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Abstract
Background  Hydrogen sulfide (H2S) is a significant endogenous mediator that has been implicated in the 
progression of various forms of cancer including breast cancer (BC). Cystathionine-β-synthase (CBS), cystathionine-γ-
lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3MST) are the three principal mammalian enzymes responsible 
for H2S production. Overexpression of CBS, CSE and 3MST was found to be associated with poor prognosis of BC 
patients. Moreover, H2S was linked to an immune-suppressive tumor microenvironment in BC. Recently it was 
observed that BC cells, in response to single or dual inhibition of H2S synthesizing enzymes, develop an escape 
mechanism by overexpressing alternative sources of H2S generation. Thus, the aim of this work is to escape the H2S 
compensatory mechanism by pan repressing the three enzymes using microRNAs (miRNAs) and to investigate their 
impact on the oncogenic and immunogenic profile of BC cells.

Methods  BC female patients (n = 25) were recruited. In-silico analysis was used to identify miRNAs targeting CBS, CSE, 
and 3MST. MDA-MB-231 cells were cultured and transfected using oligonucleotides. Total RNA was extracted using 
Biazol, reverse transcribed and quantified using qRT-PCR. H2S levels were measured using AzMc assay. BC hallmarks 
were assessed using trans-well migration, wound healing, MTT, and colony forming assays.

Results  miR-193a and miR-548c were validated by eight different bioinformatics software to simultaneously target 
CBS, CSE and 3MST. MiR-193a and miR-548c were significantly downregulated in BC tissues compared to their 
non-cancerous counterparts. Ectopic expression of miR-193a and miR-548c in MDA-MB-231 TNBC cells resulted in a 
marked repression of CBS, CSE, and 3MST transcript and protein levels, a significant decrease in H2S levels, reduction 
in cellular viability, inhibition of migration and colony forming ability, repression of immune-suppressor proteins GAL3 
GAL9, and CD155 and upregulation of the immunostimulatory MICA and MICB proteins.

Conclusion  This study sheds the light onto miR-193a and miR-548c as potential pan-repressors of the H2S 
synthesizing enzymes. and identifies them as novel tumor suppressor and immunomodulatory miRNAs in TNBC.
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Introduction
H2S plays a complex role in cancer. It has both pro-tumor 
and anti-tumor effects depending on the concentration of 
H2S, the source of H2S (exogenous vs. endogenous) and 
the cancer model used [1–4]. H2S – especially at lower 
concentrations and when it is produced by endogenous 
sources in cancer cells – can augment cancer progression 
by stimulating cancer cell growth, facilitating angiogen-
esis, and promoting resistance to chemotherapy [5, 6]. 
On the other hand, H2S – especially when applied exog-
enously, in the form of various H2S donor compounds 
– can also exert anti-tumor effects through induction of 
apoptosis and inhibition of cancer cell proliferation by 
reducing DNA synthesis and arresting the cell cycle [7, 
8].

Several studies have demonstrated that overproduc-
tion of H2S occurs in breast cancer (BC) and correlated 
the upregulation of H2S synthesizing-enzymes, namely 
cystathionine-β-synthase (CBS) and cystathionine-γ-
lyase (CSE), with poor clinical prognosis [9]. Wang et al., 
has shown that decreasing H2S level through CSE inhibi-
tion has led to inactivation of the JAK/STAT pathway via 
upregulation of SIRT1 [10]. You et al. have demonstrated 
a feedback regulation cycle between CSE and STAT3 and 
proposed a direct involvement of STAT3 in the amelio-
ration of CSE transcription and H2S production [11]. 
CSE upregulation phosphorylates and activates STAT3 
leading to augmentation of its own transcription in a 
positive-feedback manner [11]. CSE upregulation phos-
phorylates and activates STAT3 leading to augmentation 
of its own transcription in a positive-feedback manner.

One of the substantial physiological processes for H2S 
is the involvement in immunosurveillance. In recent 
years, extensive research has been carried out to deter-
mine the role of H2S in immunomodulation and in tumor 
immune microenvironment (TIME) [12]. Regulators of 
H2S-synthesizing machinery and H2S intracellular lev-
els have been reported to modulate the TIME [13–15]. 
In a study conducted by our group, where BC cells were 
co-cultured with natural killer (NK) cells, the decrease 
of either CBS-derived or CSE-derived H2S has led to 
an increase in NK cell-mediated catalytic activity [15]. 
Moreover, CBS-derived H2S has exerted immunosup-
pressive activity by protecting BC cells from activated 
macrophage-generated ROS in macrophage-BC cell co-
cultures [14]. As such, modulating H2S levels could also 
affect TIME. Dual inhibition of CBS and CSE in TNBC 
and HR + BC cells has affected the TIME by suppress-
ing BC cells release of tumor necrosis factor alfa (TNF-
α), a cytokine that acts as an immune-suppressor within 
the TIME [13]. Concomitantly, production of interferon 
gamma (IFN-γ) has restored the immune-stimulating 
conditions in the TIME [13].

