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Aims Atrial fibrillation (AF) carries a substantial risk of ischemic stroke and other complications, and estimates suggest that
over a third of cases remain undiagnosed. AF detection is particularly pressing in stroke survivors. To tailor AF screening
efforts, we explored German health claims data for routinely available predictors of incident AF in primary care and
post-stroke using machine learning methods.
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Methods and
results

We combined AF predictors in patients over 45 years of age using claims data in the InGef database (n = 1 476
391) for (i) incident AF and (ii) AF post-stroke, using machine learning techniques. Between 2013–2016, new-onset
AF was diagnosed in 98 958 patients (6.7%). Published risk factors for AF including male sex, hypertension, heart
failure, valvular heart disease, and chronic kidney disease were confirmed. Component-wise gradient boosting identified
additional predictors for AF from ICD-codes available in ambulatory care. The area under the curve (AUC) of the final,
condensed model consisting of 13 predictors, was 0.829 (95% confidence interval (CI) 0.826–0.833) in the internal
validation, and 0.755 (95% CI 0.603–0.890) in a prospective validation cohort (n = 661). The AUC for post-stroke
AF was of 0.67 (95% CI 0.651–0.689) in the internal validation data set, and 0.766 (95% CI 0.731–0.800) in the
prospective clinical cohort.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Conclusion ICD-coded clinical variables selected by machine learning can improve the identification of patients at risk of newly
diagnosed AF. Using this readily available, automatically coded information can target AF screening efforts to identify
high-risk populations in primary care and stroke survivors.
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Graphical Abstract Machine learning from health claims data robustly identifies patients at risk of AF in primary prevention and post
stroke, which could be implemented in automated screening tools. The new algorithm is superior to classical risk factors available in the data
set. ESC indicates European Society of Cardiology.
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Introduction
Projections in the European Union show that the number of adults
>55 years of age with atrial fibrillation (AF) will double by 2060.1,2

AF is associated with cardiovascular and cerebrovascular morbidi-
ties and mortality, including thromboembolic complications such
as stroke, heart failure, cognitive decline and vascular dementia,
and quantifiably impairments of quality of life.3–5 AF onset is of-
ten asymptomatic, and 25–35% of the disease burden remains un-
diagnosed.6,7 Many patients with AF are unaware of their disease,
untreated, and at unnecessarily elevated risk of severe complica-
tions.8,9 A stroke is often the first manifestation leading to diag-
nosis of AF, and at least one quarter of these strokes could have
been prevented by earlier diagnosis of AF and initiation of anti-
coagulation.10,11 An early AF diagnosis would furthermore enable
earlier treatment of concomitant conditions, and consideration of
rhythm control therapy with large potential benefits for public
health.
Guidelines and experts recommend AF screening in primary

prevention and post-stroke to enable timely diagnosis of AF.12–14 To
date, the ‘gold-standard’ for AF diagnosis is an electrocardiogram
(ECG), however, mass screening with ECG is expensive and will
require infrastructure to deal with incorrect diagnoses, particularly
when the pre-test probability of having AF is low. Adapted and
innovative approaches for cost-efficient screening programs are
required.12 To avoid the high costs of systematic screening and to
reduce false-positive rates, the pre-selection of at-risk populations
based on routine data is an attractive prospect. Traditional risk
factor sets have been previously described,12 but risk models that
reliably predict AF in primary care and post-stroke remain sparse.15

Supervised machine learning techniques enable automated selection
of the most relevant risk factors from high-dimensional data while
avoiding overfitting,16 and thus enable constructing reliable risk
factor-based screening algorithms.
The aim of our study was to identify a set of routinely avail-

able AF and stroke-related AF risk predictors, integrate these
using predictive models and German claims data from over four
million patients, and then show their discriminatory ability and
generalizability in clinical cohorts.

...........................................................................................................................

Methods
Study design
We defined the following objectives: identify risk factors for (i) incident
AF (first objective), and (ii) undiagnosed AF in patients with ischemic
stroke (second objective). These risk factors were used to generate pre-
dictive screening models for early AF detection and undiagnosed AF in
stroke patients. Then, we (iii) externally validated the performance of
the developed models using data from an accurately phenotyped clinical
cohort.

