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Abstract: Volumetric strain can be divided into two parts: strain due to bond distance 
change and strain due to vacancy sources and sinks. In this paper, efforts are focused on 
studying the atomic lattice strain due to a vacancy in an FCC metal lattice with molecular 
dynamics simulation (MDS). The result has been compared with that from a continuum 
mechanics method. It is shown that using a continuum mechanics approach yields 
constitutive results similar to the ones obtained based purely on molecular dynamics 
considerations. 
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1. Introduction  
 

In a work published in 1976, Blech [1] showed that the atomic vacancy flux process creates a stress 
gradient during electromigration. When this stress gradient is large enough, the electromigration 
process cannot happen in metals if the cathode and anode are within a certain maximum distance. This 
stress-vacancy relationship is referred to as Blech’s critical length. In 1993, Kirchheim [2] proposed a 
model that reached to the microscopic level, describing the generation of tensile and compressive 
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stresses in aluminum lines. He used the instances of atomic vacancy generation, annihilation, and 
transport to account for these electromigration induced stresses. In 1999, Gleixner and Nix [3] 
proposed another model for electromigration and stress-induced void formation in aluminum VLSI 
interconnects based on classical nucleation theory. In that work they provide a discussion of an upper 
limit for hydrostatic tensile stresses in such lines based on an assumed volumetric lattice strain value. 
Kirchheim's model has been expanded by Sarychev, et al. [4] and Bassman [5]. Sarychev et al. state 
that the main disadvantage of Kirchheim's approach is its neglect of vacancy flux in the stress 
evolution of the system. Their model offers a method for connecting the evolution of the stress tensor 
with the transport of vacancies, the geometry of the metallization, and the stress and displacement 
boundary conditions that apply to it. In a dissertation by Bassman, a thermodynamic formalism for 
both the vacancy contribution to stress and chemical potential gradients was developed. Her work 
investigates stress-mediated self-diffusion in polycrystalline solids. In all three models, the size of an 
aluminum atomic vacancy is characterized by the strain that the volume of an atom would undergo 
upon its removal from a perfect lattice. 

The change in volume describing a vacancy is related to the original atomic volume by the 
parameter f, called the vacancy relaxation factor. The form of Sarychev’s relation is shown below in 
equation (1): 

 0v fε = − Ω <  (1) 

where εv is the strain deformation introduced by vacancy volume relaxation, f is the vacancy relaxation 
factor which is a dimensionless number, and Ω is the volume of an atom. However, apparent 
dimensional inconsistency is observed in equation (1). Sarechev’s notation will be abandoned in our 
context, which will be more reasonably described by Kirchheim’s form which defined f as the 
volumetric strain induced by replacing a matrix atom with a vacancy. Following Kirchheim’s 
definition, the volume change induced by generation/ annihilation of a vacancy can be expressed by: 

 (1 )fV f= − Ω  (2) 

Equation (2) assumes that vacancy behaves like a foreign atom with smaller volume, (1-f)Ω, than 
that of a matrix atom. Very early analytical work investigating the value of f was conducted by 
Doyama and Cotterill [6]. Their work calculated the volume of a vacancy by computing the change in 
positions of copper atoms in a crystal. A pairwise Morse potential described atomic interactions 
nearest to the point defect, treating the atoms as discrete particles. Further away, atoms were 
susceptible to treatment by the elastic theory. Doyama and Cotterill found the volume of a copper 
vacancy to be 0.83*Ω, where Ω is the atomic volume. Gleixner and Nix, in their work mentioned 
earlier, and Shawman [7], report that for FCC metals, the vacancy volume is 0.9*Ω.  

Our work attempts to provide a more accurate representation of this relaxation factor, both in 
atomic scale and in continuum mechanics scale. By comparing results from methods applicable in 
different length domains, constitutive values are sought for multiscale material modeling. 



Int. J. Mol. Sci. 2009, 10             
 

 

2800

2. Molecular Dynamics Simulation Details 

2.1. Embedded-Atom Method 

The interactions between aluminum atoms in our simulation are characterized by Daw and Baskes' 
embedded-atom method [8,9]. This method serves as a desirable alternative to simpler, pair-wise 
approaches because of the EAM's realistic description of metallic cohesion and is discussed in a 
comprehensive review [10] and detailed in other papers [11,12]. A brief summary of the method, based 
on these works, is presented here. 

