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Extracellular vesicles are encapsulated lipid nanoparticles secreted by a variety of cell
types in living organisms. They are known to carry proteins, metabolites, nucleic acids,
and lipids as their cargoes and are important mediators of intercellular communication.
The role of extracellular vesicles in chronic liver disease has been reported. Chronic liver
disease such as viral hepatitis accounts for a significant mortality and morbidity burden
worldwide. Hepatic fibrosis has been commonly associated with the chronic form of viral
hepatitis, which results in end-stage liver disease, including cirrhosis, liver failure, and
carcinoma in some patients. In this review, we discuss the potential role of extracellular
vesicles in mediating communication between infectious agents (hepatitis B and C viruses)
and host cells, and how these complex cell-cell interactions may facilitate the development
of chronic liver disease. We will further discuss how understanding their biological
mechanism of action might be beneficial for developing therapeutic strategies to treat
chronic liver disease.
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INTRODUCTION

Extracellular vesicles (EV), first described over four decades ago (Chargaff and West, 1946; Wolf,
1967), have now gained recognition as an important mediator of intercellular communication in
chronic liver disease (CLD) (Ramakrishnaiah et al., 2013; Hirsova et al., 2016; Devhare et al., 2017;
Banales et al., 2019). These membrane-bound nanoparticles are secreted by a variety of cell types in
a living organism and are known to carry cargoes such as proteins, metabolites, nucleic acids, and
lipids, which mediate complex cell-cell communications. The specific nature of EV-derived cargo
has led to an immense interest in using EV as a tool for disease diagnosis and as a target for
therapeutic intervention (Banales et al., 2019; Soekmadji et al., 2020).

The CLD is an umbrella term used for reference to any pathological condition where progressive
destruction of liver tissue occurs over 6 months or more. CLD is a significant health concern
worldwide; chronic hepatitis C, chronic hepatitis B, alcoholic or non-alcoholic fatty liver disease,
and autoimmune hepatitis account for a significant global mortality and morbidity burden. It is
estimated that about 844 million people are living with CLD (2017), and at least 2 million deaths per
year are associated with CLD globally (Byass, 2014). Cell-cell interactions amongst cell types such as
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liver progenitor cells (LPC), hepatic stellate cells (HSC), and
Kupffer cells have been implicated in the development of liver
fibrosis and CLD, which eventually progress into an end-stage
liver disease including cirrhosis, liver failure and carcinoma
(Dwyer et al., 2014; Pozniak et al., 2017). Recently, EVs have
been shown to mediate these complex cell interactions among
these cell types in the liver, particularly in the context of CLD,
which shed light on their potential roles in the development of
this disease (Deng et al., 2017).

This review discusses the potential role of EVs in mediating
communication between infectious agents and host cells, and
how EV-mediated cell-cell interactions facilitate the
development of liver disease. We will further discuss how
understanding their biological mechanism of action might be
beneficial for developing therapeutic strategies to treat chronic
liver disease.
LIVER STRUCTURE AND FUNCTION

The liver is the largest visceral organ in the body, making up an
estimated 2–5% of the adult body weight with roughly 10% of the
body’s blood flowing through at any one time (Vekemans and
Braet, 2005). The liver performs a myriad of homeostatic roles
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
associated with metabolism, digestion, immunity, and the
endocrine system. Microscopically, the liver is composed of
two main cell types, parenchymal and non-parenchymal cells
(Trefts et al., 2017). Parenchymal cells, including hepatocytes
and cholangiocytes, form the majority of cell types in the liver.
Hepatocytes, along with the liver sinusoidal endothelial cells
(LSEC), line the sinusoids and are the primary epithelial cells of
the liver (Trefts et al., 2017). Hepatocytes and LSECs are
separated by the perisinusoidal space, also known as space of
Dissé. Cholangiocytes line the bile ducts and are involved in the
production and modification of bile composition (Figure 1).

In the injured liver, a unique subset of stem-like cells are
induced termed hepatic or liver progenitor cells (LPC), also
described as oval cells in rodents, which have the potential to
reconstitute liver mass by differentiation into hepatocytes or
cholangiocytes (Tirnitz-Parker et al., 2010; Köhn-Gaone et al.,
2016). LPCs are proposed to originate in the canal of Hering in
relatively small numbers at steady state but quickly expand
through rapid proliferation following chronic hepatic injury
(Dwyer et al., 2014). While their origin remains controversial,
recent lineage tracing studies have reported that activated Sox9+-
ductal cells proliferate and differentiate into liver progenitor cells
(LPCs) after sustaining chronic hepatic insults (Furuyama
et al., 2011).
FIGURE 1 | Schematic representation of the liver and the single end of its lobule. The portal triad comprising the hepatic artery, bile duct, and portal vein sits at
each end of the hepatic lobule. Blood collected from the portal vein and hepatic artery flows toward the central vein through the hepatic sinusoids lined by liver
sinusoidal endothelial cells (LSEC) and hepatocytes. The hepatocytes and LSECs are separated by the perisinusoidal space, also known as space of Dissé where
hepatic stellate cells (HSC) are located. The hepatocytes produce bile which empties into the bile duct lined by cholangiocytes. The canal of Hering is positioned in
the junctional region between cholangiocytes and hepatocytes, where liver progenitor cells (LPC) are proposed to originate.
November 2020 | Volume 10 | Article 587628
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Nonparenchymal cells of the liver comprise liver
myofibroblast precursors called hepatic stellate cells (HSC),
resident liver macrophages or Kupffer cells and LSECs. HSCs
which usually reside in the perisinusoidal space are liver-specific
mesenchymal cells rich in vitamin A (Higashi et al., 2017). They
exist at the ratio of 3.6 to 6 cells per 100 hepatocytes in human
liver, and their primary function in the normal liver appears to
involve vitamin A storage (Moreira, 2007). Studies have also
reported their regulatory role in regulating hepatic blood flow
and portal venous pressure at steady state (Geerts, 2001). LSECs
are specialized endothelial cells, which form the highly
fenestrated sinusoidal endothelium needed for the exchange of
fluid, nutrients, and solutes between the sinusoidal blood
and hepatocytes (Ni et al., 2017). They are highly endocytic
and have a well-developed clathrin-mediated endocytosis system
(Simon-Santamaria et al., 2010). Finally, Kupffer cells are
specialized macrophages in the liver. They form part of the
reticuloendothelial system and are involved in clearing senescent
cells and pathogens such as bacteria and viruses. They are one of
the key players in hepatic immunity.
PATHOPHYSIOLOGY OF CHRONIC
LIVER DISEASE

