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A B S T R A C T   

Alzheimer’s disease (AD) is increasingly becoming a major public health concern in our society. 
While many studies have explored the use of natural polyketides, alkaloids, and other chemical 
components in AD treatment, there is an urgent need to clarify the concept of multi-target 
treatment for AD. This study focuses on using network pharmacology approach to elucidate 
how secondary metabolites from Dictyostelium discoideum affect AD through multi-target or in
direct mechanisms. The secondary metabolites produced by D. discoideum during their develop
ment were obtained from literature sources and PubChem. Disease targets were selected using 
GeneCards, DisGeNET, and CTD databases, while compound-based targets were identified 
through Swiss target prediction and Venn diagrams were used to find intersections between these 
targets. A network depicting the interplay among disease, drugs, active ingredients, and key 
target proteins (PPI network) was formed utilizing the STRING (Protein-Protein Interaction 
Networks Functional Enrichment Analysis) database. To anticipate the function and mechanism 
of the screened compounds, GO and KEGG enrichment analyses were conducted and visually 
presented using graphs and bubble charts. After the screening phase, the top interacting targets in 
the PPI network and the compound with the most active target were chosen for subsequent 
molecular docking and molecular dynamic simulation studies. This study identified nearly 50 
potential targeting genes for each of the screened compounds and revealed multiple signaling 
pathways. Among these pathways, the inflammatory pathway stood out. COX-2, a receptor 
associated with neuroinflammation, showed differential expression in various stages of AD, 
particularly in pyramidal neurons during the early stages of the disease. This increase in COX-2 
expression is likely induce by higher levels of IL-1, which is associated with neuritic plaques and 
microglial cells in AD. Molecular docking investigations demonstrated a strong binding interac
tion between the terpene compound PQA-11 and the neuroinflammatory receptor COX2, with a 
substantial binding affinity of − 8.4 kcal/mol. Subsequently, a thorough analysis of the docked 
complex (COX2-PQA11) through Molecular Dynamics Simulation showed lower RMSD, minimal 
RMSF fluctuations, and a reduced total energy of − 291.35 kJ/mol compared to the standard drug. 
These findings suggest that the therapeutic effect of PQA-11 operates through the inflammatory 
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pathway, laying the groundwork for further in-depth research into the role of secondary me
tabolites in AD treatment.   

1. Introduction 

Alzheimer’s disease (AD) is the most common form of dementia in the elderly, marked by a gradual deterioration in cognitive 
function and memory. In 2019, approximately 50 million individuals worldwide received a diagnosis of AD, with nearly 10 million 
new cases being reported annually [1]. With declining birth rates and extended life expectancy worldwide, AD and other forms of 
dementia have been recognized as one of the top cause of disability among individuals aged 60 and above at global level. Early 
detection and intervention in cognitive dysfunction can potentially delay or even prevent the onset and advancement of dementia, 
enabling individuals to reduce its impact on their cognitive health and improve overall quality of life [2]. The Alzheimer’s disease 
pathogenesis involves the development of extracellular amyloid-β plaques, the abnormal accumulation of phosphorylated tau within 
neurons, synaptic impairment, and neuronal cell damage [3]. Among the Aβ variants, Aβ40 and Aβ42 have been identified as the 
primary pathogenic species responsible for the production of amyloid plaques in the AD-affected brain, with Aβ40 being the more 
abundant isoform within these plaques. The aggregation process involves formation of insoluble aggregates that later convert into 
plaques [4]. In the domain of existing clinical medications, four conventional therapeutic approaches are employed dealing with 
Alzheimer’s disease (AD). These approaches involves the enhancement of cognitive function, by activating the α-secretase activity, 
inhibiting the β-secretase and γ-secretase activity, and the mitigating the aberrant Tau phosphorylation [5]. At present, therapeutic 
interventions for Alzheimer’s disease primarily focuses on the administration of cholinesterase inhibitors, including Tacrine, Done
pezil, Rivastigmine, and Galantamine, in conjunction with the non-competitive antagonist of the N-Methyl-D-aspartic acid (NMDA) 
receptor, Memantine [6]. On the other hand, many of the natural compounds from plants and fungi may became new hope as ther
apeutic of AD and more detail is given in Table 1. 