Training cohort
A retrospective cohort study using insurance claims data from the InGef
research database was used to identify AF predictors. This database
contains anonymized longitudinal data from approximately 60 German
statutory health insurance providers (SHIs). A data set with 4 350
891 patients was extracted as a representative sample (regarding age
and sex) of the German population between January 1st, 2010 and
December 31st, 2016. Data from patients, healthcare providers, and
the corresponding SHI are anonymized. The InGef database includes
information on in- and out-patient treatment, prescribed and dispensed
medications, sick leave and benefits, prescribed and dispensed medical
devices and therapies, as well as demographic information such as age,
sex, and location.17

The observation period of 01.01.2013 to 31.12.2015, was used to
identify the individual index date (the first date of documented AF or
stroke). Patients without AF or stroke were given a random pseudo
index date during the observation period.18

To exclude patients with AF or stroke prior to the index date, a
baseline period was defined. Due to the way the health claims data
were recorded, 1095 days pre-index date was defined for inpatient
diagnoses (documented by date), and 12 quarters prior to the quar-
ter containing the index date was defined for outpatient diagnoses
(documented by quarter). We split our data set into two parts: data
from 01.01.2013–01.12.2015 were used to derive the models, while data
from 01.01.2016–31.12.2016 were used as an internal validation set to
assess the models’ predictive accuracy.

We included patients 45 years of age or older at index date, since AF
is an age-related disease. Patients were assigned to one of four study
groups, based on the first and second objectives. Each patient was in-
cluded only once and grouped according to first index event. Inclusion
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and exclusion criteria are provided in Table S1. AF diagnosis was iden-
tified by the ICD-10-GM codes I48.0, I48.1, I48.2, or I48.9 (as valid in
2013). To identify stroke diagnosis, we used the ICD-10-GM code I63*.

Validation cohort
Finally, we applied the screening models in a prospective cohort of
consecutive ambulatory patients with cardiovascular risk factors older
than 18 years. Patients’ demographics, health status, cardiovascular
risk factors, medical history, and environmental factors were collected
during enrolment using a standardized interview, medical records, and
a 12-lead ECG. For external validation, we used the discharge ICD-10-
GM codes of n = 661 patients. We also enrolled post-stroke patients
(n = 162) for validation of AF prediction after stroke, undergoing
the same data collection and receiving a 7-day rhythm monitoring
(Novacor, R.Test Evolution 4). The study was approved by the local
ethics committee and complied with the Declaration of Helsinki.
Written informed consent was collected from all study participants.

Incident AF during one-year follow-up was diagnosed, if at least two
physicians trained in ECG reading confirmed the rhythm abnormality
after enrolment using information from the clinic visit, outside physi-
cian, hospital records, ambulatory ECG reports, or the 7-day rhythm
monitoring in post-stroke patients. Prevalent AF was diagnosed if the
participant reported having AF, was treated as an in- or out-patient for
AF, or medical records contained an AF diagnosis.

Statistical methods for identifying and
validating risk factors
Risk factors for incident and previously undetected AF were identified
based on patients’ demographics, verified ambulatory diagnoses, primary
or secondary hospital discharge diagnosis, and drugs dispensed during
the baseline period. Two different sets of risk factors were used. The
first set of risk factors contained known risk factors as published in the
ESC guidelines, classical risk factors model (Table S4).12 Their associ-
ation with incident and unrecognized AF was assessed by fitting a lo-
gistic regression model. Then, novel risk factors were determined using
three-digit ICD-10-GM codes, and four- or five-digit ATC (anatomical,
therapeutic, chemical classification) codes, healthcare claims data-based
risk model. The predictive value of these additional risk factors for both
outcomes was optimized by using a component-wise gradient boosting
algorithm. As a base learner, we used a linear model with a step size
of 0.05. The number of iterations was tuned using bootstrap technique,
with a minimal Akaike Information Criterion (AIC) as a stop criterion.19

A certain number of features (i.e. ICD-codes or ATC-codes) had to be
present in both groups for them to be considered for boosting. In addi-
tion, significance and medical plausibility were considered. Accordingly,
the final selection of risk factors was based on both the background
medical knowledge on the relationship of the variable with outcome
and their statistical associations.