Daw, Foiles, and Baskes [10] proposed that the major contribution to the energetics of a metal is the 
energy to embed an atom into the electron density of neighboring atoms. The remaining energy is 
explained by a short-range, doubly screened pair interaction that accounts for core-core repulsions. 
Thus, the total energy of the system is written as: 

 ( ) ( ),
, ( )

1
2tot i h i ij ij

i i j i j
E F Rρ ϕ

≠

= +∑ ∑  (3) 

Here, Fi is the embedding energy for placing an atom in a host electron density.  That density is 
described by ,h iρ  which is the total electron density at atom i, due to the rest of the atoms in the 
system.  We can simplify the description of ih,ρ  by assuming that the host density is closely 

approximated by a sum of the atomic densities, a
jρ of the neighbors j of atom i: 

 ( ),
,

a
h i j ij

j i
Rρ ρ

≠

= ∑  (4) 

These atomic densities are, as shown in equation (4), merely functions of position and provide 
straightforward calculation of the embedding energy of the atom in question.   

The embedding function, Fi, maintains its simplicity when calculating an atom in an alloy versus a 
pure material, as it does not depend on the source of the electron density, but only on atom i. The 
second term in equation (3), φij represents the pair interaction and is purely repulsive. Both the 
embedding function and pair interaction terms are derived on a per material basis, calculated from the 
formal definitions within the author's density-functional framework, as well as fitting them to describe 
the bulk equilibrium solid's properties—specifically, the equilibrium lattice constant, heat of 
sublimation, elastic constants, vacancy formation energy, and BCC-FCC energy difference. The 
specific potential file for aluminum used with the EAM was developed by Mishin and Farkas, et al. in 
1999. Compared to other aluminum potential files for EAM, this accurately reproduces basic 
equilibrium properties of aluminum derived from both ab initio and experimental data, as well as the 
correct relative stability of different alternative structures with coordination numbers ranging from 12 
to 4. This latter feature is particularly desirable for this study. 
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2.2. Virial Stress 
 

The virial definition of atomic stress is used to calculate the stress around a given volume of 
simulation space:  

 ( ), ,
,

1 1
2 i j i j

i j i i
m

V
β α α α β

α β
≠

⎡ ⎤
= − − +⎢ ⎥

⎣ ⎦
∑ ∑ ∑σ F r r v v  (5) 

Here, Fij is the force on an atom i by atom j in the β direction, multiplied by the components of the 
distance between i and j in the α direction. The second term represents the kinetic portion of the 
internal pressure of the system. Where m is the mass of atom i, and v is the particular component of its 
velocity in directions α and β. V is the volume containing the atoms i and j included in the equation. 

There have been many researchers who have questioned point-wise stress calculation in a system 
using the expression for atomic stress taken from the virial theorem. Zimmerman et al. [13] show that 
an expression for continuum mechanical stress in atomistic systems, derived by Hardy [14] converges 
quicker than the viral to values expected from continuum theory, as a function of volume. Zhou [15] 
argues that neither the virial stress, which includes total atomic velocities, nor Hardy's stress, which 
includes velocity fluctuations, represent a measure of the true mechanical stress. We present here our 
results calculated from the virial form of the stress, as this was more convenient to implement. 
However, the points made in the preceding works will be considered during the continuation of this 
research. 

 
2.3. Molecular Dynamics Simulations 
 

For the aluminum simulations, the LAMMPS molecular dynamics simulation software package was 
used [16]. Data collection runs were conducted using a constant number of particles, constant volume, 
and at a constant temperature (NVT) for pure aluminum in an FCC lattice at 533K. These conditions 
are the same as in Sarychev’s work (see Table 1). A simulation box size of 6 x 6 x 6 lattice lengths 
with periodic boundary conditions was used and an initial FCC lattice unit cell length was set at 4.032 
angstroms. The system was first equilibrated with an NPT style integrator to allow the lattice (volume) 
to expand to its zero pressure value at 533K. Next, the system was switched to an NVT integrator for 
data collection. Simulations were controlled with a Nose-Hoover thermostat and integrated with time 
steps of 0.001 picoseconds. 

Table 1. Al material properties used in simulations. 

E Young's modulus, (111) texture 6.6x104 MPa at (533K) 

υ Poisson’s Ratio 0.3496 

Ω  Volume per Al atom, bulk 1.38x10-23 cm3 

 
The system was first allowed to converge to equilibrium, which we simulated for 40 picoseconds 

(ps). Following achieving a convergence, atomic positions and point-wise stresses were collected 
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every 0.5ps for duration of 10.0 ps under NVT conditions. Next, a void was created by removing an 
atom from the lattice. Data collection continued for 10.0 ps. Atom specific positions and stresses were 
collected for the original atom's 12 first nearest-neighbors before and after atom removal. 