Among the Acetylcholinesterase inhibitors (AChE inhibitors) with clinical significance, Galantamine stands as the solitary naturally 
occurring compound belonging to the Amaryllidaceae family [19]. Moreover, secondary metabolites obtained from plants, including 
alkaloids, terpenoids, and flavonoids, have demonstrated their efficacy in the treatment of various medical conditions such as cancer, 
neurodegenerative diseases, skin disorders, and a range of cardiovascular ailments. Flavonoids, categorized as plant secondary 
compounds, possess antioxidant, anti-amyloidogenic, and anti-inflammatory properties and regulate cell-signaling pathways. Their 
demonstrated acetylcholinesterase inhibitory activity makes them a hopeful candidate for AD treatment [20]. In addition, terpenoids 
have many biological activities, and researchers have focused their attention on its anti-cholinesterase activity. Numerous herbal 
plants like Curcuma Longa, and other organisms, are also employed in diverse therapeutic approaches, serving as memory enhancers 
and displaying anticholinesterase properties [21]. As all studies indicate that the natural modulator or natural compound can make a 
significant impact on reduction of AD progression, there is need for more natural compounds that can suppress AD. The Dictyostelium 

Table 1 
Depiction of various models for AD therapy using natural, unrefined, or partially purified plant and fungus extracts.  

Sr. Source Compound In-vitro/In – vivo/human trail Mechanism Refs. 

1 Allium sativum . 
(plant) 

AGE (Aged Garlic Extract) Aβ (25–35)-induced PC12 cells Reduced levels of ROS, caspase-3 activity, 
and PARP cleavage 

[7] 

2 Ginkgo biloba (plant) GBE (Ginkgo biloba extract) AD Rat model Anti-inflammatory properties, 
ameliorating the cognitive and memory 
impairment 

[8] 

3 Angelica gigas (plant) Ethanolic extract INM-176 Scopolamine- or Aβ (1–42)- 
induced mice 

Increase AChE inhibiting activity [9] 

4 Crocus sativus (plant) Root extract AD mice model Increase anti-inflammatory activity [10] 
Human trail (20 patients) Enhanced cognition and memory in AD 

patient 
5 Camellia sinensis 

(plant) 
Epigallocatechin-3- gallate (EGCG) TgCRND8 (Tg) mice Enhanced brain health and slowed AD 

progression. 
[11] 

Aβ (1–42)-injected mouse, PS2 
mutant AD mice 

Increased α-secretase, reduced β- and 
γ-secretase, and decreased Aβ. 

[12] 

6 Melissa officinalis 
(plant) 

Leaf extract Human trail (40 patients) Increased cognitive function and reduced 
agitation in AD patient 

[13] 

7 Ptychopetalum 
olacoides (plant) 

Ethanolic extract Aβ (1–42)-induced mice Reduced Aβ toxicity, diminished Aβ 
deposits, and alleviated astrogliosis. 

[14] 

8 Valeriana amurensis 
(plant) 

50% ethanol extracts of macroporous 
resin group from roots and rhizomes 

Aβ (1–40)-induced rat cortical 
and hippocampus neurons 

Decreased β-APP, reduced Aβ (1-40), and 
diminished Caspase-3 

[15] 

9 Malus domestica 
(plant) 

Fruit Juice Transgenic mice Reduce γ secretase expression [16] 

10 Zataria multiflora 
(plant) 

Oil extract Aβ (25–35)-induced rat 
hippocampus 

Increase Anti-inflammatory [17] 

11 Sargassum 
serratifolium (Algae) 

Sargaquinoic acid extracted 
(Meroterpenoids) 

Aβ (1–42)-induced mice Reduced Aβ and diminished ROS. [18]  
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discoideum, a cellular slime mold, has also served as a model organism for investigating eukaryotic cell functions due to its samll 
genome and manageable nature. It also releases diverse array of secondary metabolites during its different developmental stages 
through biosynthetic pathway to engulf soil bacteria and survive. The stages during which these metabolites are released includes pre 
stalk, pre spore stage. Of these secondary metabolites [22] some are polyketide, polyphenolic, alkaloids and terpenes and show 
different biological activities like anti-bacterial, anti-fungal, anti-cancer, and anti-APP activity [23]. The current in silico approach of 
network pharmacology could aid in predicting and identifying the target proteins associated with these secondary metabolites and also 
explore how these secondary metabolites could act as potent drugs and exert their effect on the AD condition. Additionally, it could aid 
in discovering fresh drug candidates and targets and repurpose the existing drug compounds for diverse therapeutic purposes by 
exploring potential target areas. The main aim of this study is to investigate and explore the working fashion of secondary metabolites 
derived from D. discoideum for the therapeutics development in AD through computational approaches using network pharmacology. 