While the liver represents an organ with enormous regenerative
potential, chronic hepatic insults from pathogens, metabolic
insults, and other toxic agents can lead to the development of
CLD where the ability of the liver to heal and regenerate
diminishes as a consequence of hepatic scarring (fibrosis) and
eventually results in deterioration of liver function. The
development of CLD is a complex multifactorial process
involving many different cell types. Following a hepatic insult,
the liver attempts to repair the injured tissue through the
normal wound healing process. Paracrine stimulatory signals,
including inflammatory mediators, from other cell types such as
LPCs, LSECs, Kupffer cells, and hepatocytes within the liver
microenvironment activate quiescent dormant HSCs to
proliferate and migrate into the primary site of insults. These
activated a-smooth muscle actin- (SMA) and collagen type I-
expressing HSCs transdifferentiate into myofibroblasts, which
produce collagen and extracellular matrix needed for the wound
healing process (Higashi et al., 2017). They rapidly lose their
ability to store Vitamin A, causing the amount of Vitamin A
within the cell to decrease as it divides and distributes Vitamin
A-lipid droplets into two daughter cells (Higashi et al., 2005). In
CLD, these HSC-derived myofibroblasts contribute to excessive
deposition of collagen and extracellular matrix in response to
chronic liver injury; thus they are responsible for hepatic
fibrosis in a variety of different CLDs in adults including
chronic hepatitis C virus (HCV), alcoholic liver disease, non-
alcoholic fatty liver disease (Friedman, 2008), liver cancer
(Bridle et al., 2001) haemochromatosis (Ramm et al., 1997),
and in pediatric liver disease such as biliary atresia (Ramm et al.,
1998) and cystic fibrosis-associated liver disease (Lewindon
et al., 2002).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
LPCs can rapidly proliferate and differentiate in response to
liver injury in a process called the ductular reaction. However, the
role of LPCs in liver regeneration and repair seems to be restricted
to chronic injury where the replication of mature hepatocytes has
been impaired, or the hepatic microenvironment has been
substantially changed (Dollé et al., 2010; Best et al., 2013).
Clouston et al. showed that inflammatory cytokines such as
interferon (IFN)-g inhibited proliferation of hepatocytes,
resulting in an expansion of LPCs (Clouston et al., 2005). One
possible mechanism for LPC expansion involves tumor necrosis
factor-like weak inducer of apoptosis (TWEAK) and its receptor,
fibroblast growth factor-inducible 14 (Fn14)-signaling (TWEAK/
Fn14 signaling) (Dwyer et al., 2014). Binding of TWEAK secreted
by macrophages or natural killer (NK) cells to Fn14 expressed on
the surface of LPCs activates the downstream NFkB signaling
pathway, which switches the genes involved in proliferation on,
leading to the expansion of LPCs (Tirnitz-Parker et al., 2010;
Viebahn et al., 2010; Bird et al., 2013).

Interactions between HSCs and LPCs have been shown to
drive hepatic fibrogenesis in CLD. Notch signaling has
previously been implicated in the biliary specification of
Notch1/Notch2+ LPCs through interactions with Jagged1+

myofibroblasts (Boulter et al., 2012). The study demonstrated a
decrease in expression of biliary genes in LPCs when Notch
inhibitor was used in co-cultures of LPCs and HSCs.
Interestingly, another study demonstrated impairment in the
differentiation of LPCs into cholangiocytes when Notch2 liver-
specific knockout mice were treated with 3,5-diethoxycarbonyl-
1,4-dihydrocollidine (DDC) (Fiorotto et al., 2013). Previous
studies in this field identified a novel regulatory mechanism of
HSC/LPC crosstalk involving lymphotoxin beta (LTb) and its
receptor, LTbR (Ruddell et al., 2009; Tirnitz-Parker et al., 2014).
LTb expression has been shown to increase in several animal
models of chronic liver injury (Lowes et al., 2003; Akhurst et al.,
2005; Knight et al., 2005; Lee et al., 2005; Dwyer et al., 2014). One
study found that LTbR−/− animals fed with choline-deficient,
ethionine-supplemented (CDE) diet to induce biliary fibrosis had
decreased levels of inflammatory cytokines, which paralleled the
reduction in fibrosis and activated HSC numbers, compared to
the wild-type animals (Ruddell et al., 2009). Moreover, LPCs
were shown to express LTb, while LTbR expression was detected
on quiescent/activated HSCs in that study, further suggesting the
possible role of LTb/LTbR signaling in HSC/LPC crosstalk
(Ruddell et al., 2009).

In CLD, interactions between HSC and LSEC have also been
previously reported (Horn et al., 1987; DeLeve et al., 2008b).
LSECs undergo phenotypic changes in a process called
capillarization prior to HSC activation and fibrosis (Horn
et al., 1987; DeLeve et al., 2008b). Activated LSECs defenestrate
and form a continuous basement membrane liken to the
phenotype of capillaries in order to restrict the movement of
toxic molecules which would otherwise be harmful to the liver
(Deleve et al., 2008a; Ni et al., 2017). Unfortunately, this safety
mechanism also prevents an adequate exchange of solute or fluid
between sinusoids and hepatocytes, which further exacerbates
the fibrotic process in the liver (Bartneck et al., 2014). While
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healthy LSECs prevent activation of HSC and initiate changes of
HSC from an activated to a quiescence state, capillarized LSECs
promote HSC activation (Deleve et al., 2008a).
VIRAL HEPATITIS AS A CAUSE OF
CHRONIC LIVER DISEASE

Viral hepatitis is one of the most common causes of CLD
affecting close to 397 million individuals worldwide with both
hepatitis B virus (HBV) and HCV infection cases combined
(Trepo et al., 2014; Westbrook and Dusheiko, 2014; Ferri et al.,
2016). There are five main types of hepatitis viruses, including
types A, B, C, D, and E, of which, types B and C remain prevalent
globally, albeit differing in the geographical distribution of
disease prevalence. Infections associated with hepatitis types B,
C, D, and E viruses cause CLD at varying rates with type E being
the rarest, although co-infection of type B is still required for type
D to become chronic. While hepatitis viruses primarily infect
hepatocytes, some studies have reported binding of hepatitis
types C viruses to other cell types such as peripheral blood
mononuclear cells (PBMC) (El-Awady et al., 2005; Yamada et al.,
2005), which raises the possibility that other cell types could play
a more significant role in the pathogenesis of viral hepatitis. Most
of the pathophysiology of viral-induced CLD is attributed to the
exacerbated host immune response to the virus rather than the
viral replication in the cells, although more work has to be done
to clarify the mechanisms involved (Nakamoto et al., 1998;
Buchmann et al., 2013; Ringelhan et al., 2017). This review will
focus on HBV and HCV, given their high degree of clinical
relevance in CLD and disease prevalence.