3-Mercaptopyruvate sulfurtransferase (3MST), the 
third H2S-synthesizing enzyme, is well known for its 
critical physiological role in cellular metabolism and bio-
energetics [16]. In recent years, there has been growing 
interest in the role of 3MST in cancer progression [17]. 
Some studies have shown that 3MST is upregulated in 
various types of cancers, including colon cancer [18, 19], 
glioma [20], lung carcinoma [21], renal cancer [22], oral 
cancer [23], as well as in glioblastoma cell lines [24, 25] 
but not adequately studied in BC.

The expression of various H2S biosynthetic enzymes 
can be directly controlled by miRNAs [26]. The expres-
sion profiles of miRNAs that target H2S-synthesizing 
enzymes, have been found to be altered in different clini-
cal oncological and non-oncological settings. MiR-203 
has been found to regulate oxidative stress induced cell 
injury by regulating CBS expression and adjusting the 
levels of H2S production [27]. In colorectal cancer, miR-
559 was shown to target CBS thus reducing the acceler-
ated cancer cell proliferation [28]. On the contrary, few 
miRNAs have exhibited dual or multiple targeting ability 
for H2S-synhesizing enzymes, like miR-4317 that tar-
gets CBS and CSE together [29]. Reports that describe 
miRNA targeting 3MST are not available. It was recently 
found by our research group that knocking down of CBS 
caused a compensatory increase in CSE expression rescu-
ing H2S level [30]. This inhibition-sensory behavior high-
lights compensatory mechanisms that maintain the level 
of H2S in BC cells.

Given the key role of 3MST in fostering cancer cell 
survival and augmenting cancer cell growth and prolif-
eration [2, 17, 25, 31], investigating its expression level 
in BC tissues could widen our understanding for the role 
of H2S synthesizing enzymes in BC tumorigenesis. Here, 
we screened in clinical breast cancer specimen the 3MST 
expression levels. Our data show that 3MST as well as 
CBS and CSE are significantly overexpressed in BC tis-
sues compared to their non-cancerous counterparts. 
Furthermore, to escape the compensatory upregulation 
behavior of H2S-synthesizing enzymes, we performed in-
silico analysis to achieve pan-inhibition of the three H2S 
synthases simultaneously. In a “three birds, one stone” 
approach, we show that utilizing one miRNA that tar-
gets CBS, CSE, 3MST simultaneously could markedly 
and efficiently suppress BC hallmarks in TNBC cells and 
enhance the expression of immunomodulatory factors.

Materials and methods
Clinical specimens
Breast tissues were collected from 25 BC female patients 
during conservative mastectomy or lumpectomy surgery 
at the National cancer Institute, Egypt. Tissues from both 
breast tumor and adjacent pathologically confirmed non-
tumor tissues from the safety margins (5–7 cm away from 
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the tumor margin) were resected. All specimens were 
confirmed in the Department of Pathology, and relevant 
clinical data were collected. BC patients who had a previ-
ous history of BC or smoking or hypertension were elimi-
nated. The specimens were snap frozen in liquid nitrogen 
and immediately stored at -80 °C. The Ethics Committee 
of the Faculty of Pharmacy and Biotechnology, the Ger-
man University in Cairo ratified the study protocol in 
accordance with the ethical standards of the Declaration 
of Helsinki. All individuals signed informed written con-
sent documents prior to their involvement in the study.

Bioinformatics analysis
In-silico bioinformatic analysis was carried out to iden-
tify novel miRNAs that have the potential to interact 
with the genes of interest; CBS, CSE, and 3MST as previ-
ously described in [32, 33]. Eight different bioinformatic 
websites have been used, namely, TargetScanHuman 
(www.targetscan.org/), miRDB (mirdb.org/), miRwalk 
(mirwalk.umm.uni-heidelberg.de/), miRIAD (www.mir-
iad-database.org/), miRTar.human (ccb-web.cs.uni-saa-
rland.de/mirtargetlink/), ComiRNet (comirnet.di.uniba.
it:8080/interactionsSearch), FirePlex Discovery Engine 
(www.fireflybio.com/portal/search), and GeneCards 
(https://www.genecards.org/). Candidate miRNAs were 
selected based on miRNA-mRNA hybridization energy, 
complementary strength, binding score, seed match, and 
novelty in BC.