2. Materials and methods 

By employing receptor mining and using various online tools, we successfully identified the receptors responsible for secondary 
metabolites within Dictyostelium discoideum, along with the genes associated with Alzheimer’s disease (AD). The selection of potential 
anti-AD genes was achieved through the intersection of these datasets, namely DisGeNET, CTD, and Gene Cards. Subsequently, we 
conducted an in-depth analysis of protein-protein interactions (PPI), KEGG pathways, and Gene Ontology (GO) to elucidate potential 
targets implicated in AD pathology. The identified key genes from the revious analysis were further investigated for their expression 
across distinct brain regions using AlzData. Following the screening of five proteins, a set of seven refined ligands underwent rigorous 
computational analysis, involving molecular docking and molecular dynamics simulations. 

2.1. Data collection & processing 

The composition and molecular target data of Alzheimer’s disease were obtained from DisGeNET (https://www.disgenet.org/) 
[24], GeneCards (https://www.genecards.org/) [25], and CTD (https://ctdbase.org/) [26]. Swiss Target Prediction (http://www. 
swisstargetprediction.ch/) [27] made the prediction of compound-based targets. Similarity between the compound-based targets 
and database-based targets were used for further network pharmacological analysis and validation through AutoDock [20]. 

2.2. BBB permeability and drug-likeness screening 

The BBB is a distinctive biological barrier comprising microvascular endothelial cells within the CNS. These cells serve as gate
keepers, regulating the passage of substances into and out of the brain. The primary function of the BBB is to maintain CNS homeostasis 
by restricting the transport of harmful substances while facilitating the removal of metabolic byproducts from the brain [28]. For many 
contemporary drugs, the BBB poses as a strong obstacle. In our study, we performed in silico assessments of the potential of secondary 
metabolites from D. discoideum to traverse the blood-brain barrier using the online server pkCSM (https://biosig.lab.uq.edu.au/ 
pkcsm/prediction) [29]. Afterward, a comprehensive examination was carried out of all structures to ensure their compliance with 
the ADMET criteria and Lipinski’s Rule of Five. This evaluation was performed using online tools like Swiss ADME. Structures that 
fulfilled Lipinski’s Rule of Five, Veber’s Law, and the specified ADME criteria were chosen for further investigations involving docking 
studies. Key information obtained from SwissADME includes data on molecular weight, MlogP, the quantity of hydrogen bond donors 
and acceptors, the number of rotatable bonds, topological surface area, and a bioavailability score [30]. 

2.3. Determination of Alzheimer’s disease-related targets of the active compounds 

After screening through ADMET and BBB permeability, compounds were further used to find out targets. Screened compounds, 
SMILES files were generated through ChemDraw [31]. After conversion from SDF structure to SMILE, file structures were imported 
into the Swiss Target Prediction database (http://swisstargetprediction.ch/) to obtain ligand-based receptors [27]. All targets were 
normalized according to the UniProt database (https://www.uniprot.org). A network diagram representing the interaction between 
drugs and their respective targets was generated using Cytoscape version 8.0.0 [32]. Subsequently, an assessment of the active 
compounds in D. discoideum was conducted utilizing the Network Analyzer tool. 

2.4. Construction of PPI network and selection of hub genes 

We identified tightly interconnected regions within molecular complexes in the acquired Protein-Protein Interaction (PPI) network, 
characterizing them as topological modules based on network properties. Additionally, we defined pharmacological modules as 
collections of nodes sharing similarities and functional relationships within the same pharmacological category. The shared potential 
target genes were incorporated into the STRING 11.0 database (https://string-db.org/) to form the protein-protein interaction (PPI) 
network, specifically focusing on the Homo sapiens organism. Only interactions exceeding the minimum required interaction score 
threshold of >0.4 were considered statistically significant. The PPI network comprises nodes representing target proteins and edges 
denoting protein-protein interactions. Node degree indicates the number of direct connections a node possesses, with higher degrees 
signifying greater importance. To strengthen the reliability of our results, we implemented a stringent interaction score threshold of 
≥0.9 within the STRING database. Core target identification was accomplished through network analysis using Cytoscape software, 
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along with its Network Analyzer plugin [33]. By utilizing CytoHubba, we constructed a functionally relevant protein network spe
cifically related to the screened compounds within the context of Alzheimer’s disease (AD). This was achieved using the topological 
analysis method known as Maximal Clique Centrality (MCC). Scores reflecting the strength of associations between nodes and edges 
were calculated through the MCC algorithm, where higher scores and darker colorations indicated a more pronounced correlation of 
the genes with AD [34]. Subsequently, we pinpointed the top 15 target genes/proteins with the highest scores for each active 
ingredient. Furthermore, target proteins underwent classification using the Panther classification system (http://pantherdb.org/) 
[35]. Subsequently, we utilized the Cytoscape plugin MCODE to dissect the corresponding network, culminating in the identification of 
the core Protein-Protein Interaction network cluster. 