HBV, an enveloped partially double-stranded DNA virus,
belongs to the Hepadnaviridae family, genus Orthohepadnavirus
(Sekiba et al., 2018). The infectious viral particles are double-
shelled and spherical. They consist of an outer lipid envelope
embedded with hepatitis B surface antigens (HBsAg), and a
nucleocapsid which comprises hepatitis B core antigens
(HBcAg), viral polymerase, and DNA genome (Liang, 2009).
The HBV genome is a 3.5kb long relaxed circular DNA (rcDNA),
consisting of four overlapping reading frames, which encodes
envelope proteins, structural core, viral polymerase/reverse
transcriptase, and regulatory x protein (HBx) (Liang, 2009). HBV
first enters the cells using the sodium taurocholate co-transporting
polypeptide receptor (Yan et al., 2012; Ni et al., 2014; Tong and Li,
2014). After entry, the virion un-coats in the cytoplasm, allowing
rcDNA to be transported into the host nucleus where rcDNA is
converted into covalently closed circular DNA (cccDNA) (Grimm
et al., 2011). The host RNA polymerase II transcribes cccDNA into
viral messenger RNA (mRNA) transcripts containing viral
pregenomic RNA (pgRNA), which are then re-exported back
into the cytoplasm of the host cell for translation of viral
proteins (Rajbhandari and Chung, 2016). Assembly of
nucleocapsids occurs in the cytoplasm where pgRNA is co-
packaged with viral polymerase/reverse transcriptase for reverse
transcription of pgRNA into rcDNA. Mature nucleocapsids are
enveloped through the endoplasmic reticulum (ER) and Golgi
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
apparatus before secretion from the host cell via exocytosis
(Rajbhandari and Chung, 2016). While the majority of pgRNA is
reverse transcribed into rcDNA, a small proportion (10%) gets
synthesized into double-stranded linear DNA (dslDNA) which can
integrate into the host genome. However, unlike retroviruses,
integration of HBV DNA is not essential for viral replication
(Sekiba et al., 2018).

HBV is known to cause both acute and chronic forms of
hepatitis. However, it is estimated that 10% of acute infection
progresses to chronic disease (McKeating et al., 2018). The
clinical manifestations of acute hepatitis include flu-like
symptoms, dark urine, and jaundice, although some cases may
appear asymptomatic. While the majority of HBV-infected
people recover from the infection completely, some people
remain chronically infected with HBV. In chronic hepatitis, a
persistent unproductive immune response to HBV is responsible
for substantial necroinflammation of the liver. It has been shown
that T helper (Th) 2 type cytokines such as IL-4 and IL-10 are
associated with persistent HBV infections resulting in more
severe liver damage (Lee et al., 1999). Indeed, the importance
of a protective T helper (Th) 1 rather than a tolerant Th2
immune response in clearing HBV has been demonstrated by
several studies (Marinos et al., 1995; Maini et al., 2000). Akbar
et al. demonstrated the importance of IFN-g in controlling HBV
infections by showing a reduction in HBV DNA in the liver and
sera after dendritic cells were treated with Th1 type cytokine;
IFN-g (Akbar et al., 1996). In addition to host immune response,
studies have reported the involvement of viral component HBx
in the progression of chronic HBV. It was first shown by Lee et al.
that HBx antigen was able to inhibit CD8+ T cell response by
reducing the production of IFN-g and inducing apoptotic
program in CD8+ T cells (Lee et al., 2010). Other findings have
also shown that HBx induces innate pro-inflammatory IL-6, IL-
8, and TNF-a but often not at the level sufficient for viral
clearance in chronic HBV (Mahé et al., 1991; Lara-Pezzi et al.,
1998; Lee et al., 1998). In particular, it has been shown that IL-6
initiates a switch from acute to chronic inflammation by
recruiting monocytes to the inflammation sites (Gabay, 2006).
Furthermore, HBx was found to activate and promote the
proliferation of HSCs (Martı ́n-Vı ́lchez et al., 2008; Bai
et al., 2012).

While it is widely accepted that a substantial number of
chronic HBV-associated liver cirrhosis cases develop
hepatocellular carcinoma (HCC) as an end-stage complication
of the infection (El-Serag and Mason, 1999; Block et al., 2003; El-
Serag and Rudolph, 2007), little is known about the process in
which the malignant transformation occurs. Persistent hepatic
necroinflammation as a result of viral-host immune interaction
is, however, recognized as the primary driver of HCC
development (Ringelhan et al., 2017; Chen and Tian, 2019).
Interestingly, as opposed to HCV-driven HCC, which develops
mainly in the presence of cirrhosis, only about 20% of HCC
driven by chronic HBV infection occur with cirrhosis
(Chayanupatkul et al., 2017). Indeed, the development of HCC
in HBV-infected individuals in the absence of inflammation
shed light on alternative mechanisms for tumorigenesis.
November 2020 | Volume 10 | Article 587628
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Epidemiology data revealed that 85–90% of HBV-associated
HCCs contained HBV DNA integrated into the host genome
(Minami et al., 2005), raising the possibility that the integrated
viral DNA might be involved in HCC development. Integration
of HBV viral DNA was previously shown to activate expression
of oncogenes such as cyclin E1 (CCNE1), telomerase reverse
transcriptase (TERT), and mixed-lineage leukemia 4 (MLL4)
(Sung et al., 2012). Moreover, genetic instability leading to
chromosomal translocation and accumulation of genetic
mutations after integration of viral HBx into the host genome
has been reported (Lee and Rho, 2000; Bonilla Guerrero and
Roberts, 2005; Feitelson and Lee, 2007).

HCV is an enveloped positive-sense single-stranded RNA
virus belonging to the Flaviviridae family, genus hepacivirus. The
HCV virions contain E1 and E2 glycoproteins within the viral
envelope that surrounded the core protein and nucleocapsid. The
HCV genome is 9.6kb long, consisting of two untranslated
regions (UTR) 5’-UTR and 3’-UTR and an open reading frame
(ORF). The ORF encodes a polyprotein, which is further
processed into various viral proteins including core protein,
E1, E2, p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B. The life
cycle of HCV, while only partially elucidated, starts with the
attachment of HCV to a host receptor. Several host receptors,
including lipoprotein (LDL) receptor, scavenger receptor B1 (SR-
B1), and CD81 tetraspanin (which is also an EV marker) (Théry
et al., 2018) have been proposed to be involved. Once bound to
its receptor, HCV-receptor complex is internalized through
clathrin-mediated endocytosis, releasing the nucleocapsid into
the cytoplasm. Viral genomic RNA is freed from the
nucleocapsid after uncoating, which then undergoes genomic
replication via a negative-sense RNA intermediate and
translation of polyproteins at the ER for further post-
translational processing. Assembly and maturation of virion
take place in the ER and Golgi apparatus before releasing from
the host cell by exocytosis.