Cell culture and treatment
Culture of human TNBC cell line MDA-MB-231 was 
conducted in Dulbecco’s modified Eagle’s medium 
(DMEM) (Lonza, Switzerland) supplemented with 
4.5  g/l glucose, 4 mmol/l L glutamine, 10% fetal bovine 
serum (Lonza, Germany) and 1% Penicillin-Streptomycin 
(Lonza, Germany) at 37 °C in 5% CO2 atmosphere. Cells 
were passaged upon achieving 70–80% confluency. A 
stock solution of H2S donor (40 μm NaHS) was prepared 
using free DMEM. Co-treatment of the TNBC cells 
seeded in 96-well plates with the NaHS donor was per-
formed for 24 h under normal growth conditions (37 °C 
in 5% CO2 atmosphere) [33, 34]. Control cells in the H2S 
donor experiments were subjected to DMEM only. All 
cell experiments in this study were performed in tripli-
cate and repeated at least three times [26].

Cell transfection
Different oligonucleotides including empty vector 
negative control scrambled miRNAs (Scr-miRNAs) 
(MSY0000449 - Qiagen, Germany), miR-193a-3p mim-
ics (MSY0000459 - Qiagen, Germany), siRNA directed 
against human miR-193a-3p (Antagomir) (339,121, 
MIMAT0000459 - Qiagen, Germany), miR-548c-3p 
mimics (YM00473313-ADA - Qiagen, Germany), and 

siRNA directed against human miR-548c-3p (Antagomir) 
(339,121, MIMAT0003285 - Qiagen, Germany) were 
transfected into MDA-MB-231 cells. HiPerfect Transfec-
tion Reagent (Qiagen, Germany) was used in all transfec-
tion experiments [34–36].

Reverse transcription-quantitative polymerase chain 
reaction (RT-qPCR)
Total RNA was extracted from BC patients and cell line 
using Biazol (Invitrogen, USA) reagent. The integrity of 
RNA was verified by gel electrophoresis on 1% agarose. 
For gene expression assay, RNA was reversely transcribed 
by the High-Capacity cDNA Reverse Transcription Kit 
(4,368,814 - ThermoFisher Scientific, USA) while for 
miRNA expression quantification, RNA was reversely 
transcribed by the TaqMan™ Advanced miRNA cDNA 
Synthesis Kit (A28007 - ThermoFisher Scientific, USA) 
according to the company’s instruction. RT-qPCR was 
performed in StepOne™ Plus (ABI, USA). All genes with 
their catalog number and assay ID are listed in Supple-
mentary Table S1 in supplementary data. The housekeep-
ing genes β-actin and 18s rRNA as well as miR-26b-5p 
were endogenous controls. The 2−ΔΔCt method was 
applied to calculate relative expression [29, 37].

Quantification of H2S production
H2S levels were measured using the H2S-sensitive flu-
orescent probe 7-azido-4-methylcoumarin (AzMC) 
(Sigma-Aldrich). TNBC cells were seeded in black 
96-well plates with an optical bottom at 10,000 cells/well 
in 100 µl full DMEM and incubated at 37 °C and 5% CO2 
to allow cells to adhere. After 24 h seeding, the cells were 
transfected with the oligonucleotides of interest. Then, 
48  h post-transfection, the supernatant was replaced by 
100 µl of 100 µM of AzMC (Sigma-Aldrich) prepared in 
HBSS. After one hour of incubation at 37 °C in the dark, 
fluorescence was measured on the Wallac 1420 Vic-
tor reader with excitation and emission wavelengths of 
355 and 460 nm, respectively. The final concentration of 
DMSO was kept constant at 0.1% in all conditions. Data 
analysis was performed after removal of the non-specific 
background fluorescence values [38].

Cellular viability assay (MTT assay)
Cellular viability was assessed using 3-(4,5-dimethylthia-
zol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). After 
transfection and incubation of cells for 48  h in 96-well 
plates, supernatants were replaced with 100 µl of 0.05% 
of MTT working solution diluted in free DMEM and 
incubated for 4  h. Afterwards, cells were supplemented 
with 200 µL dimethyl sulfoxide (DMSO) and observed 
for dissolution of the formed formazan purple crystals. 
Absorbance was measured at 595  nm using the Wallac 
1420 Victor reader [39].

http://www.targetscan.org/
http://www.mirdb.org/
http://www.mirwalk.umm.uni-heidelberg.de/
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http://www.ccb-web.cs.uni-saarland.de/mirtargetlink/
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http://www.comirnet.di.uniba.it:8080/interactionsSearch
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https://www.genecards.org/
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Colony forming assay
Transfected cells were counted by hemocytometer and 
fostered in 6-well plates at 0.4 × 103 cells/well for 2 weeks. 
The formed cell colonies were fixed with 6% glutaralde-
hyde and stained with 0.2% crystal violet solution. Then, 
the stained cell colonies were manually counted [35].

