(4), 1149–1160.

Feigin, A., Fukuda, M., Dhawan, V., et al., 2001. Metabolic correlates of levodopa re-
sponse in Parkinson's disease. Neurology 57 (11), 2083–2088.

Feigin, A., Kaplitt, M.G., Tang, C., et al., 2007 Dec 4. Modulation of metabolic brain
networks after subthalamic gene therapy for Parkinson's disease. Proc. Natl. Acad.
Sci. U. S. A. 104 (49), 19559–19564.

Goetz, C.G., Tilley, B.C., Shaftman, S.R., et al., 2008 Nov 15. Movement disorder society
UPDRS revision task force. Movement disorder society-sponsored revision of the
Unified Parkinson's Disease Rating Scale (MDS-UPDRS): scale presentation and
clinimetric testing results. Mov. Disord. 23 (15), 2129–2170.

Heldman, D.A., Giuffrida, J.P., Chen, R., et al., 2011. The modified bradykinesia rating
scale for Parkinson's disease: Reliability and comparison with kinematic measures.
Mov. Disord. 26 (10), 1859–1863.

Hoops, S., Nazem, S., Siderowf, A.D., Duda, J.E., Xie, S.X., Stern, M.B., Weintraub, D.,
2009 Nov 24. Validity of the MoCA and MMSE in the detection of MCI and dementia
in Parkinson disease. Neurology 73 (21), 1738–1745.

Huang, C., Tang, C., Feigin, A., et al., 2007 Jul. Changes in network activity with the
progression of Parkinson's disease. Brain 130 (Pt 7), 1834–1846.

Huang, C., Ravdin, L.D., Nirenberg, M.J., et al., 2013. Neuroimaging markers of motor
and nonmotor features of Parkinson's disease: an 18f fluorodeoxyglucose positron
emission computed tomography study. Dement. Geriatr. Cogn. Disord. 35 (3–4),
183–196.

Kandiah, N., Zhang, A., Cenina, A.R., Au, W.L., Nadkarni, N., Tan, L.C., 2014 Nov.
Montreal Cognitive Assessment for the screening and prediction of cognitive decline
in early Parkinson's disease. Parkinsonism Relat. Disord. 20 (11), 1145–1148.

Kuhl, D.E., Metter, E.J., Riege, W.H., 1984. Patterns of local cerebral glucose utilization
determined in Parkinson's disease by the [18F]fluorodeoxyglucose method. Ann.
Neurol. 15 (5), 419–424.

Le Heron, C.J., Wright, S.L., Melzer, T.R., et al., 2014 Jun. Comparing cerebral perfusion
in Alzheimer's disease and Parkinson's disease dementia: an ASL-MRI study. J. Cereb.
Blood Flow Metab. 34 (6), 964–970.

Ma, Y., Tang, C., Spetsieris, P.G., Dhawan, V., Eidelberg, D., 2007 Mar. Abnormal me-
tabolic network activity in Parkinson's disease: test-retest reproducibility. J. Cereb.

Blood Flow Metab. 27 (3), 597–605.
Ma, Y., Tang, C., Moeller, J.R., Eidelberg, D., 2009 Apr 1. Abnormal regional brain

function in Parkinson's disease: truth or fiction? NeuroImage 45 (2), 260–266.
Melzer, T.R., Watts, R., MacAskill, M.R., et al., 2011 Mar. Arterial spin labelling reveals

an abnormal cerebral perfusion pattern in Parkinson's disease. Brain 134 (Pt 3),
845–855.

Moeller, J.R., Strother, S.C., 1991 Mar. A regional covariance approach to the analysis of
functional patterns in positron emission tomographic data. J. Cereb. Blood Flow
Metab. 11 (2), A121–A135.

Moeller, J.R., Nakamura, T., Mentis, M.J., et al., 1999 Aug. Reproducibility of regional
metabolic covariance patterns: comparison of four populations. J. Nucl. Med. 40 (8),
1264–1269.

Mudali, D., Teune, L.K., Renken, R.J., Leenders, K.L., Roerdink, J.B., 2015. Classification
of Parkinsonian syndromes from FDG-PET brain data using decision trees with SSM/
PCA features. Comput. Math Methods Med. 2015, 136921.

Nasreddine, Z.S., Phillips, N.A., Bédirian, V., et al., 2005 Apr. The Montreal Cognitive
Assessment, MoCA: a brief screening tool for mild cognitive impairment. J. Am.
Geriatr. Soc. 53 (4), 695–699.

Peng, S., Ma, Y., Spetsieris, P.G., Mattis, P., Feigin, A., Dhawan, V., Eidelberg, D., 2014
May. Characterization of disease-related covariance topographies with SSMPCA
toolbox: effects of spatial normalization and PET scanners. Hum. Brain Mapp. 35 (5),
1801–1814.

Spetsieris, P.G., Eidelberg, D., 2011 Feb 14. Scaled subprofile modeling of resting state
imaging data in Parkinson's disease: methodological issues. NeuroImage 54 (4),
2899–2914.