2.5. GO and KEGG enrichment analyses 

Our analysis involved performing GO biological process and KEGG pathway enrichment analyses via the Metascape platform, 
accessible at https://metascape.org/gp. Significance criteria for enriched terms were established as having a p-value less than 0.01, a 
minimum count of 3, and an enrichment factor exceeding 1.5 [36]. Terms meeting these criteria were considered statistically sig
nificant. Subsequently, we carried out the analysis and visualization of these enriched terms using the SRplot tool and generated an 
enrichment bubble graph for both GO and pathway enrichment analyses. We utilized symbols or gene names as input for these an
alyses. The GO analysis encompassed the assessment of molecular function (MF), biological process (BP), and cellular component (CC). 
Additionally, for pathway analysis, we further evaluated the highest enrichment scores represented as -log10 p-values [37]. 

2.6. Validation of key compound–hub target gene interaction through molecular docking & molecular simulation 

We acquired crystal structures of all proteins from the Protein Data Bank (PDB) database (Table 2; https://www.rcsb.org/) to 
facilitate docking experiments. The 3D structures of the small molecules, namely PQA-11, Discoidol, Dictyosterol, Pt-4, Dictyoquinone, 
PQA-18, and Discodiene, were obtained from the PubChem database. For molecules not available in PubChem, we manually drew their 
structures using ChemDraw. Subsequently, energy minimization was conducted using the MMFF94s force field within the Avogadro 
Software. In this study, molecular docking analyses were carried out using AutoDock Vina 1.1.2 software (https://vina.scripps.edu/). 
Before initiating the docking procedure, we subjected all receptor proteins to preprocessing using PyMol 2.5, which can be accessed at 
https://pymol.org/2/. In the preprocessing stage, water molecules, salt ions, and small molecules were removed from the protein 
structures. The resulting structures were exported in. pdbqt format. To establish the dimensions of the docking box, we utilized the 
PyMol plugin ‘center of mass. py,’ aligning the box’s center with the crystal ligand’s position. The box’s side length was configured to 
be 40 Å [38]. Furthermore, Open Babel was employed to convert all processed small molecules and receptor proteins into the PDBQT 
format, a necessary prerequisite for AutoDock Vina 1.1.2 docking Table 2. Throughout the docking process, we configured the global 
search exhaustiveness to 32, while maintaining the default values for the remaining parameters. The resultant docked conformation 
with the highest score was designated as the binding conformation. Subsequent docking results were visualized and subjected to 
analysis using Biovia Discovery Studio. 

After initial screening for binding affinity and hydrogen bonds, chosen drug-receptor complexes underwent Molecular Dynamics 
Studies (MDS) with GROMACS v2016.16 and CHARMM 27 force field. Ligand topologies came from SwissParam (https://www. 
swissparam.ch/), and simulations followed a standard protocol. This involved creating a triclinic water box, solvating it with 
‘spc216 - Simple Point Charge water,’ adding counter ions, and minimizing the system. Protein-ligand coupling was followed by a two- 
step equilibration, NVT and NPT, each for 10 ns, using the V-rescale modified Berendsen thermostat [39]. A 100 ns Molecular Dy
namics (MD) run was performed with GPU acceleration using CUDA Toolkit 12.2 (https://developer.nvidia.com/cuda-downloads) 
under periodic boundary conditions. Results were analyzed with VMD and Chimera, focusing on RMSD, RMSF, Rg, interaction energy, 
hydrogen bonds, and their distances. GRACE was used to create graphical representations. 

3. Results 

3.1. Evaluation of secondary metabolites from D. discoideum 

The potential metabolites derived from Dictyostelium discoideum were subjected to a comprehensive analysis of their pharmaco
logical and molecular characteristics. This examination encompassed various properties, such as molecular weight, oral bioavail
ability, drug-likeness, CaCO-2 permeability, blood-brain barrier penetration, fractional negative accessible surface area, log P 

Table 2 
Proteins name with PDB ID & Active site dimension used for docking.  