In order to avoid overfitting and to ensure variable selection, the algo-
rithm was programmed to stop before convergence (“early stopping”).

We assessed model performance by the total area under the receiver
operating characteristic (ROC) curve (AUC). A binary classification anal-
ysis was used to compare observed and expected prediction of both
respondents (AF diagnosis) and non-respondents, in the sample. This
process provided sensitivity, specificity, positive predictive values (PPV),
and negative predictive values (NPV). The optimum cut-off point was
chosen for best trade-off between sensitivity and specificity by Youden’s
Index.20

........................................................................................................................................................................

Two sensitivity analyses were performed: the first included patients
at least 65 years of age at index date, and the second excluded patients
with an oral anticoagulant (OAC) prescription in the baseline period.
Both analyses were based on a model that used all available information
in the InGef research database to define risk factors.

Baseline characteristics were analyzed using demographic (age, sex)
and clinical (comorbidities, hospitalizations, medication) characteristics
of the patients in all treatment groups. Variables were derived from the
InGef research database for the respective baseline period. Table S7 pro-
vides an overview of all variables assessed for the description of the
study population, and for the inclusion in the multivariable models. The
data set contained information on age, sex, and ICD-10-GM codes in
ambulatory care, since more data is available in the ambulatory setting
and reflects primary care. For assessment of the goodness of fit of our
models, we calculated the Hosmer–Lemeshow test.21

We further assessed the AUC for two frequently used risk prediction
scores in AF, the CHADS2 (one point each for heart failure, hyperten-
sion, age ≥75 years, diabetes mellitus, 2 points for prior stroke/transient
ischemic attack)22 and HATCH (hypertension [1 point], age ≥75 years
[1 point], transient ischemic attack or stroke [2 points], chronic obstruc-
tive pulmonary disease [1 point], and heart failure [2points]) scores.23

A P-value of p < 0.01 was considered significant. Data analysis was
carried out by InGef; data management and statistical analyses were per-
formed using SAS 9.3 (SAS Institute Inc.) and R 3.4.1.

Results
Participants
A total of 1 476 391 patients met the inclusion criteria for objective
one (Table S2), and 98 958 incident AF patients were identified in
the InGef database from 2013–2016. After applying the inclusion
criteria, 88 111 AF patients were suitable for analysis.
In the 2010–2016 observation period, 29 155 patients had an

incident ischemic stroke without AF, and 19 019 fulfilled the inclusion
criteria and remained for analysis (Table S3). In the same period, 4
653 patients were diagnosed with AF post-stroke.

Baseline Characteristics
Baseline demographic and medical characteristics of the study
groups obtained from the InGef research database and for the vali-
dation cohort are shown in Table 1.
Incident AF patients were older (74.7 vs. 61.1 years) and were

more likely men. Comorbidities such as diabetes mellitus, hyperten-
sion, valvular heart disease, heart failure, or chronic kidney disease,
occurred more frequently in the AF-group than in the non-AF group.
The distribution of the modifiable risk factors of alcohol consump-
tion or tobacco use was similar between groups.
Patients who had a stroke followed by a newly diagnosed AF were

on average 6 years older than patients without a subsequent AF
diagnosis (77.3 vs. 71.2 years). They were more likely women, and
more often had cardiovascular comorbidities (except for myocardial
infarction).

Known ESC risk predictors
All classical risk predictors were statistically significantly associated
with incident AF, with age as the strongest predictor. Men were
more likely to develop AF, as well as patients with cardiovascular
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Table 1 Baseline characteristics of the study population (for model derivation)

Incident AF Post-stroke External validation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Characteristics No AF AF No AF AF No stroke Post stroke
n = 1 115 485 n = 66 697 n = 14 001 n = 3419 n = 661 N = 162