About 80% of acute HCV cases develop into chronic HCV
infection due to the inability of the host immune system in
clearing the virus (McKeating et al., 2018). Several mechanisms
responsible for the persistence of HCV in the host have been
reported. First, the error-prone and high replicating
characteristic of HCV RNA polymerase results in a high
acquisition of mutations in the viral genome, leading to the
generation of many HCV quasispecies with mutated epitopes,
which cannot be recognized by cytotoxic CD8+ T cells (Irshad
et al., 2013). Consequently, the cell-mediated cytotoxic killing of
infected host cells is prevented, allowing the viruses to persist
(Irshad et al., 2013). Moreover, persistent antigenic stimulation
in chronic infection results in T cell exhaustion, which involves a
loss of virus-specific effector T cells and increased expression of
inhibitory molecules such as PD-1 (Penna et al., 2007;
Radziewicz et al., 2007). For example, Wedemeyer et al.
reported defective IFN-g production and proliferative capacity
with HCV-tetramer+ T cells in patients with chronic HCV
infection (Wedemeyer et al., 2002). Second, there is evidence
that HCV proteins drive Fas-mediated apoptosis of virus-specific
immune cells while promoting infiltration of peripheral T cells
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
into the liver (Soguero et al., 2002). It is thought that the
apoptosis of T cells in the liver might be partially responsible
for liver injury mediated by inflammation (Soguero et al., 2002).
Third, it has been reported that HCV E2 glycoprotein suppresses
the non-specific cytotoxicity function in NK cells, allowing HCV
to persist in affected patients (Crotta et al., 2002). As with HBV
infections, persistent hepatic necroinflammation in chronic
HCV infections creates a microenvironment which favors the
development of cirrhosis and malignancies. It has been reported
that CD8+ T cells and NK cells are directly involved in the
pathogenesis of HCV related liver cirrhosis and HCC (Cooper
et al., 1999; Karidis et al., 2015; Khatun and Ray, 2019).
THE ROLE OF EXTRACELLULAR VESICLE
(S) IN THE PATHOGENESIS OF VIRAL
DISEASE

The extracellular vesicle (EV) is a collective term for “particles
released from cells that are delimited by a lipid bilayer and
cannot replicate” (Théry et al., 2018). While EVs have been
previously categorized into exosomes, microparticles, and
apoptotic bodies, what constitutes each subtype has been
ambiguous. Since no consensus has been reached on their
specific markers, this review will refer to EV subtypes based on
the recommendations from the International Society for
Extracellular Vesicles (ISEV) (Théry et al., 2018). In terms of
size, EVs can be defined as small (<100 or 200nm) and medium/
large (>200nm) EVs (Théry et al., 2018). Small EVs are highly
enriched in a class of membrane proteins called tetraspanins
such as CD9, CD63, CD81, as well as cytosolic proteins TSG101
and Alix. These proteins also play diverse roles in cell biology
and physiology (Andreu and Yáñez-Mó, 2014; Lozano-Andrés
et al., 2019). In addition, EVs can be categorized based on their
biochemical composition and conditions or cell where they
originate (Théry et al., 2018).

Biogenesis of EVs differs among exosomes, microparticles
and apoptotic bodies and has been extensively reviewed
elsewhere (Akers et al., 2013; Schorey et al., 2015; Abels and
Breakefield, 2016; Hirsova et al., 2016). In general, exosomes are
described as vesicles that are formed by inward budding at the
multivesicular endosomes. Multivesicular endosomes destined
for degradation or exocytosis will either fuse with lysosomes for
degradation of their contents, or with the plasma membrane for
exocytosis (Abels and Breakefield, 2016). Exosome biogenesis
involves either endosomal-sorting complex required for
transport (ESCRT)-dependent or independent mechanisms.
ESCRT is a type of multi-subunit molecular machinery and
comprises five complexes (ESCRT-0, I, II, III and VPS4) with
specific roles assigned to each ESCRT complex (Hirsova et al.,
2016). These complexes are involved in cargo recognition,
recruitment, vesicle maturation, and secretion (Hirsova et al.,
2016). ESCRT independent mechanism, on the contrary, is
largely lipid raft and ceramide-based and was first described in
oligodendroglial cells (Trajkovic et al., 2008; Colombo
et al., 2014).
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The Potential Role of Extracellular
Vesicles in Viral Infectious Disease
The association between viral particles and EVs is indicated by
the presence of viral elements in EVs isolated from infected cells
(Table 1). Early studies in human immunodeficiency virus
(HIV) have demonstrated the presence of viral transactivating
response (TAR) element RNA in EVs isolated by gel filtration
Sephadex G-10 spin column and Nanotrap particle A for CD63+

vesicles from sera of HIV-1 infected patients and supernatants of
cultured infected J1.1 cells respectively (Table 1) (Narayanan
et al., 2013; Sampey et al., 2016). It was shown that these TAR
RNA-containing EVs prevented apoptosis and enhanced viral
replication in recipient cells, causing these cells to be more
susceptible to HIV-1 infection (Narayanan et al., 2013). Their
role was further confirmed by a study, which demonstrated
decreased susceptibility of recipient cells to HIV-1 infection
after the release of those EVs was inhibited (Sampey et al.,
2016). Furthermore, HIV virulence factor, Nef detected in
plasma EVs of HIV-infected patients using sucrose density
gradient ultracentrifugation was shown to correlate with the
low T cell counts in patients (Table 1) (Lee et al., 2016). Indeed,
another study reported the induction of CD4+ T cell apoptosis in
vitro by EV-associated HIV Nef (Table 1) (Lenassi et al., 2010).
Like the EVs from HIV-infected cells, the EVs isolated from
Epstein-Barr virus (EBV)-positive A-type lymphoblastoid cells
contain biomolecules such as latent membrane protein 1 (LMP1)
which was found to inhibit NK and T cell functions (Table 1)
(Dukers et al., 2000; Flanagan et al., 2003). In the context of
human papillomavirus (HPV), it was found that the amount of
EVs secreted by HeLa cells increases when E6/E7 oncogene
expression is inhibited (Honegger et al., 2013). Moreover, the
inhibition of E6/E7 oncogene expression leads to a reduction in
the levels of EV cargo survivin, a negative regulator of apoptosis,
although the E6/E7 oncogene protein itself has not been detected
within the EVs (Honegger et al., 2013). Further studies are
needed in part due to the possibility of co-isolation of virus
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
during EV preparation as shown by the presence of retrovirus
and xenotropic murine leukemia virus-related virus in isolated
EVs using ultracentrifugation (Knouf et al., 2009; Soekmadji
et al., 2017). It should be noted that there is an overlap in the
mechanism by which viruses and EVs may share in biogenesis,
entry, and secretion mechanisms, as shown by enveloped viruses
that co-utilize the host’s cellular machinery during infection
(Nolte-’t Hoen et al., 2016). One cellular mechanism being
investigated is the ESCRT which, as mentioned above, forms
an integral part of the cellular endosomal system for EV
biogenesis (Abels and Breakefield, 2016). Strickland et al.
demonstrated inhibition of HIV-1 replication and budding
through depletion of an ESCRT-I protein called TSG101 in the
human embryonic kidney, HEK 293 cells (Strickland et al.,
2017). TSG101 is also widely utilized as an EV marker
(Soekmadji et al., 2013). Interestingly, knocking down TSG101
was shown to increase HBV production in human hepatoma,
Huh-7 cells (Stieler and Prange, 2014). They demonstrated the
importance of ESCRT-II subunits EAP30, EAP45, and EAP20
for HBV replication and showed that extracellular HBV was
substantially reduced after knockdown of these ESCRT-II
components (Stieler and Prange, 2014). Moreover, several
studies have reported a role of tetraspanin EV markers in the
life cycle of several viruses such as HIV-1 (Pelchen-Matthews
et al., 2003; Fu et al., 2015), HCV (Bartosch et al., 2003; Fénéant
et al., 2014), human papillomavirus (HPV) (Spoden et al., 2008;
Scheffer et al., 2013), and influenza A virus (IAV) (Earnest et al.,
2015; Earnest et al., 2017), which further suggests the potential
convergence of EV and virus biogenesis pathways.