Scratch test (wound healing assay)
Transfected cells at 90–95% confluence in 24-well plates 
were scraped by a sterile 10 µl micropipette tip vertically 
along a ruler. Then, cells were rinsed with PBS to remove 
detached cells and substituted with new low serum media 
(1% FBS). Afterwards, cells were observed for the migra-
tion rate at 0 and 24 h and wound closure was quantified 
with Zen2012 software (ZEISS Microscopy, Jena, Ger-
many) by measuring the surface area of the scratch [40, 
41].

Transwell migration assay (Boyden chamber assay)
Transfected cells were seeded into the upper part of the 
5-µm Transwell chamber (cellQART®, Germany) at con-
centration of 5 × 104 cells suspended in 300 µl of 1% full 
DMEM. The medium (700 µL) containing 10% FBS was 
added to the lower part. Through incubation under the 
conventional conditions, the non-migrating cells in the 
upper part were removed while the migrating cells in the 
lower part were fixed in 6% glutaraldehyde and stained 
with 0.2% crystal violet solution, followed by photogra-
phy under an optical microscope. For accurate assess-
ment, each insert was then transferred to an empty well 

containing 700  µl of the extraction solution (33% ace-
tic acid) to lyse the cells, and 100 µl of each sample was 
transferred and measured at 595 nm using Wallac 1420 
Victor reader.

Statistical analysis
Sample size was calculated by G*Power version 3.1.9.2; 
Germany with a power 80% and a level of significance 
(α) of 5% and expected effect size (1-β) of 0.8. Data are 
presented in the form of mean ± standard error of the 
mean (SEM). Student’s t test was performed to compare 
between every two independent groups. Statistical signif-
icance was considered as p < 0.05. For multiple compari-
sons, one-way analysis of variance (One-way ANOVA) 
with post hoc analysis was used. Data were statistically 
analyzed using GraphPad Prism 8.00 software (GraphPad 
Software Inc., San Diego CA).

Results
CBS, CSE and 3MST are overexpressed in BC tissues
A summary of the patients’ characteristics is provided 
in Table 1. The average age of the BC patients was 46.36 
years, with an age range of 26–72 years. According to 
molecular subtype, 52% of the patients were of luminal A 
subtype, 12% were luminal B, 28% were TNBC while only 
8% were of HER2-enriched subtype. According to tumor 
grade, 8% of the patients had grade I BC, 64% had grade 
II while 28% had grade III. For lymphatic involvement, 
60% of the patients had lymph node metastases. 80% of 
the patients expressed high proliferative index Ki-67 lev-
els. A small number of participants (2/25; 8%) were iden-
tified to have the invasive/infiltrating lobular carcinoma 
(ILC) histological subtype. Additionally, 64%, 56%, and 
16% of the patients showed positive expression of ER, PR, 
and HER2, respectively.

Screening of CBS, CSE, and 3MST expression lev-
els in BC tissues displayed a marked overexpression in 
the transcript levels of CBS (P < 0.0001) (Fig.  1A), CSE 
(P < 0.0001) (Fig.  1B), and 3MST (P = 0.0038) (Fig.  1C), 
when compared to normal counterparts.

3MST expression data obtained from BC patients has 
been stratified according to different patient features 
such as age (< 40 or ≥ 40 years old), menopausal status 
(pre-menopause or post- menopause), expression level of 
Ki-67 (high or low), tumor size (< 5 or ≥ 5 cm) and molec-
ular subtype. 3MST showed higher transcript level in 
BC patients at age younger than 40 years old (P < 0.0001) 
(Fig. 2A), in pre-menopausal status (P = 0.0469) (Fig. 2B), 
expressing high Ki-67 (P = 0.0401) (Fig.  2C) and having 
large tumor size (≥ 5  cm) (P = 0.0187) (Fig.  2D). 3MST 
expression pattern did not vary between TNBC and non-
TNBC patients (Fig. 2E).