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Demographics
Age (mean±SD) 61.1±11.5 74.7±11.5 71.2±11.9 77.3±10.0 65±10 63±11
Age <65 (%) 64.6 18.0 30.2 11.7 44.6 53.3
Age 65-74 (%) 19.8 25.7 25.4 21.8 36.6 31.1
Age >74 (%) 15.6 56.4 44.5 66.5 18.8 15.6
Women (%) 51.9 46.0 43.7 52.1 34.6 36.5
Underlying diseases
Hypertension (%) 49.3 81.8 73.9 83.1 66.6 60.5
Myocardial infarction (%) 1.2 3.8 2.7 2.7 13.9 12.6
Heart failure (%) 4.7 21.3 12.5 20.7 32.7 3.0
Valvular heart disease 5.8 18.6 10.5 15.7 10.7 11.4
Thyroid dysfunction (%) 24.6 26.7 23.0 23.9 23.1 18.6
Obesity (%) 16.0 23.5 18.2 18.5 25.6 22.2
Diabetes mellitus (%) 15.9 34.7 33.9 35.9 13.2 13.2
Chronic obstructive pulmonary disease (%) 8.1 16.7 13.1 14.2 12.0 7.8
Sleep apnoea (%) 3.8 6.0 4.6 4.1 11.2 5.4
Chronic kidney disease (%) 3.3 12.1 9.4 10.6 11.5 3.0
Tobacco use (%) 8.2 7.2 10.7 6.5 12.4 33.5
Alcohol consumption (%) 2.1 2.8 4.1 2.8 5.6 10.8
Stroke (%) 0.5 4.0 3.8 3.8 0.0 100
Rheumatoid arthritis (%) 2.9 4.6 3.9 4.1 0.8 0.0
Atherosclerosis (%) 6.0 16.1 14.4 15.7 3.3 68.9
Other cardiac arrhythmias (%) 7.1 23.2 9.7 17.3 8.2 2.4
Hospitalization within 2 quarters prior to diagnosis (%) 11.7 25.9 22.6 19.8 n.a. n.a.

The mean age±standard deviation and the percentage for categorical variables are provided.
AF stands for atrial fibrillation, n.a. indicates not available.

conditions. Patients with obesity, diabetes, COPD, kidney disease,
sleep apnoea, tobacco use, or alcohol consumption developed AF
more often (Table S5). The AUC of the model was 0.804 (95% CI
0.802–0.806), with the optimal cut-off value according to Youden
Index being 0.0644, leading to a sensitivity of 77% and a specificity
of 70%. A cut-off value of 0.0197 gave a sensitivity of 95% and a
specificity of 35%.
In the post-stroke model, age was the strongest predictor of post-

stroke AF. Men were less likely to be diagnosed with AF post-stroke.
The presence of cardiovascular conditions, except for myocardial in-
farction, significantly increased the risk of incident stroke followed by
AF. Myocardial infarction, diabetes mellitus, chronic kidney disease,
and tobacco use were negatively associated with AF diagnosed after
incident stroke (Table S5). The combined ESC risk factors achieved
an AUC of 0.658 (95% CI 0.647–0.669), with an optimal cut-off
value of 0.173, a sensitivity of 77%, and a specificity of 46%. A cut-
off value of 0.0905 resulted in a sensitivity of 95% and a specificity
of 18%.

Sensitivity analyses
In the first sensitivity analysis of patients aged 65 years or older,
age showed a lower magnitude of association, but remained the

..................................................................

strongest predictor. The AUC reached 0.713. The second sensitiv-
ity analyses excluded patients with an oral anticoagulant (OAC) pre-
scription in the baseline period; the absence of an OAC prescription
did not markedly changed the association between the pre-defined
risk factors and AF occurrence.

Predictors for incident AF
The boosting procedure led to an initial model of 43 predictors,
among which the classic ESC risk factors showed the strongest as-
sociations with incident AF. Novel predictors consisted of cardiovas-
cular conditions that strongly increased risk of incident AF. Patients
with hemiplegia or paroxysmal tachycardia were 3.04 (95% confi-
dence interval (CI) 2.86–3.23) and 2.20 (95% CI 2.11–2.30) times
more likely to be diagnosed with AF, respectively. Diseases of the
digestive system were negatively associated with AF (e.g. having func-
tional dyspepsia lowered the risk of AF by about 10%). The final re-
duced model consisted of 13 variables that enhanced predictive ac-
curacy (Table 2). The classification performance of the final reduced
model is shown in parallel for the derivation and internal validation
data set (Figure 1). The ROC-curve for the novel risk factor model
provided an AUC of 0.829 (95% confidence interval (CI) 0.826–
0.833), using the validation data set is shown in Figure S1. Both, the