Strother, S.C., Anderson, J., Hansen, L.K., et al., 2002 Apr. The quantitative evaluation of
functional neuroimaging experiments: the NPAIRS data analysis framework.
NeuroImage 15 (4), 747–771.

Strother, S.C., Oder, A., Spring, R., Grady, C., 2010 September. The NPAIRS computa-
tional statistics framework for data analysis in neuroimaging. In: Proceedings of
COMPSTAT'2010, pp. 111–120.

Tang, C.C., Poston, K.L., Dhawan, V., Eidelberg, D., 2010 Jan 20. Abnormalities in me-
tabolic network activity precede the onset of motor symptoms in Parkinson's disease.
J. Neurosci. 30 (3), 1049–1056.

Teune, L.K., Renken, R.J., Mudali, D., de Jong, B.M., Dierckx, R.A., Roerdink, J.B.T.M.,
2013. Validation of parkinsonian disease-related metabolic brain patterns. Movement
Disorders 28 (4), 547–551.

Teune, L.K., Renken, R.J., de Jong, B.M., Willemsen, A.T., van Osch, M.J., Roerdink, J.B.,
Dierckx, R.A., Leenders, K.L., 2014 Jul 3. Parkinson's disease-related perfusion and
glucose metabolic brain patterns identified with PCASL-MRI and FDG-PET imaging.
Neuroimage Clin. 5, 240–244.

Tomše, P., Jensterle, L., Grmek, M., et al., 2017a. Abnormal metabolic brain network
associated with Parkinson's disease: replication on a new European sample.
Neuroradiology 59, 507–515.

Tomše, P., Jensterle, L., Rep, S., Grmek, M., Zaletel, K., Eidelberg, D., Dhawan, V., Ma, Y.,
Trošt, M., 2017 Fe 7b. The effect of 18F-FDG-PET image reconstruction algorithms on
the expression of characteristic metabolic brain network in Parkinson's disease. Phys.
Med. pii, 30028–30035.

Tripathi, M., Tang, C.C., Feigin, A., De Lucia, I., Nazem, A., Dhawan, V., Eidelberg, D.,
2016 Jan. Automated differential diagnosis of early Parkinsonism using metabolic
brain networks: a validation study. J. Nucl. Med. 57 (1), 60–66. https://doi.org/10.
2967/jnumed.115.161992. (Epub 2015 Oct 8).

Verclytte, S., Lopes, R., Lenfant, P., et al., 2015. Cerebral hypoperfusion and hypometa-
bolism detected by arterial spin labeling MRI and FDG-PET in early-onset Alzheimer's
disease. J. Neuroimaging 26 (2), 207–212.

Wu, P., Wang, J., Peng, S., Ma, Y., Zhang, H., Guan, Y., Zuo, C., 2013 Jun. Metabolic brain
network in the Chinese patients with Parkinson's disease based on 18F-FDG PET
imaging. Parkinsonism Relat. Disord. 19 (6), 622–627.

D.C. Matthews et al. NeuroImage: Clinical 20 (2018) 572–579

579

http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0030
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0030
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0030
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0035
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0035
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0035
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0035
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0040
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0040
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0040
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0045
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0045
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0050
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0050
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0050
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0055
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0055
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0055
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0060
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0060
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0065
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0065
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0065
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0070
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0070
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0070
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0075
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0075
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0080
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0080
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0080
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0085
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0085
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0085
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0085
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0090
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0090
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0090
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0095
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0095
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0095
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0100
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0100
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0105
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0105
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0105
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0105
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0110
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0110
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0110
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0115
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0115
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0115
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0120
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0120
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0120
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0125
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0125
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0125
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0130
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0130
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0135
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0135
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0135
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0140
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0140
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0140
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0145
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0145
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0145
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0150
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0150
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0150
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0155
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0155
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0155
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0160
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0160
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0160
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0160
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0165
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0165
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0165
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0170
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0170
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0170
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0175
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0175
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0175
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0180
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0180
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0180
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0185
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0185
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0185
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0190
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0190
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0190
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0190
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0195
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0195
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0195
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0200
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0200
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0200
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0200
https://doi.org/10.2967/jnumed.115.161992
https://doi.org/10.2967/jnumed.115.161992
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0210
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0210
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0210
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0215
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0215
http://refhub.elsevier.com/S2213-1582(18)30247-X/rf0215

	FDG PET Parkinson’s disease-related pattern as a biomarker for clinical trials in early stage disease
	Introduction
	Methods
	Study participants
	Image acquistion
	Data quality control and processing
	Multivariate pattern analysis
	Classifier design

	Motor symptom severity within Parkinson's subjects
	Individual subject examination
	Statistical analyses

	Results
	Subjects
	2-class analysis of HC and PD
	Age effects
	Age and gender matched classifiers
	Hoehn &#x200B;&&#x200B; Yahr stage classifier
	Examination of individual subjects

	Discussion
	Author’s roles
	Financial disclosures
	Study funded
	Acknowledgement
	References