The Role of Extracellular Vesicles in Virus-
Associated Chronic Liver Disease
While it remains unclear to what extent the similarities between
viruses and EV biogenesis contributes to the disease progression
of viral infections, it is possible that viruses may hijack the
mechanism of EV biogenesis to increase infectivity and
TABLE 1 | Types of viral elements present in extracellular vesicles (EVs) released from cells infected by HIV or Epstein-Barr virus (EBV).

Causative
agent

Cargo Isolation process EV characterization Source References

HIV* TAR
element
RNA

Filtration and ultracentrifugation Western blot (CD63,
CD45, Hsp70#, and Alix)
Transmission electron
microscopy

Culture supernatant of Jurkat^ and J1.1^ cells (Narayanan
et al., 2013)ExoQuick™ reagent and gel filtration

Sephadex G-10 spin column

Patient sera

Size-exclusion chromatography and
Nanotrap particle A for CD63+ vesicles

Western blot (CD63 and
Hsp70#)

Culture supernatant of Jurkat^ and J1.1^ cells (Sampey
et al., 2016)

Nef
protein

Ultracentrifugation Western blot (CD9, CD63,
and CD81)

Culture supernatant of plasmid Nef-transfected
HeLa.CIITA^, Jurkat^ and SupT1^ cells

(Lenassi
et al., 2010)

Differential centrifugation and column-based
bead isolation

Western blot (CD63 and
CD81)

Culture supernatant of monocytes (Lee et al.,
2016)

Sucrose density gradient ultracentrifugation Patient sera
EBV* LMP1 Sequential centrifugation Immunoelectron

microscopy
Culture supernatant of DG-75^ and QIMR NB-
B95-8^

(Flanagan
et al., 2003)
November 2020 | Volume 10 |
*HIV, human immunodeficiency virus; EBV, Epstein-Barr virus.
^Jurkat; immortalized human T lymphocyte cell line, J1.1; HIV-1 lymphadenopathy associated virus (LAV) infected Jurkat E6 cell line, HeLaCIITA; immortalized human cervical cell line
transfected with class II transactivator, SupT1; human T cell lymphoblastic lymphoma cell line, DG-75; Burkitt’s lymphoma cell line, QIMR NB-B95-8; EBV-positive A-type lymphoblastoid
cell line.
#Hsp70 is not commonly used as EV markers despite being found in EVs (Théry et al., 2018).
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TABLE 2 | Involvement of extracellular vesicles (EVs) in chronic liver disease.

References

rnatant of pHBV-transfected
Huh-7^ cells

(Kouwaki et al., 2016)

let-free plasma (Sukriti et al., 2019)

(Yang et al., 2017)

rnatant of HBV-infected (Sanada et al., 2016)

rnatant of HepAD38^ cells (Kakizaki et al., 2018)

rnatant of pHBV-transfected
ls

(Kouwaki et al., 2016)

rnatant of HCV-infected Huh-
patocytes

(Dreux et al., 2012)

rnatant of HCV-infected Huh-
cytes

(Harwood et al., 2016)

rnatant of HCV-infected IHH^ (Devhare et al., 2017)

(Sohn et al., 2015)

medium of HepG2^,
U-449^ and Huh-7^ cells

(Cao et al., 2019)

(Tanaka et al., 2013)

(Wang et al., 2014)

medium of activated passage
SC^

(Chen et al., 2014)

medium of activated passage
SC^

(Chen et al., 2016)

a (Lambrecht et al.,
2017)

subgenomic replicon, PXB; human primary hepatocytes from
ell line which contains an integrated HBV genome, SNU-449;
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Causative agent or
disease state

Origin of
cargo

Cargo Isolation process EV characterization Source

HBV* Viral HBV RNA Total and CD81+ exosome isolation kits (Thermo
Fisher Scientific)

Western blot (CD9, CD63,
and CD81)

Culture sup
HepG2^ an

HBsAg, HBeAg, and HBV
DNA

Differential centrifugation Flow cytometry (different size
latex beads)

Patient plate

HBV rcDNA and HBV
RNA (HBx and HBs/p)

Ultracentrifugation and CD63-labeled Dynabeads®

positive selection (Life Technologies)
Flow cytometry (CD81)
Electron microscopy

Patient sera

HBV DNA Sequential centrifugation and ultracentrifugation Immunoprecipitation (CD9,
CD63, and CD81)
Stimulated emission depletion
microscopy (CD81)

Culture sup
PXB^-cells

HBsAg, HBcAg, and HBV
DNA

Ultracentrifugation and density gradient separation Western blot (CD9 and CD63) Culture sup

Host miR-21 and miR-29a Total and CD81+ exosome isolation kits Western blot (CD63) Culture sup
HepG2^ cel

HCV* Viral HCV RNA Sequential centrifugation Western blot (CD63 and
CD81)

Culture sup
7.5.1c2^ he

Host Galectin-9 ExoQuick™ method (System Biosciences) – Culture sup
7.5.l^ hepat

miR-19a Sequential centrifugation and ExoQuick™ method
(System Biosciences)

– Culture sup
cells

Hepatocellular
Carcinoma

Host miR-221 and miR-222 ExoQuick™ Exosome Precipitation Solution
(System Biosciences)

Western blot (CD63, CD9,
and calnexin#)

Patient sera

miR-21 Sequential centrifugation and ultracentrifugation Western blot (CD63, CD81,
and CD9)
Transmission electron
microscopy

Conditioned
Hep3B^, SN

Filtration and ExoQuick™ Exosome Precipitation
Solution (System Biosciences)

Western blot (CD63 and
Tsg101)
Transmission electron
microscopy

Patient sera

Total Exosome Isolation Reagent (Invitrogen) Western blot (CD63)
Transmission electron
microscopy

Patient sera

Hepatic Fibrosis Host miR-214 Sequential centrifugation Transmission electron
microscopy
Zeta potential analysis and
dynamic light scattering
Western blot (CD9)