Table 1  Characteristic features of BC female patients
BC patients Percentage

Age ≥ 40 48%
< 40 52%

Grade I 8%
II 64%
III 28%

Histological type Ductal 92%
Lobular 28%

Molecular subtype Luminal A 52%
Luminal B 12%
HER2 enriched 8%
TNBC 28%

ER status Positive 64%
Negative 36%

PR status Positive 56%
Negative 44%

HER-2 status Positive 16%
Negative 84%

Lymphatic involvement Yes 60%
No 40%

Proliferative index (Ki-67) High (> 14%) 80%
Low (< 14%) 20%
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In-silico analysis revealed miR-193a-3p and miR-548c-3p as 
the candidates of choice
The miRNA candidates selected to simultaneously tar-
get CBS, CSE, and 3MST were hsa-miR-193a-3p and 
has-miR-548c-3p. Their accession numbers and mature 
sequences were obtained (Supplementary Tables S2 and 
Table S4) and were introduced into the eight different 
computational algorithms. MiR-193a-3p was found to 
hit CBS 3’UTR sequence at 1 binding region, CSE CDS 
region at 2 different binding sites, and 3MST 3’UTR 
sequence at 1 binding region (Supplementary Table S3). 
MiR-548c-3p was found to hit CBS 3’UTR sequence at 6 
different binding regions, CSE CDS at 9 different binding 
regions, and 3MST 3’UTR sequence at 1 binding region 
(Supplementary Table S5).

miR-193a-3p and miR-548c-3p are underexpressed in BC 
tissues
Both miR-193a-3p and miR-548c-3p were significantly 
underexpressed in BC patients (P = 0.009) (Fig.  3A) and 
(P < 0.0001) (Fig. 3B), respectively.

Ectopic expression of miR-193a-3p and miR-548c-3p 
in MDA-MB-231 cells suppresses CBS, CSE and 3MST 
transcription and reduces H2S levels
To evaluate the effect of miR-193a-3p and miR-548c-3p 
on H2S-synthesizing enzymes, MDA-MB-231 cells were 
transfected with miR-193a-3p and miR-548c-3p mimics. 
Transfection was validated by measuring the transcript 

levels of miR-193a-3p and miR-548c-3p 48  h post-
transfection using qRT-PCR. Results showed a marked 
upregulation of miR-193a-3p and miR-548c-3p expres-
sion > 440 folds (P = 0.0404), and > 4000 folds (P = 0.0282), 
respectively, in MDA-MB-231 cells (Fig. 4A and B).

Ectopic expression of both miRNAs in MDA-MB-231 
cells caused a significant suppression of H2S production 
(Fig.  4C) and reduction of CBS, CSE and 3MST tran-
script levels (Fig. 4D-I).

Overexpression of miR-193a-3p and miR-548c-3p 
attenuates the oncogenic properties of TNBC cells
Forced expression of miR-193a-3p and miR-548c-3p 
in MDA-MB-231 cells resulted in a significant reduc-
tion in cellular viability of miR-193a-3p mimicked cells 
(P < 0.0001) and miR-548c-3p mimicked cells (P = 0.0005) 
(Fig. 5A). To validate that miR-193a-3p and miR-548c-3p 
induced suppression of cellular viability is due to repres-
sion of the endogenous H2S levels within TNBC cell line, 
MDA-MB-231 cells were transfected with miR-193a-3p 
or miR-548c-3p and co-treated with H2S donor (NaHS) 
at concentration of 10 µM NaHS/well. Total abrogation 
of miR-193a-3p and miR-548c-3p effects on cellular via-
bility was observed (Fig. 5B).

Regarding clonogenicity assay, the number and size 
of colonies decreased significantly for MDA-MB-231 
cells transfected with miR-193a-3p (P = 0.0025) and 
miR-548c-3p (P = 0.0004) (Fig.  6A). In a similar pattern, 
ectopic expression of miR-193a-3p and miR-548c-3p in 

Fig. 1  Screening of CBS, CSE, and 3MST in BC tissue. The expression profiles of the H2S-synthesizing enzymes, (A) CBS, (B) CSE, and (C) 3MST were ana-
lyzed in 25 BC patients using qRT-PCR and normalized to 18 S as an internal control. The three H2S-synthesizing enzymes showed a significant overexpres-
sion in BC tissues compared to their normal counterparts. Student t test was performed. **** = P < 0.0001 compared to normal counterparts
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Fig. 2  Stratification of 3MST expression in BC patients according to age, menopausal status, expression level of Ki-67, tumor size, and molecular subtype. 
Stratification of 3MST expression levels in BC patients based on (A) age, (B) menopausal status, (C) expression level of Ki-67, and (D) tumor size showed a 
correlation with the more aggressive profiles of BC. 3MST was found to be significantly overexpressed in BC patients < 40 years old, pre-menopause, who 
are expressing high Ki-67 levels and whose tumor size ≥ 5 cm. (E) 3MST levels were consistent among the different BC subtypes with no preference to 
TNBC. Student t test was performed. *= P < 0.05, **** = P < 0.0001
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MDA-MB-231 cells caused a marked decrease in the cel-
lular scratch healing capacity (P < 0.0001) (Fig.  6B) and 
migration ability (P < 0.0001) (Fig. 6C).