Sr. Protein Name PDB ID Chain Active Site 

1. PTGS2/COX2 5IKR A 37.757, 21.234, 73.009 
2. CYP19A1 3S79 A 88.208, 49.487, 51.124 
3. HSP90AB1 1UYM A 0.401, 14.877, 20.821 
4. MTOR 3JBZ A 18.656, − 64.458, − 9.520 
5. MAPK8 3PZE A 15.178, 18.841, 27.393  
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(lipophilicity), hydrogen bond donor and acceptor count, the number of rotatable bonds, and topological polar surface area. All of 
these data were obtained from the pkCSM server. Supplementary Table 1 shows the details of the ADMET properties analysis through 
pkCSM analysis of 61 metabolites. Compounds Discoidol, Dictyoquinone, Pt-4, PQA-11, PQA-18, Dictyosterol, and Discodiene were 
significantly absorbed, while compound 1–43, 46, 48, 49, 52–57, 59 and 60 were found to be poorly absorbed through the Blood-brain 
barrier with a log BBB >0.3. After selection with Lipinski rule, selection is done by BBB permeability, and only Discoidol, Dictyo
quinone, Pt-4, PQA-11, and Discodiene show a log P value < 5 for good oral and intestinal absorption. The intestinal absorption values 
of these five compounds were greater than 30% making them a better absorbing compound from the intestine after oral administration, 
which indicates that all the natural compounds could be remarkably absorbed from the intestine of humans. The analysis of CYP (1A2, 
2C9, 2C19, 2D6, and 3A4) parameters conducted through ADMET pertains to phase-1 drug bioinformatics and its role in drug 
metabolism. Of particular significance in this study is CYP3A4, where the ligand PQA-11 was found to inhibit CYP3A4 activity. In 
contrast, the remaining four compounds, namely Discoidol, Dictyoquinone, Pt-4, and Discodiene, can undergo metabolism by CYP3A4 
in the liver. The active compounds underwent additional assessment through ProTox-II, focusing on toxicity and lethal dose (LD50) 
values categorized into classes: class 1 and 2 (fatal), class 3 (toxic), class 4 and 5 (less harmful), and class 6 (non-toxic). All Compounds 
proved to be non-toxic for human consumption with their toxicity class being 4 and 5 Table 3. 

3.2. Screening of targets of secondary metabolites against AD-associated receptors 

After searching for candidate targets for the selected seven secondary metabolites from Swiss Target Prediction databases, 
deduplication occurred following UniProt standardization. After the removal of duplicate data, 100 targets for each compound were 
identified. Subsequently, we employed Cytoscape 3.6.0 software to construct an interaction network depicting the relationship be
tween metabolites and targets. Venn analysis was conducted, utilizing the 100 targets associated with each secondary metabolite, and 
approximately 2520 Alzheimer’s disease-related target genes for each of the seven metabolites. The target genes were gathered from 
the DisGeNET, Gene card, and CTD databases. On average, 58 common targets were obtained for each metabolite that was common 
from ligand-based and disease-based resources Fig. 1 (A: PQA18, B: Dictyoquinone, C: Discodiene, D: Dictyosterol, E: PQA11, F: 
Pt4, G: Discoidol). Further, the interaction of all the common gene targets with all 7 metabolites was obtained for analyzing the 
possible interactions that the receptors show with the metabolites as shown in Fig. 2. 

According the PPI network, the top 15 core nodes were identified, ranked by MCC (Maximal Clique Centrality) in the ‘cytoHubba’ 
plugin. Nodes with higher MCC scores are more central in the network, indicating that they are part of larger cliques (groups of highly 
interconnected nodes) and have a more influential role in connecting various proteins within the network. Thus, 15 genes were 
identified as hub genes in respect to all seven compounds, as shown in Fig. 3. (A. PQA11, B. Dictyosterol, C. Pt4, D. Discodiene, E. 
Discoidol, F. PQA18, and G. Dictyoquinone) 

These hub genes are considered to be highly important in the context of the network, as they have a significant number of in
teractions with other genes. Their identification will be helpful in understanding the biological significance and roles in cellular 
processes or pathways. Top-ranked nodes, which are dark in color, were further analyzed through MCODE, as these nodes were not 
only highly central in the global network but also crucial components of localized functional modules or complexes. For MCODE 
analysis, genes above 0.2 cutoff a threshold that helps to determine the minimum density or connectivity required for a set of genes to 
be considered a cluster will be selected. The results depict that despite the presence of multiple clusters identified by MCODE, the 
analysis or focus selected the first cluster of those 15 genes from cytoHubba of each compound that meets the criteria for being a high- 
value cluster as shown in Fig. 4 (A. Pt4, B. PQA18, C. PQA11, D. Dictyoquinone, E. Discoidol, F. Discodiene, and G. Dictyosterol). 