Conditioned
6 mouse pH

miR-199a-5p Sequential centrifugation NanoSight nanoparticle
tracking analysis
Western blot (CD81)

Conditioned
6 mouse pH

miR-122, miR-192, and
miR-200b

Total Exosome Isolation Reagent (Thermo Fisher
Scientific)

Western blot (CD63 and
Tsg101)

Patient plas

*HBV, hepatitis B virus; HCV, hepatitis C virus.
^HepG2; human hepatocellular carcinoma cell line, Huh-7; human hepatocellular carcinoma cell line, Huh-7.5.1 or Huh-7.5.1c2; subclone of Huh-7 cell line with HCV strain JFH-1
liver of humanized mice, HepAD38; HepG2 cell line with a stable integration of an HBV genome, IHH; immortalized human hepatocytes, Hep3B; human hepatocellular carcinoma c
human hepatocellular carcinoma cell line which contains an integrated HBV genome, pHSC; primary hepatic stellate cells.
#Calnexin is not commonly used as EV markers despite being found in EVs (Théry et al., 2018).
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transmissibility due to their similarities with EVs. In addition,
EVs could be utilized as a modulator of the host immune
response against viruses. There is evidence to suggest a
potential role of EVs in CLD associated with HBV and HCV
infections (Table 2; Figure 2). The earliest strong evidence of EV
involvement in viral-induced liver disease comes from studies
that reported the presence of viral genetic materials co-isolated
with EVs from culture supernatant using magnetic beads coated
with antibodies specific for an EV marker CD81. Kouwaki et al.
found that CD81+ EVs containing HBV-RNA isolated from
plasmid pHBV-transfected HepG2 were able to induce
expression of NKG2D ligands on macrophages, which has
been known to simulate IFN-g from NK cell (Table 2;
Figure 2) (Kouwaki et al., 2016). Interestingly, a similar
observation was made with HCV-RNA packaged EVs isolated
from the culture supernatant of HCV-infected Huh-7.5.1c2
hepatocytes using sequential centrifugation, where these EVs
were shown to activate plasmacytoid dendritic cells which
produce type I IFN (Table 2; Figure 2) (Dreux et al., 2012).
These observations suggest that EVs may be involved in the
innate immune response against the virus. Further, while the
contamination of EV preparation from pHBV-transfected
HepG2 with free-floating viral genetic materials is possible, the
contaminating viral genetic materials are unlikely to have
affected the expression of NKG2D ligands on macrophages
(Table 2; Figure 2). Although discrimination of virions and
free-floating viral genetic materials from EVs has long been a
challenging process, purer EV preparations could be obtained by
immunoprecipitation using antibodies against EV specific
markers (Zhang et al., 2019; Shahjin et al., 2020). As HBV
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
DNA and proteins were found in EVs isolated using both
differential centrifugation (Sukriti et al., 2019) and magnetic
beads specific for CD63 (Yang et al., 2017) from the plasma/
serum of patients with chronic HBV infection (Table 2), this
strongly suggests that viral cargo could be present in EVs. These
EVs containing HBV DNA were taken up by uninfected
hepatocytes HepG2, leading to detectable HBV DNA levels
(Sukriti et al., 2019) and expression of HBsAg and HBcAg in
hepatocytes (Yang et al., 2017), which suggest a potential
mechanism for viral transmission (Table 2; Figure 2). Indeed,
findings by Sanada et al. demonstrating that HBV DNA-
containing EVs isolated from HBV-infected primary
hepatocytes of humanized mice were able to transmit to naïve
hepatocytes, paralleled results reported in earlier studies (Table
2; Figure 2) (Sanada et al., 2016). This study also demonstrated
the resistance of EVs to antibody neutralization, suggesting the
possibility for EVs to act as a physical barrier between the
infectious viral particles and the immune system, allowing
viruses to establish persistence in chronic patients (Sanada
et al., 2016).

Immune modulation in the form of evasion and suppression
represent a fundamental process whereby viruses establish
persistent infection (Figure 2). Indeed, viruses have been able
to co-evolve with their hosts successfully for centuries as obligate
intracellular parasites using various immune evasion and
suppression strategies. However, utilization of EVs as a
mechanism for immune modulation by viruses is a relatively
new concept put forward by various groups. It has been shown
that EVs isolated using immunomagnetic separation from
patients with chronic HBV infection were able to inhibit NK
FIGURE 2 | The role of extracellular vesicles (EVs) in viral-associated liver disease. EVs containing nucleic acids, proteins, or metabolites are involved in the disease
progression of viral hepatitis and HCC via various mechanisms, including differentiation of hepatic stellate cells, proliferation and migration of tumor cells, immune suppression
and evasion, inflammation and antiviral properties, and transmission of virions. EVs can also be used in the diagnosis and treatment of viral-associated liver disease.
November 2020 | Volume 10 | Article 587628
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cell functions (Table 2) (Yang et al., 2017). Interestingly, these
EVs were also able to transfer HBV rcDNA and HBV RNA (HBx
and HBs/p) into NK cells from healthy donors when co-cultured
(Yang et al., 2017). A similar finding was reported with HCV,
where HCV-containing EVs from Huh-7.5.1 hepatocytes
infected with HCV were able to induce expression of galectin-9
on monocytes (Table 2; Figure 2) (Harwood et al., 2016).
Galectin-9 was previously found to be upregulated on Kupffer
cells in livers of HCV-infected patients, which coincides with an
elevated level of galectin-9 in chronic HCV patients. It was
reported that galectin-9 promotes the expansion of Foxp3+

regulatory T cells (Tregs) and apoptosis of HCV-specific T
cells (Mengshol et al., 2010), resulting in immunosuppression.

EVs harvested from HepAD38 expressing HBV pgRNA
(using density gradient centrifugation) were able to
immunosuppress monocytes by upregulating expression of
programmed death-ligand-1 (PD-L1) (Kakizaki et al., 2018).
PD-L1 is known to bind to PD-1 expressed on T cells and
inhibits T cell activation and proliferation, which was evidenced
by a decrease in expression of an early marker of lymphocyte
activation, CD69 in that study (Kakizaki et al., 2018).
Furthermore, microRNAs (miRNAs) associated with EVs have
been implicated in the modulation of the host immune response
by HBV. In particular, EV-associated miR-21 and miR-29a,
which were isolated from pHBV-transfected HepG2 cells,
downregulate IL-12 production and depress the immune
response to HBV (Table 2) (Kouwaki et al., 2016). IL-12 is a
known key regulator for Th1 differentiation and NK cell
activation (Scharton-Kersten et al., 1995). Importantly, IL-12
also stimulates IFN-g secretion from activated T and NK cells
(Gately et al., 1998). The expression of miR-21 in the context of
HCC development has also been shown to positively correlate
with HCC progression (Table 2). Cao et al. found that EV-
associated miR-21 positively regulates proliferation and
migration of HCC cells, resulting in tumor growth and
metastasis (Cao et al., 2019). In another study, Liu et al. has
shown that EV-associated miR-92a-2-5p isolated from THP-1
macrophages were able to increase liver cancer cell invasion by
decreasing the expression of androgen receptors on cancer cells
(Liu et al., 2020). It is noteworthy that the role of EV-associated
miRNA in disease progression is, however, not restricted to
immune cells in CLD. EVs derived from HCV-infected
hepatocytes were reported to contain miR-19a that activated
HSCs for differentiation into myofibroblasts (Devhare et al.,
2017). It was found that miR-19a was highly upregulated in
the sera of chronic HCV patients (Devhare et al., 2017).