Impact of miR-193a-3p and miR-548c-3p overexpression 
on immunogenic profile of TNBC cells
Ectopic expression of miR-193a-3p and miR-548c-3p 
induced a marked decrease in the levels of the immuno-
suppressive GAL3 (P = 0.0089 and P = 0.0197) (Fig.  7A), 
GAL9 (P = 0.0013 and P = 0.0130) (Fig.  7B), and CD155 
(P = 0.0469 and P = 0.0033) (Fig.  7C) transcript levels. In 
contrast, a marked upregulation of the immunostimu-
latory MICA (P = 0.0469 and P = 0.0285) (Fig.  7D) and 
MICB (P = 0.0154 and 0.0480) (Fig. 7E) was seen.

Discussion
BC remains the most prevalent tumor among women 
worldwide among all age categories [42]. TNBC sub-
type of BC, which lacks ER, PR, and HER2 expression, 
is known as the most aggressive subtype of BC with a 
relatively high recurrence rate, especially within the first 
five years after diagnosis [43, 44]. It also has an increased 
tendency of metastasizing to other organs, including the 

liver, lungs, and brain [43]. The standard treatment for 
TNBC includes surgery, radiation therapy, and chemo-
therapy which is usually given before the surgery as a 
neoadjuvant [45]. However, TNBC is highly resistant to 
chemotherapy, making it more challenging to treat [46]. 
Significant efforts are being focused on the development 
of targeted and immunotherapies that may improve the 
prognosis of TNBC patients [46]. One such strategy 
involves using miRNAs [47]. Due to the promising results 
shown by several preclinical studies using miRNAs as 
therapeutic targets for TNBC [48], clinical trials are 
underway to evaluate the effectiveness of clinical transla-
tion of miRNA-based therapy into practice for treatment 
of different cancers, including TNBC [49].

H2S, the most recently identified gasotransmitter mem-
ber, has been found to be involved not only in the regula-
tion of various physiological processes, but also in many 
pathophysiological events such as tumor progression 
[17]. Dysregulation of H2S and its synthesizing enzymes 
have been linked to malignancies by either showing over-
expression, or downregulation, highlighting that H2S 
and its synthesizing machinery have a tumor specific 
character [50, 51]. Our group has previously identified 

Fig. 3  Expression profiles of miR-193a-3p and miR-548c-3p in BC patients. MiR-193a-3p and miR-548c-3p expression profiles were analyzed in 25 BC 
patients using qRT-PCR and normalized to miR-26b-5p as an internal control. Screening of miR-193a-3p (A) and miR-548c-3p (B) in breast tissues showed 
a significant under expression compared to normal counterparts.; **= P < 0.01, **** = P < 0.0001 compared to noncancerous breast tissues
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the upregulation of CBS and CSE on the transcriptional 
level either in cell line or in clinical samples of differ-
ent BC subtypes [29]. These findings were supported by 
other studies that proved the involvement of H2S in many 
tumorigenic and immunosuppressive signaling pathways 
[52, 53]. Single or dual inhibition of CBS and CSE has sig-
nificantly abrogated BC progression [29]. However, our 
group has recently observed [54] that, at single targeting 
of CBS, CSE gets upregulated as a compensatory mecha-
nism to save the diminishment of H2S production. In the 

light of these findings, this study aimed to investigate the 
expression level of the third H2S-synthesizing enzyme, 
3MST, along with the other two enzymes, in BC patients. 
Additionally, this work intended to find miRNAs that 
simultaneously target CBS, CSE, and 3MST to avert the 
compensatory upregulation response by the untargeted 
enzyme(s).