20 R.B. Schnabel et al.

CHADS2 and HATCH scores, achieved an AUC of 0.779. According
to the Youden Index, the optimal cut-off value was 0.0526, leading
to a sensitivity of 80% and a specificity of 72%. A cut-off value of
0.0155 resulted in a sensitivity of 95% and a specificity of 42%. The
PPV and NPV were 0.13 and 0.98, respectively. The Brier Score was
0.045 in the validation data. The Hosmer–Lemeshow test P-value
in the validation data set was <0.0001. The healthcare claims data-
based risk model achieved an AUC of 0.755 (95% CI 0.603–0.890)
in the prospective, external validation cohort. The model based on
classical risk factors according to ESC achieved an AUC of 0.734
(95% CI 0.697–0.770) (n = 661). Compared to prior scores.

Predictors for post-stroke AF
Using gradient boosting, the initial model for AF after stroke
included 36 variables. In addition to classical cardiovascular risk
factors, the presence of paroxysmal tachycardia, pulmonary heart
diseases, or other cardiac arrhythmias significantly increased the risk
of post-stroke AF. Pre-existing diseases of the nervous system (such
as disorders of the trigeminal nerve or spinal cord), and presence
of nutritional and metabolic diseases were inversely associated with
AF after stroke. The final reduced model was based on 13 variables
(Table 3). The AUC achieved a value of 0.670 (95% CI 0.651–0.689)
in the internal validation data set (Figure S2), 0.766 (95% CI 0.731–
0.80) in the prospective clinical cohort. According to the Youden
Index, the optimal cut-off value was 0.1685, leading to a sensitivity
of 76% and a specificity of 50%. The PPV and NPV were 0.25 and
0.91, respectively. The Brier Score was 0.138 in the validation data.
The Hosmer–Lemeshow test P-value in the post stroke validation
data set was 0.929. The new predictive model achieved a sensitivity
of 95% and a specificity of 18%, with a cut-off value of 0.0727.

...........................................................................................

Discussion
For the prediction of incident AF in primary care and post-ischemic
stroke, machine learning techniques confirmed known risk factors
for AF and identified novel risk predictors, such as right heart
disease, other cerebrovascular diseases, and breathing abnormali-
ties. Other comorbidities were associated with an overall reduced
likelihood of newly diagnosed post-stroke AF, such as intestinal
diverticular disease, and orthopedic problems of the knee or
dorsalgia. An AF risk model based on these factors available in
large administrative databases predicted incident AF well and could
complement information derived from classical cardiovascular risk
factors. Using known and novel predictors, our data further sets the
stage for predicting post-stroke AF, and possibly refined screening
(Graphical Abstract).
Risk factors were identified in two different settings, each repre-

senting patients at sufficient risk of undetected AF that merit screen-
ing. Screening in older patients, and after the occurrence of stroke,
has been recommended.12,13 The current standard of AF detection
using ECG is not feasible for screening on a large scale, and selection
of patients for extended rhythm monitoring has remained inconclu-
sive. Traditional sets of risk factors and medical scoring schemes
such as the CHARGE-AF score are limited in their predictive per-
formance and often require electrocardiographic parameters or lab-
oratory measurements.24 Refinement and simplification is required
for optimal and efficient patient management,25 and can be achieved
by automated processing of readily available routine data.
Our results in a claims data set of over one million patients indi-

cate that the most important published risk factors for incident AF
are reflected by the corresponding ICD-10-GM codes available in
ambulatory care. The associations are consistent with epidemiolog-

Figure 1 Classification performance (area under the receiver operating characteristic curve; AUC) of a model consisting of risk factors for
incident AF according to complexity (number of variables). The order of the included variables is age, male sex, hypertension, treated, heart
failure, valvular heart disease, chronic kidney disease, stroke not specified as hemorrhage or infarction, hemiplegia, other pulmonary heart diseases,
paroxysmal tachycardia, other cardiac arrhythmias, ulcer of lower limb, not elsewhere classified, personal history of medical treatment.
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Table 2 Covariable-adjusted odds ratios for
incident atrial fibrillation in the final model derived
from boosting technique