Taken together, we propose that viruses move from the acute
phase of infection to the chronic phase of infection by virtue of
their biology, immune evasion mechanisms, and modulation of
the host immune response. While the initial innate immune
response provides the first line of defense against invading
viruses such as HBV and HCV, its ability for viral clearance is
limited (Szabo and Dolganiuc, 2008; Tang et al., 2018). As such, it
is possible that EVs act as a sanctuary for viral components of
HBV and HCV during the acute phase of infection where it would
be difficult for virus-specific antibodies or immune cells to have
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
access to them (Sanada et al., 2016). This provides the viruses with
an excellent mode of transmission to uninfected cells, allowing
viral persistence to be established (Yang et al., 2017), while the
immune system continuously attempts to eliminate the viruses
without any success. Persistent unproductive immune response
results in an inflammatory microenvironment within the liver that
is favorable for the development of liver fibrosis, cirrhosis, and
HCC transformation (Ringelhan et al., 2017; Chen and Tian,
2019). Indeed, it would be interesting to test whether blocking the
EV biogenesis pathway would decrease the risk for the
development of liver cirrhosis and HCC since studies in cell
culture systems have already shown that HCV titer is lowered
when the release of EVs is blocked (Ramakrishnaiah et al., 2013;
Shrivastava et al., 2013). To this end, it is important to emphasize
that the current understanding of the role of EVs in viral-
associated liver disease is incomplete and more research is
required to bridge knowledge gaps.

The Role of Extracellular Vesicles as a Biomarker for
Virus-Associated Chronic Liver Disease
EVs from blood and urine may be used as a potential non-
invasive diagnostic tool for early detection of viral-associated
CLD and HCC, which remain challenging to diagnose in part
because most patients remain asymptomatic in early stages of
disease pathogenesis. Of note, a large proportion (55-85%) of
HCV patients have been reported to develop chronic hepatitis
from the initial acute phase of the infection (Ringelhan et al.,
2017). It is estimated that 20–30% of chronic HCV patients
develop liver cirrhosis 15–25 years after infection (Lingala and
Ghany, 2015) and 67–91% of these patients die from liver-
associated causes such as HCC and liver failure if they do not
receive timely antiviral therapy (Fattovich et al., 2002; Kobayashi
et al., 2006; Toshikuni et al., 2009). Furthermore, poor prognosis
of HCC is often associated with a late diagnosis of the disease.
The 5-year survival rate for HCC is 12%, with a median survival
of an estimated 6 to 20 months following diagnosis (McGlynn
and London, 2011; McGlynn et al., 2015; Golabi et al., 2017). The
5-year survival rate increases to > 70% for patients if the
diagnosis is made at an early stage (Tsuchiya et al., 2015).

HBV infection is currently detected via a serological assay for
viral antigen, followed by a confirmatory real-time PCR test for
viral DNA (Krajden et al., 2005; WHO, 2017). HCV is detected
via a serological assay for viral antibody followed by
confirmatory real-time PCR for RNA (Krajden et al., 2005;
WHO, 2017). Subsequent staging of liver disease upon
confirmation of viral infection involves assessment for clinical
features of advanced liver disease/cirrhosis and non-invasive
tests such as aspartate aminotransferase (AST)-to-platelet ratio
index (APRI) and transient elastography (FibroScan) (WHO,
2017). However, clinical assessment, APRI and transient
elastography have inherent limitations and failure rates; for
instance, APRI is not liver-specific and does not discriminate
intermediate fibrosis stages well, while transient elastography
may have high failure rates and false positive results due to
obesity, non-fasting state, acute hepatitis and inflammation, and
inexperienced operators (Patel and Sebastiani, 2020).
November 2020 | Volume 10 | Article 587628
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In terms of diagnosis of HCC, it is unique cancer in that the
diagnosis can be made solely on the basis of specific imaging
characteristics of liver lesions using computer tomography
imaging or magnetic resonance imaging without the need for
liver biopsy (Cartier and Aubé, 2014). However, a definitive
diagnosis of HCC in a non-cirrhosis disease background may still
require an invasive liver biopsy. While liver biopsy remains the
reference standard for the diagnosis of HCC, it is a costly procedure
that only allows a small part of the liver to be examined and
interpreted (Sumida et al., 2014; Sung et al., 2018). This increases the
chance of sampling errors in heterogeneous solid liver tumor (Sung
et al., 2018). Moreover, this procedure is associated with known
morbidities, such as pain and complications. Therefore, it has been
reserved for more complicated cases of HCC which cannot be
definitively diagnosed using non-invasive imaging methods (Cartier
and Aubé, 2014).

To circumvent the limitations associated with the current
diagnostic regime for early detection of viral-associated CLD
and HCC, various different types of “liquid biopsy” have been
proposed as a potential diagnostic tool by several groups (Weis
et al., 2019; Jeffrey et al., 2020). Liquid biopsies may contain
various different combinations of analytes, circulating tumor cells,
cell-free tumor DNA, mRNA, miRNAs, proteins, or metabolites
(Mattox et al., 2019), as demonstrated for the diagnosis of HBV-
derived HCC by Qu et al. (2019; Jeffrey et al., 2020). Weis and
colleagues recently proposed in a pilot study the use of a serum
miRNA panel comprising miR-122-5p, miR-486-5p, and miR-
142-3p to discriminate HCV-derived HCC from mild disease and
cirrhosis (sensitivity of 80%, a specificity of 95%, the negative
predictive value of 82%, the positive predictive value of 74%, and
overall accuracy of 78%) (Weis et al., 2019), although these
miRNAs were not identified as EV-associated. More recently,
there has been a growing interest in EVs as biomarkers for
viral-associated CLD and HCC. An EV-based liquid biopsy is
useful because EVs from diseased individuals often carry specific
proteins, nucleic acids, and metabolites that can reveal the status of
disease (Whiteside, 2017; Hoshino et al., 2020). Unlike standard
liver biopsy, liquid biopsy is non-invasive and less costly to
perform. Furthermore, as EVs contain molecules that are
specific to a particular organ or disease, EV-based liquid biopsy
can be optimized to be highly disease-specific. Such non-invasive
tests also allow for a complementary or standalone test, providing
rapid diagnosis or prognosis of diseases, such as the FDA
approved EV-based biomarker for prostate cancer ExoDX
(Tutrone et al., 2020).