Screening of 3MST in BC tissues showed an overex-
pression of this enzyme in all BC subtypes. Overexpres-
sion pattern of 3MST was also reported in tumor tissues 

Fig. 4  Impact of miR-193a-3p and miR-548c-3p transfection on CBS/CSE/3MST induced H2S production in MDA-MB-231 cells. (A, B) Efficient transfection 
of miR-193a-3p and miR-548c-3p oligonucleotides. (C) H2S levels. (D, E,F) CBS, CSE, and 3MST expression levels in miR-548c-3p transfected cells. (G, H,I) 
CBS, CSE and 3MST expression levels in miR-193a-3p transfected cells. *= P < 0.05, **= P < 0.01, **** = P < 0.0001 compared with control group
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of brain gliomas [20], colon cancer [19], lung carcinoma 
[21], oral squamous cell carcinoma [23], adenoid cys-
tic carcinoma of the oral cavity [55], renal cell carcino-
mas [22], and bladder urothelial cell carcinoma [56, 57], 
on the transcriptional level. This study was the first to 
demonstrate the association of 3MST with young age 
(< 40), pre-menopausal, large tumor size and high Ki 
BC patients. Lower 3MST expression levels were associ-
ated with larger tumor size in HCC [58]. CBS was also 
reported to be downregulated in HCC patients’ tissues 
[59]. One study by Kaczor-Kamińska and colleagues 
have screened 3MST in mouse mammary gland cell line 
(NMuMG) and mouse mammary gland tumor cell line 
(4T1) [60]. They found that relative gene expression of 
3MST was higher in the tumor cell line when compared 
to the normal one.

After extensive in silico analysis, miR-193a-3p and 
miR-548c-3p were identified as miRNAs capable of tri-
ple targeting the three H2S-synthesizing enzymes. Upon 
testing the expression levels of the selected miRNAs in 
BC tissues, our findings revealed that they were promi-
nently downregulated in all BC subtypes. Similar results 
for miR-193a-3p were observed in prostate cancer [61], 
bladder cancer [62], NSCLC [63], CRC [64], HER + BC 
[65], and ovarian cancer [66]. Paradoxically, other stud-
ies display miR-193a-3p as an oncomiR promoting radio 
resistance in nasopharyngeal cancer [67]. In agreement 
with our findings, miR-548c-3p showed tumor suppres-
sor activity in bladder cancer [68], lung cancer [69], gli-
oma [70], HCC [70], osteosarcoma [71, 72], BC [73], and 

papillary thyroid carcinoma [74]. On the contrary, other 
studies reported miR-548c-3p as an oncomiR in prostate 
cancer [75].

In support of the in silico work, we noticed that ectopic 
expression of miR-193a-3p and miR-548c-3p in TNBC 
cell line caused a reduction in the transcript levels of 
CBS, CSE and 3MST. Subsequently, a significant impedi-
ment in the H2S production level was observed. On a 
similar note, previous results demonstrated the impact 
of miR-193a-3p on repressing ERK protein, a validated 
downstream target of H2S [65]. Likewise, the impact of 
miR-548c-3p on HIF1-α, a signaling molecule for H2S, 
was reported by Du et al. [74]. Nonetheless, our study 
was the first to unravel the impact of miR-193a-3p and 
miR-548c-3p on impeding H2S production in TNBC 
through tribunal targeting of CBS, CSE, and 3MST.

On the functional level, ectopic expression of miR-
193a-3p and miR-548c-3p resulted in a marked reduction 
in multiple cancer hallmarks including cellular viabil-
ity, migration ability, as well as clonogenicity of MDA-
MB-231 cells as represented in Fig.  8. miR-193a-3p has 
been deemed as a tumor suppressor miRNA in NSCLC 
patients through inhibiting PAK4 via p53/Slug/L1CAM 
signaling pathways [63]. Likewise, miR-548c-3p has 
been reported as a tumor suppressor miRNA in osteo-
sarcoma subjects through targeting ITGAV, alleviating 
cell proliferation [71]. In fact, ectopic overexpression 
of miR-548c-3p in osteosarcoma cell line has promoted 
apoptosis and G2/M cell cycle arrest, leading to abrogat-
ing the colony formation ability of the osteosarcoma cells 

Fig. 5  Impact of miR-193a-3p and miR-548c-3p overexpression on viability of MDA-MB-231 cells. (A) significant repression of cellular viability by miR-
193a-3p and miR-548c-3p transfection as compared to mock and cells transfected with Scr-miRNAs. (B) Co-treatment of H2S donors with miR-193a-3p 
and miR-548c-3p mimic resulted in a total abrogation of miR-193a-3p and miR-548c-3p effects on cellular viability. One-way (ANOVA) multiple compari-
son was performed. *= P < 0.05, ***= P < 0.001, ****=P < 0.0001, ns = not significant compared with control groups
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Fig. 6  Impact of miR-193a-3p and miR-548c-3p overexpression on BC hallmarks in MDA-MB-231 cells. Ectopic expression of miR-193a-3p and miR-548c-
3p in MDA-MB-231 cells resulted in a significant reduction in clonogenicity (panel A) migration ability (panel B) and wound healing (panel C). One-way 
analysis of variance (ANOVA) was performed. ****=P < 0.0001, ***= P < 0.001, **= P < 0.01 compared with control group
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[71]. This further advocates the role of miR-193a-3p and 
miR-548c-3p in BC progression, securing its position 
amongst other miRNAs which suppress BC progression 
such as let-7 [76], miR-4317 [77], miR-506-3p [39], and 
miR-486-5p [78].