Predictor OR (95% CI) P-value
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Age 45–49 0.08 (0.08–0.09) <0.0001
Age 50–54 0.13 (0.12–0.13) <0.0001
Age 55–59 0.19 (0.18–0.20) <0.0001
Age 60–64 0.30 (0.29–0.31) <0.0001
Age 65–69 0.46 (0.45–0.48) <0.0001
Age 70–74 0.71 (0.69–0.73) <0.0001
Age 80–84 1.45 (1.41–1.49) <0.0001
Age 85–89 1.91 (1.85–1.97) <0.0001
Age 90+ 2.24 (2.15–2.34) <0.0001
Men 1.52 (1.49–1.54) <0.0001
Hypertension, treated 1.76 (1.72–1.79) <0.0001
Heart failure, treated 1.54 (1.50–1.58) <0.0001
Valvular heart disease 1.42 (1.39–1.46) <0.0001
Chronic kidney disease 1.21 (1.18–1.24) <0.0001
Stroke, not specified as hemorrhage
or infarction

2.43 (2.29–2.57) <0.0001

Hemiplegia 3.04 (2.86–3.23) <0.0001
Other pulmonary heart diseases 1.60 (1.51–1.69) <0.0001
Paroxysmal tachycardia 2.20 (2.11–2.30) <0.0001
Other cardiac arrhythmias 2.11 (2.07–2.16) <0.0001
Ulcer of lower limb, not elsewhere
classified

1.65 (1.56–1.73) <0.0001

Personal history of medical treatment 1.62 (1.58–1.65) <0.0001

Odds ratios are provided with 95% confidence intervals and P-values
associated with incident AF derived from boosting technique.

ical data and previous risk prediction models for AF, and validate the
concept that comorbidities determined from a claims database may
provide reasonably accurate risk prediction.20,26 Our results suggest
that age and male sex are the most important risk factors for AF. As
shown in previous publications, the presence of cardiovascular con-
ditions (e.g. hypertension, heart failure), was positively associated
with incident AF.27–29 By using machine learning techniques, we iden-
tified additional predictors for incident AF, such as pulmonary heart
disease and ulcers of the lower limb, which reflect high comorbid-
ity levels in older patients with AF. Prior stroke and hemiplegia also
strongly contributed to the prediction of incident AF. Although the
additional predictive value provided by each of these newly identified
variables was small, the overall AUC in the claims data validation set
improved the classification performance substantially, with an AUC
of 0.829. The AUC was comparable to prior published scores such
as the CHADS2 and HATCH scores.22,23 Modelling the risk of inci-
dent AF, we found that variables routinely collected in primary care
are sufficient to reliably predict onset of AF.
Almost 20% of patients with stroke had a subsequent diagnosis

of AF. These data are in line with smaller, earlier studies summa-
rized in meta-analyses, that indicated AF incidence post-stroke was
11–24%.11 These numbers highlight the relevance of AF detected in
routine care in an unselected stroke cohort. An AF diagnosis often
affects treatment course, in particular the initiation of OAC.30,31

.........................................................................................................................................................................

Table 3 Covariable-adjusted odds ratios for post
stroke AF in the final model derived from boosting
technique

Predictor OR (95% CI) P-value
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Age 45–49 0.19 (0.13–0.28) <0.0001
Age 50–54 0.25 (0.19–0.33) <0.0001
Age 55–59 0.23 (0.18–0.30) <0.0001
Age 60–64 0.43 (0.36–0.51) <0.0001
Age 65–69 0.52 (0.44–0.62) <0.0001
Age 70–74 0.82 (0.72–0.94) 0.0043
Age 80–84 1.20 (1.06–1.36) 0.0044
Age 85–89 1.34 (1.17–1.54) <0.0001
Age 90+ 1.49 (1.26–1.77) <0.0001
Men 0.85 (0.78–0.92) <0.0001
Hypertension, treated 1.32 (1.19–1.47) <0.0001
Heart failure, treated 1.25 (1.11–1.40) 0.0002
Chronic kidney disease 0.79 (0.70–0.89) <0.0001
Disorders of lipoprotein
metabolism and other
lipidaemias

0.84 (0.78–0.92) <0.0001

Pulmonary heart diseases 1.83 (1.41–2.38) <0.0001
Cardiac arrhythmias 1.68 (1.51–1.88) <0.0001
Other cerebrovascular
diseases

0.74 (0.65–0.84) <0.0001

Diverticular disease of
intestine

0.76 (0.67–0.86) <0.0001

Internal derangement of knee 0.65 (0.53–0.80) <0.0001
Dorsalgia 0.81 (0.75–0.88) <0.0001
Breathing abnormalities 0.77 (0.68–0.89) 0.0002

Odds ratios are provided with 95% confidence intervals.