Several EV-associated miRNAs such as miR-21, miR-221, and
miR-222 have been linked to HCC (Table 2; Figure 2) (Meng
et al., 2007; Varnholt et al., 2008; Yang et al., 2014; Sohn et al.,
2015). Of interest, Tanaka et al. reported a higher level of EV-
associated miR-21 in the sera of cancer patients compared with
healthy individuals (Tanaka et al., 2013). Furthermore, the
expression of miR-21 was found to be significantly higher in the
EVs than that in the EV-depleted sera of patients with HCC,
which further suggests that the highly enriched EV-associated
miR-21 could be a more reliable diagnostic parameter than free
circulating miR-21 in these patients (Table 2) (Wang et al., 2014).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
Given that viral-induced liver fibrosis in HCV-infected
patients is the primary cause of viral-associated HCC, early
detection of liver fibrosis could prove beneficial for the long-
term surveillance of HCC. Specifically, EV-associated miR-214
and miR-199a-5p have been reported as potential fibrosis-
related EVs in the liver (Table 2; Figure 2). In one study,
downregulation of miR-214 was shown to increase connective
tissue growth factor (CCN2), which drives fibrogenesis in
activated primary murine HSCs and human HSCs, LX-2 (Chen
et al., 2014). Similarly, it was found that miR-199a-5p also works
in a similar fashion as miR-214, resulting in reduced levels of EV-
associated miR-199a-5p in fibrotic mouse livers and activated
primary murine HSCs (Chen et al., 2016). Furthermore,
Lambrecht et al. investigated the use of EV-associated miR-
122, miR-192, and miR-200b for the early staging of hepatic
fibrosis in chronic HBV and HCV patients and reported
increased levels of all three miRNAs in total plasma of early-
stage chronic patients (Lambrecht et al., 2017).

Extracellular Vesicles as Therapeutics for Chronic
Liver Disease
In recent years, EVs have attracted enormous attention as a
delivery system for therapeutic molecules. Unlike liposomes and
nanoparticles, the current preferred carrier choices for drug
delivery, EVs are naturally occurring nano-sized biological
carriers in a eukaryotic system (Akuma et al., 2019). Due to
their cellular origin and small size, EVs are biocompatible, non-
toxic, and less immunogenic than liposome-based drug delivery,
which make them better candidates than the artificially made
liposomes and nanoparticles as drug delivery agents (Wu et al.,
2019). Furthermore, they are able to carry a wide range of
biological molecules across biological barriers such as the
blood-brain barrier, increasing the bioavailability of the
molecules in the biological system and reducing the dosage
required for therapeutic benefit (Akuma et al., 2019). The
structural composition of EVs also provides a protected
enclosed space, making it an ideal delivery carrier for gene
therapy, anti-fibrotic and cancer treatments (Wang et al.,
2019). However, it is worth mentioning that the use of EVs as
a drug delivery system is not without limitations. The feasibility
to scale-up primary cell culture to obtain sufficient EVs for
clinical use is an important consideration and also a significant
challenge (Raimondo et al., 2019). While tumorigenic or
immortalized cell lines offer an easier alternative to primary
cells for large scale production of EVs, EV-derived from cancer
cell lines may inherently pose a risk of undesirable horizontal
gene transfer which may have dire consequences in the event that
oncogenes are transferred into EVs (Raimondo et al., 2019).
Isolating and purifying EVs can also be extremely costly, labor-
intensive and time-consuming, although the technologies have
been continuously improved (Soekmadji et al., 2020).

At present, one of the challenges with the treatment of HCC is
the lack of effective therapeutic agents which can successfully
improve the overall survival of HCC patients. There are currently
six approved drugs available for treatment of HCC with only
moderate success (Jindal et al., 2019). Due to the heterogeneity of
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the patient population and increasing number of advanced HCC
patients showing drug resistance (Niu et al., 2017; Namee and
O’Driscoll, 2018; Wang et al., 2019), there is an urgent need to
develop innovative therapy for HCC (Jindal et al., 2019).
Takahashi et al. found a role of EV-associated long non-coding
RNAs, linc-ROR, in HCC cells which mediate chemoresistance
through attenuation of drug-induced apoptosis and inhibition of
p53 expression (Takahashi et al., 2014). In light of the need for
new and effective cancer therapy, EVs have shown great promise
in delivering a common chemotherapeutic agent, paclitaxel to
treat multiple drug resistance cells (Kim et al., 2016). Kim et al.
demonstrated that there was at least a 50-fold increase in
cytotoxicity in drug-resistant cells using the EV-based
treatment (Kim et al., 2016). Several studies have also utilized
EVs to deliver anti-tumor therapeutics such as methotrexate and
doxorubicin to destroy HCC cells (Tang et al., 2012; Tian et al.,
2014). Immunotherapy involving EVs as carriers is a promising
alternative treatment for HCC. Rao et al. demonstrated a
significant reduction in tumor growth in HCC mice treated with
HCC-derived EVs which were able to elicit a strong dendritic cell-
mediated anti-tumor immune response (Figure 2) (Rao et al.,
2016). In addition, the tumormicroenvironment was also found to
have substantially higher levels of infiltrating CD8+ T cells and
inflammatory cytokines (Rao et al., 2016).

Viral-induced liver fibrosis and cirrhosis is one of the major
risk factors for the development of HCC. Therefore, slowing or
halting the progression of hepatic fibrosis will likely be beneficial
in reducing the risks for malignancy transformation. Chen et al.
found that EV-associated miR-199a-5p derived from quiescent
HSCs was able to reduce the expression of fibrogenic genes and
proteins in activated HSCs (Figure 2) (Chen et al., 2016).
Furthermore, EVs released from adipose-derived mesenchymal
stem cells (MSC) transfected with miR-122 were able to inhibit
activation and proliferation of HSCs. Interestingly, these MSC-
derived EVs were also able to inhibit fibrosis in the livers of mice
exposed to carbon tetrachloride (Lou et al., 2017). Thus, EVs may
have the potential to be used as therapeutics to treat CLD, with
further research in this area clearly warranted.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
CONCLUSIONS AND FUTURE
DIRECTIONS

EVs represent a novel class of nanoparticles, which could be
involved in the pathogenesis and progression of CLD. Indeed,
evidence gathered from recent studies has shed light on the role
of EVs in viral-associated CLD and HCC. EVs have emerged as an
important, yet poorly understood mechanism utilized by viruses
and the host immune system for disease pathogenesis of viral-
associated CLD andHCC.While there is evidence that EVs have the
potential to play a role as non-invasive diagnostic tools for early
detection of disease and as carriers for therapeutics, a more
thorough understanding of EV biogenesis and disease
pathogenesis and better, internationally standardized technologies
for the isolation and enrichment of EVs are warranted before they
can be widely used in the clinic for the treatment of CLD.
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