Over the past decades, intensive efforts have been 
directed to find novel cancer therapies that attenu-
ate the immunosuppressive and enhance the immu-
nostimulatory effects against malignancy [79]. Indeed, 

immunomodulation is a promising approach in cancer 
therapy, including BC [80]. GAL3, GAL9, and CD155 are 
examples of molecules that play an immunosuppressant 
role, impeding the immune system’s ability to identify and 
attack cancer cells [81–84]. Thus, they represent poten-
tial targets for immunomodulatory therapies in cancer. 
GAL3 and GAL9 are molecules that are overproduced 
by cancer cells and can suppress the immune response 
by binding to TCR and Tim-3, respectively, which are 

Fig. 7  Impact of miR-193a-3p and miR-548c-3p transfection on immunogenic profile of TNBC cells. The expression levels of (A) GAL3, (B) GAL9, (C) 
CD155, (D) MICA, and (E) MICB in MDA-MB-231 cells transfected with miR-193a-3p and miR-548c-3p were determined 48  h post-transfection using 
qRT-PCR. Immunomodulatory factors expression levels were normalized to β actin as an internal control. One-way analysis of variance (ANOVA) was 
performed. *=P < 0.05, **= P < 0.01 compared with control group
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expressed on T cell lymphocytes (TCLs) [84, 85]. Hence, 
inhibiting or blocking GAL3 and GAL9 can help to 
enhance the immune response against cancer cells. This 
conclusion is supported by the preclinical studies which 
have shown that targeting GAL3 or GAL9 could inhibit 
tumor growth and improve the efficacy of the immune 
checkpoint inhibitors (ICIs) [84, 86]. Moreover, CD155 
is a protein that is overexpressed by some cancer cells 
preventing the activation of immune cells [87]. By block-
ing the CD155/TIGIT axis, the immune response can 
be enhanced and promote the elimination of cancer 
cells [88, 89]. Indeed, CD155 siRNAs can be effective in 
treating late-stage TNBC through immune escape [89]. 
Interestingly, a previous study from our group showed 
that modulation of H2S has a potential impact on the 
immunosurveillance process [13]. Our findings also have 
previously highlighted that dampening CBS and CSE 
expression levels using siRNAs consolidate the expres-
sion levels of MICA/B and ULBP2 in MDA-MB-231 cells, 
which in turn resulted in a marked increase in NK cells 
cytotoxicity upon co-culturing [90]. Herein, the over-
expression of miR-193a-3p and miR-548c-3p reduced 
the expression level of GAL3, GAL9, and CD155 and 
upregulated the expression levels of MICA and MICB in 
MDA-MD-231. These results provide the first evidence 
of the involvement of miR-193a-3p and miR-548c-3p in 
improving NK cells and TCLs immunosurveillance via 
modulating H2S production in BC.

While our results offer promising insights, several 
limitations warrant consideration. Our study predomi-
nantly focused on the MDA-MB- 231 cell line, which 
may not fully capture the heterogeneity of BC in clinical 

populations. Further investigations encompassing diverse 
BC subtypes and clinical samples are needed to validate 
the translational potential of our findings. Additionally, 
elucidating the precise molecular mechanisms under-
pinning the pan-suppression of miR-193a-3p and miR-
548c-3p on H2S synthesizing enzymes is essential.

Conclusion
In conclusion, our study presents compelling evidence 
that the three H2S synthesizing enzymes CBS, CSE, and 
3MST are overexpressed in BC. Upon patient stratifica-
tion based on 3MST expression level, 3MST was found 
to have higher transcript levels in BC patients at age < 40 
years old, pre-menopausal, expressing high Ki-67 and 
having large tumor size (≥ 5 cm). Bioinformatics and in-
silico analysis predicted miR-193a-3p and miR-548c-3p 
as pan-suppressors of the three H2S synthesizing 
enzymes simultaneously. They were under-expressed in 
BC tissues. In-vitro study confirmed their pan-inhibition 
of the three H2S synthesizing in TNBC cells and attenu-
ation of H2S production. Meanwhile, miR-193a-3p and 
miR-548c-3p suppressed the oncogenic profile of TNBCs 
and improved their immune response (Fig. 8).
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