More intensive screening for AF post-stroke might have increased
the number of patients diagnosed with AF to up to 24%.11 To date,
a systematic screening for AF, for example with a 24h Holter ECG,
is not routine in stroke patients.32 Our study underlines the impor-
tance of post-stroke AF and the potential relevance of screening,
as selection indicators of patients for more intense post-stroke AF
screening are largely unknown.12

We were able to predict post-stroke AF incidence with fair accu-
racy: besides advanced age and classic cardiovascular risk factors,
prevalent cardiovascular diseases such as heart failure, structural
heart defects and cardiac arrhythmias were strong predictors of
post-stroke AF. Our findings extend the current knowledge of the
association of heart disease with newly detected AF post-stroke.33

In patients with pre-existing disorders of the nervous system other
than stroke, including trigeminal nerve or spinal cord diseases, post-
stroke AF incidence was less likely. In accordance with our study,
an increased risk of post-stroke AF in women compared to men
has been observed in a Swedish nationwide registry and has been
explained by the higher average age in women with stroke.34 The
unexpected inverse contribution of chronic kidney disease and dys-
lipidemia compared to primary prevention may indicate that patients
with these diagnoses receive more clinical attention and AFmay have
been diagnosed earlier, i.e. prior to stroke.
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The combination of these predictors demonstrated fair sensitiv-
ity in identifying patients who developed post-stroke AF and may
help flag patients for more intensive AF screening, making targeted
screening more efficient and practicable.
Both final models, in primary prevention and post-stroke, were

successfully replicated in contemporary clinical cohorts in the am-
bulatory setting and suggest the external validity of our findings.
Our study demonstrates that machine learning techniques can

accurately identify patients at increased risk of AF based on readily
available routine data. In the future, adaptive algorithms could be
implemented as primary care decision support tools to promote
opportunistic AF screening, or as electronic decision support for
effective post-stroke AF screening.35

Limitations
Our findings must be interpreted in light of some limitations. Al-
though the InGef research database covers more than four million
insured members of SHIs across Germany, representativeness can-
not be guaranteed. However, the very good reproducibility of the
classical risk factors in the claims data set and the validation in in-
dependently phenotyped clinical cohorts indicates that the models’
performances are robust and are likely generalizable. Since a fur-
ther limitation is that the validation sample is a clinical cohort of
cardiovascular patients, good discriminatory ability in this indepen-
dent cohort shows the strength of the initial model. AF and stroke
are correlated with geographical, ethnic, and socioeconomic factors
not sufficiently reflected in the database.36 Some risk indicators that
have consistently been related to AF, such as natriuretic peptides,37

glomerular filtration rate,38 and electrocardiographic alterations are
not available in the claims database. On the other hand, our mod-
els are based on relatively uniform information available in practice,
which can automatically be extracted from the health records with
little additional cost. Thus, they may serve as a benchmark for im-
plementing targeted AF screening of increasing clinical significance
due to the substantial increases in AF prevalence.
Known clinical conditions and cardiovascular risk factors can

be reproduced in claims data and jointly predict of incident AF,
also in the post-stroke setting. The prediction performance can be
improved by adding novel clinical variables, identified by machine
learning. The clinical validation of the described novel set of AF risk
predictors indicates that incorporating easily available and broad
information on underlying comorbidities strongly enhances the pre-
diction of AF-onset. Our risk-factor model relies on readily available
data, and according decision support systems could be implemented
as a pre-screening tool in primary care and post-stroke clinical
routine.
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Supplementary material is available at European Heart Journal—
Quality of Care and Clinical Outcomes online.
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