3.3. Gene Ontology enrichment and Kyoto Encyclopedia of genes and Genomes analysis 

The compounds hub target genes–pathways network was utilized to filter the major hub genes and key compounds of D. discoideum 
to treat AD. Additionally, the key genes were further analyzed through GO & KEGG to validate their biological functions Fig. 5 (A. Pt4, 
B. PQA18, C. PQA11, D. Discoidol, E. Discodiene, F. Dictyosterol, and G. Dictyoquinone). The GO provides a way to describe the 
functions and attributes of genes by annotating specific GO terms that describe the genes’ known or predicted functions in biological 
processes, molecular functions, and cellular components. Here, the Cellular Components (CC) group mainly included the ‘vesicle 
lumen’, ‘Membrane raft’, membrane micro domain, spanning component of the plasma membrane, and ficolin-1-rich granule lumen. 
This implicates the role of genes and their associated proteins i.e. cellular components in various pathways and mechanisms such as 
synaptic dysfunctioning and loss, abnormalities generation in vesicle trafficking and neurotransmission; generating disruptions in 

Table 3 
Drug-likeness properties of selected secondary metabolites.  

Compound Molecular weight Log BBB Log P Toxicity Class LD50 (mg/kg) 

Discoidol 222.372 0.589 3.92 5 2830 
Dictyoquinone 208.257 0.424 2.4769 4 2000 
Pt-4 278.348 0.491 3.7286 4 2000 
PQA-11 357.45 0.655 4.7913 4 600 
Discodiene 162.276 0.76 3.699 4 1680 
PQA-18 407.554 0.411 6.8783 4 600 
Dictyosterol 414.718 0.813 7.8807 4 667  
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membrane lipid composition and lipid rafts, and promoting aggregation and accumulation of amyloid-beta (Aβ) peptides. 
In the molecular function (MF) group, the GO term involved protein serine/threonine kinase activity, MAPK activity, steroid 

binding, phosphatase binding, nuclear receptor activity, and collagen binding. This implicates the functions of the selected genes as 
protein kinase regulators that have a crucial role in various cellular processes, including signal transduction pathway; MAPK protein 
kinase regulators that help in maintaining neuronal plasticity, memory, and learning; steroidal hormones level modulator that have a 
major impact on neuronal functioning; homeostasis maintaining unit between kinases and phosphatases. Lastly, the Biological Pro
cesses (BP) group highlighted the significance of these targeted genes in multiple pathways. These pathways include peptidyl-serine 
phosphorylation to prevent abnormal tau phosphorylation, regulation of DNA-binding transcription factors for memory and synaptic 
plasticity maintenance, immune response activation in response to lipopolysaccharides, mammary gland development, the mechanism 
for nicotine response, regulation of cholesterol storage for proper neuronal function through cholesterol homeostasis, and the 
maintenance of collagen composition and integrity, crucial for vascular function. Additionally, KEGG enrichment analysis showed in 
Fig. 5 that the screened genes of each compound were potentially targeted to several critical pathways associated with AD such as IL- 
17 signaling pathway, TNF signaling pathway, Prolactin signaling pathway, and PPAR signaling pathway. The genes may potentially 
affect these pathways as they regulate IL-17 (Interleukin-17) and TNF, pro-inflammatory cytokines associated with inflammatory 

Fig. 1. Venn graph representation of AD databases & screened seven secondary metabolites for common targets finding related to Alzheimer’s 
disease. (A: PQA18, B: Dictyoquinone, C: Discodiene, D: Dictyosterol, E: PQA11, F: Pt4, G: Discoidol). 

Fig. 2. Screened seven compounds - target network for AD. Pink nodes represent compounds & Blue nodes represents shared targets. (*Dq is 
Dictyoquinone). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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responses generated through the IL-17 signaling pathway and TNF Signaling Pathway, respectively. They also play a role in managing 
prolactin hormone, which may have neuroprotective effects and contribute to neuronal repair and regeneration. 

Additionally, they modulate PPAR (nuclear receptors) that influence lipid metabolism through the PPAR Signaling Pathway. The 
top neuroinflammatory pathway with the highly associated gene PTGS2 (COX2) was demonstrated in Fig. 6. 

3.4. Molecular docking analysis 

From the main potential compound targets - AD targets network Fig. 2, the most significant 22 genes (Degree =≤ 40) were consider 
for the docking study. Additionally, based on the outcomes of the KEGG pathway enrichment analysis, we focused on the inflammatory 
pathway within Alzheimer’s disease complications. This pathway exhibited the highest percentage of genes participating in various 
biological functions and signaling pathways among the total number of intersecting genes. Subsequently, we subjected this pathway to 
further analysis. Further upregulation receptors were screened through AlzData (http://www.alzdata.org/), the listed receptors 
CYP19A1, ESR1, MAPK1, TNF, PTPN1, MAPK14, SELE, ESR2, VCAM1, MMP2, MAPK8, EP300, CASP3, PTGS2, MTOR, HSP90AA1, 
HSP90AB1, CASP1, CDK4, IL6, CTSB and MMP9 were upregulated in Alzheimer’s disease. These 22 targets were dock with seven 
screened compounds and after comparison with standard drugs as depicted in Fig. 7. 