 
3. Lattice Volumetric Strain 
 

The volumetric strain created after the removal of an atom is found by direct measurement of first-
nearest neighbor positions. Prior to the vacancy formation, distances between each first-nearest 
neighbor and the atom to be removed were recorded every 0.5ps (500 time steps), for 10.0ps (103 time 
steps).  Averaging the first-nearest neighbor positions, we can find the center of the void, and from 
there an average neighbor distance from the void, R1, is found. Next, the atom is removed and the 
system is allowed to converge to an equilibrium which took about 500 time steps. Similar to before, 
distances between each first-nearest neighbor and the center of the void are recorded every 500 time 
steps, for 103 time steps. A second average neighbor distance, R2, is found.  Spherical volumes based 
on these two radii are computed and the volumetric strain is computed as shown below. 

 ( ) ( )
( )

3 3
1 21 2

3
1 1

v

R R

R
ε

−Ω − Ω
= =

Ω
 (6) 

Figure 1. A plot of first-nearest neighbor distance from center of an atom (or void), versus 
simulation time steps in molecular dynamic simulations. Filled black circles indicated a 
full lattice and open circles indicate a vacancy, where the atom is removed at 10 ps into the 
data collection run.  Average neighbor positions before and after atom removal are 2.891 
+/-0.009 and 2.831 +/-0.010, respectively. 
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The average initial (R1) and final (R2) distances to the atom or void center for one particular 
molecular dynamics run are shown in Figure 1. Dotted lines of (R1) and (R2) values are averages over 
multiple simulation runs, with statistical uncertainty shown in the legend. From our first-nearest 
neighbor distance, and using equation (6), we obtain that fI = 0.060 +/-0.013. The error found here is 
based on uncertainty in (R1) and (R2), propagated through equation (6). The values reported by 
authors doing similar research are listed in Table 2. 

Table 2. Vacancy relaxation factors as reported by authors.  

Sarychev, et al. 0.60 

Bassman 0.20 

Doyama, et al. 0.17 

Gleixner and Nix 0.10 

This work 0.060 

4. Validation with Continuum Mechanics Methods 
 

In this section, continuum mechanics formulations are introduced to calculate the spherical stress 
induced by the removal of a matrix atom. The location of the missing atom is simplified as a spherical 
cavity inside an infinite elastic body. The interactions between atoms, including short range repulsion 
and long distance attraction, are the source of the stresses in continuum level. After the sudden 
removal of an atom, the attraction can no longer be balanced by the repulsion. Hence the atoms nearby 
will sink into the void until they reach another balance. This is the mechanism of shrinkage strain at 
the missing atom site. In this method, the atoms interactions are treated as hydrostatic pressure around 
the cavity. By introducing the elastic constitutive relationship, the volumetric stress can be calculated, 
which is shown in Figure 2. 

 ( )1
3 rP θ ϕσ σ σ= + +  (7) 

Shown in Figure 3 is a free body diagram of our sphere under stress. Further analysis of these 
stresses show that at the inner boundary of the cavity, we have: 

 0rσ =  (8) 

 3
2

Pθ ϕσ σ= =  (9) 
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Figure 2. Void model in continuum mechanics domain. 

 

 

 

 

Figure 3. Free body diagram under spherical coordinate system. 

 

 
 
 
 
 
 
 
 
 
 
By Hooke's Law in spherical coordinates, we have: 

 ( )1r

E E
θ

θ

ν σνσε
−

= − +  (10) 

where E is Young's modulus and ν is Poisson's ratio. Volumetric strain from the strain of our sphere in 
the θ direction can be obtained by: 

 v rθ ϕε ε ε ε= + +  (11) 

Applying equations (7) to (11), the spherical stress is calculated to be -2029.52 MPa, which is 
about 32% smaller than the virial stress P = -2978.8 MPa. As stated in the previous section, in 
continuum mechanics, stress is defined as the internal force intensity across an imaginary face. It 
doesn’t consider the particles cross over the boundary. While in molecular dynamics, virial stress 
measures the momentum change in definite group of particles. Only when the density change is 
negligible can virial stress be approximated to be Cauchy stress. In this example, a reduction factor 
between atomistic and macroscopic scale will be needed to precisely consider the bulk modulus 
difference in between atomic scale method and continuum mechanics method. However, considering 
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the small density of vacancies in the total lattice sites, Cv/Ca≈1×10-5 [17], the vacancy relaxation factor 
can be safely estimated to be 0.06~0.10 in most cases. 