Following their notable binding affinity (in Kcal/mol), as indicated in Table 4. Five receptors underwent additional screening. 
These receptors are CYP19A1, MAPK8, HSP90AB1, MTOR, and COX2. They were screened with their respective interacting ligands 
and standard drugs. In the molecular docking analysis, comparisons between metabolite-receptor and receptor-drug interactions 
revealed predominantly non-significant alterations in binding affinity. Metabolites predominantly interacted with receptors through 
polar and hydrophobic amino acid interactions. This hydrophobic effect facilitated the convergence of ligand and receptor 

Fig. 3. CytoHubba plug-in of Cytoscape was used to select the molecular complexes and core targets for all seven screened compounds (A. PQA11, 
B. Dictyosterol, C. Pt4, D. Discodiene, E. Discoidol, F. PQA18, and G. Dictyoquinone). 
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hydrophobic regions, excluding water molecules and minimizing the destabilizing impact on the water structure surrounding hy
drophobic regions. Consequently, this phenomenon led to the formation of a more stable complex. Furthermore, it is noteworthy that a 
statistically significant positive binding affinity was observed upon analyzing the interaction between the COX-2 receptor and the 
metabolites PQA11 and Discoidol, as well as between CYP19A1 and the metabolite Dictyosterol, when compared to the standard drugs 
Rofecoxib and Letrozole, respectively. One notable finding derived from the molecular docking analysis was the interaction between 
the metabolite Pt4 and the mTOR receptor, demonstrating comparable efficacy to its standard drug counterpart, Sirolimus. This 
observation suggests the potential effectiveness of the natural metabolite or compound in comparison to the synthetic drug. As evident 
from Fig. 7, the compound Pt4 interacts with the receptor mTOR majorly through polar amino acids such as SER1584, ALA1429, 
ILE1417, TYR1587, indicating higher bonding efficiency and H bond numbers, making it a potential candidate similar to Sirolimus 
drug. However, later on, the probable roles of the two selected receptors were discovered. As mTOR is involved in regulating synaptic 
plasticity, which is essential for learning and memory. Therefore, inhibiting mTOR could potentially disrupt synaptic plasticity, which 
may worsen cognitive function in AD. Another target, CYP19A1 has complex, multifaceted interaction that involves multiple mech
anisms and less literature suggests removal of it and same as for HSP90AB1. At the end, modulating MAPK8 (Mitogen-Activated 
Protein Kinase 8) can lead to various systemic effects, as this kinase is active in many different tissues. This led to finalizing the use of 
COX2 having a key role as an amyloid beta accumulator, tau hyper phosphorylation, ROS generation via oxidative stress, etc. 
Therefore, only the COX2 (PTGS2) receptor and its respective two ligands (PQA11 & Discoidol) were further evaluated through 
molecular dynamic simulation-GROMACS. 

Later, in Fig. 8, the lig plot interactions showed the interactive amino acids forming bonds between the molecules such as COX-2 is 
engaged in interactions with its ligands primarily via polar amino acids, including GLN, SER, ASN, and TYR, HIS, LYS, and ASP. These 
interactions contribute to ligand binding specificity and stability. Through the formation of hydrogen bonds, these polar residues 

Fig. 4. MCODE plug-in of Cytoscape was used to select the highly prominent core targets for all seven screened compounds (A. Pt4, B. PQA18, C. 
PQA11, D. Dictyoquinone, E. Discoidol, F. Discodiene, and G. Dictyosterol). 
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prevent easy dissociation of the ligand from the protein, thereby prolonging the residence time of the complex. This phenomenon 
maximizes the number of hydrogen bonds formed with the metabolites, enhancing the overall stability and specificity of the COX-2- 
ligand interactions. 

Fig. 5. GO function analysis of seven screened compounds in treatment of AD, The GO function analysis, including biological process (BP), cellular 
component (CC), and molecular function (MF). (A. Pt4, B. PQA18, C. PQA11, D. Discoidol, E. Discodiene, F. Dictyosterol, and G. Dictyoquinone). 
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3.5. Molecular dynamic simulations 