 
5. Components of Bulk Modulus 
 

According to Blech’s relationship [1], the vacancy density in a system depends on its stress level. 
Therefore, by simply changing the stress status, we can study the role of vacancy sink/source in the 
constitutive relations. The equilibrium vacancy concentration with the following form can be found by 
simple manipulation on Blech’s relationship: 

 
( )

0

1
exp sp

ve v

f
c c

kT
⎛ ⎞− Ω

= ⎜ ⎟⎜ ⎟
⎝ ⎠

σ
 (12) 

The vacancy generation/annihilation has the following rate dependent form: 

 ve

s

c cG
τ
−

= −  (13) 

where τs is vacancy relaxation period. It is a material property representing the period that the system 
needs to reach vacancy equilibrium, which is in the magnitude of 1ms.  

From equation (12) we can see that tensile stress yields more vacancies while compressive stress 
results in fewer vacancies in metal. This model is employed as a user-defined element in ABAQUS. 
An 8 nodes plane strain element with the size of 2 mm×2 mm is stressed by the nodal forces and 
constraints as is shown in Figure 4. By simple manipulation, the stress state can be found to be 
σx=σy=-30 MPa and τxy=0. In case of Poisson’ ratio ν = 0.33 and Young’s Modulus E = 62 GPa, 
considering no vacancies annihilation induced strain, σz can be calculated to be -19.8 MPa, strain εx=εy 
=-2.19×10-4, spherical stress σspherical =-26.6MPa, and volumetric strain εV =-4.38×10-4. 

By taking the vacancies annihilation induced strain into consideration, the stress/strain state is 
calculated to be σz= -19.5 MPa, εx=εy =-2.25×10-4, σspherical= -26.5 MPa and εV=-4.50×10-4

. The 
contraction due to vacancies annihilation reduces the compressive stresses in Z direction (normal to the 
plane). As a plane strain element, it is assumed strain in the direction normal to the plane is zero. In 
other words, there are constraints to prevent the deformation in Z direction. When the density of lattice 
sites decrease under compressive stress, the element tends to contract in all directions and thus reduces 
the reaction forces in Z direction. 

By changing the sign of the pressure applied, it is found that the model with vacancies 
generation/annihilation mechanism yields more tensile strain than the one without does. Therefore, it 
can be concluded that the bulk modulus κ is composed by two parts: 
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Figure 4. Plane strain element under compressive load. 

 

 
 e vκ κ κ= +  (14) 

 
where κe is due to the interaction between atoms. Tensile strain increases the bond distances between 
atoms and yields an overall tensile stress; compressive strain shortens the bond distances and results in 
compressive stress.  

κv reflects the change due to the vacancy concentration. Tensile stress exaggerates the grain 
boundaries by producing more vacancies; compressive stress tends to merge the grain boundaries and 
thus reduces vacancies. Both generation and annihilation of vacancies result in the corresponding 
volumetric strain. κv can be derived from equation (14). It is usually a negative value, which depends 
on stress and load rate.  

In case of loading time is much larger than vacancy relaxation time, as usually is, κv is much smaller 
than κe.  In this example, κ=59 GPa, κe=60.7 GPa, and κv=-1.75 GPa. κv is only 2.7% of κe, which 
makes it reasonable to approximate κκ ≈e since most available experimental data are bulk modulus 

upon its specific load rate and stress. 
 

6. Conclusions 
 

Using LAMMPS molecular dynamics simulator with the embedded-atom method, we simulated an 
aluminum lattice at 533K.  We outputted atom positions and virial stresses for a particular atom and 
its first-nearest neighbors. That particular atom was then removed, and we used the change in positions 
to calculate the volume strain due to the creation of a void. We also calculated the volumetric strain 
induced spherical stress with continuum mechanics constitutive. The comparison of mechanical stress 
and virial stress shows that reduction factor is needed in order to bridge material modeling methods 
applicable in atomic scale to macroscale. 

We also report that bulk modulus can be divided into two parts: one due to atomic bonds length and 
the other induced by vacancy sinks and sources mechanism. The latter part is strain rate dependent 
which can be negligible at static load. 
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