MD modeling is tool for investigating protein-ligand complexes in cellular environment, flexibility of complex & stability of protein 
after binding with compound or ligand. Due to robust binding interactions, alignment with drug-like characteristics, and favorable 
ADMET properties, the COX2-Discoidol (Complex 1) and COX2-PQA-11 (Complex 2) complexes were chosen for a 100ns MDS. 
Additionally, a drug-control complex (Complex 3) was included for comparative analysis. I n the initial examination of the MD tra
jectories, alterations in the root-mean-square deviation (RMSD) values for protein atoms during the simulation were scrutinized. The 
plateau pattern observed in the RMSD analysis of the unbound COX2 protein suggested that the simulation duration was adequate for 
this protein under the specified conditions. The analysis was perform on steady system and their results are represented in Fig. 9 (A. 
RMSD plot, B. RMSF plot, C. SASA plot, D. H bond plot, E. Radius of Gyration, F. Total solvent energy plot). For the unbound protein, 
following an initial jump attributed to protein relaxation, the system achieved equilibrium after 5 ns. These observations not only 
validate the adequacy of the simulation duration but also suggest that there were no substantial alterations in the protein structure 
throughout the simulation. Later, on the RMSD were also calculated with the binding of the COX2 receptor with Discoidol and PQA-11. 
The results display that the binding of Discoidol in Complex 1 (COX2-Discoidol) fluctuated between 55 and 62ns and tended to be 
stabilized after 65ns. The complex reached the RMSD peak of 9 Å at 60ns and then continued to show stable RMSD change with a 
noticeable fluctuation until 65ns. On the other hand, the events in the RMSD changes of the COX2-PQA-11 (complex 2) showed that 

Fig. 6. KEGG pathway enrichment analyses of screened compounds in the treatment of AD. The neuroinflammatory pathway was highly involved 
and therefore COX2 was represent in red dotted box. (For interpretation of the references to color in this figure legend, the reader is referred to the 
Web version of this article.) 
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there is no significant change in protein structure during simulation and the PQA-11 bound with strong efficiency without any 
noticeable changes in the activation pattern or instability. Comparatively, the COX2-Rofecoxib drug complex showed an initial 
fluctuation at 5ns and then tended to stabilize with a noticeable Fluctuation until 100ns. 

Root mean square fluctuation (RMSF) is a crucial metric for anticipating localized conformational alterations within both the 
protein chain and the ligands. Typically, lower RMSF values within structures affirm the existence of secondary structures and are 
generally consider superior in comparison to those with elevated RMSF values. The results show that the core protein COX2 maintains 
a relatively stable structure over time with maximum fluctuation between 0.05 and 0.3 nm wavelengths. The average RMSF of COX2- 
Discoidol (Complex 1) and (Complex 3) drug-control (COX2-Rofecoxib) was 0.1–0.3 nm, whereas COX2-PQA-11 (Complex 2) showed 
the most similar and stable configuration as the core protein range i.e. 0.05–0.3 nm indicating the stable nature of PQA-11-COX2 
protein complexes during simulation. Of all the compounds, PQA-11 was considered the most appropriate as it showed minimum 
fluctuations and was the most stable with respect to other compounds used with COX2. The radius of gyration (Rg), which denote the 
compactness of the protein, expresses the rigidity of docked complexes and it’s folding or unfolding. The radius of gyration of core 
protein was between 2.41 and 2.44 nm whereas in compound bound (Complex 1) COX2-Discoidol, COX2-PQA-11 (Complex 2), and 
COX2-Rofecoxib (Complex 3) fluctuated between 2.45 and 2.52 nm, 2.44–2.49 nm, and 2.45–2.51 nm, respectively. Of all the ligands, 
the binding of PQA-11 kept the protein stable, in well-folded form. Moreover, the analysis of the solvent-accessible surface area (SASA) 
was conducted for various protein-ligand complexes, as well as the unbound COX2 protein. As depicted in Fig. 9, the SASA value 
decreased during the simulation in all systems. This reduction can be attribute to the increased compactness of the protein structure 
and/or the closure of water inlet valves within the internal cavities, which restrict water diffusion into the protein’s inner regions. 
These outcomes align with those of the Rg, collectively affirming that the protein experiences structural compression in an aqueous 
environment. The number of hydrogen bond were showing that, Rofecoxib-COX2 complex consist two H-bond for most of 100ns time 
period and Discoidol & PQA11 with COX2 showing one H-bond for most of the time period from 100ns. Apart from H-bonding analysis, 
Total solvent energy were calculated in kJ/mol suggests that, PQA11-COX2 complex possesses the least negative solvent energy 

Fig. 7. Bar graph representation of screened compounds binding affinity in comparison to standard drugs (orange bar: drug & green bar: com
pounds). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Table 4 
Assessment of the binding energies of predominantly ranked secondary metabolites targeting five distinct Alzheimer’s disease-related molecular 
targets and their corresponding interactive amino acid residues.  

Protein Compound Binding Energy 
(-Kcal/mol) 

No. of H 
bonds 

Types of Bond present Residues involved in H 
bond formation 

PTGS2/ 
COX2 

PQA-11 8.13 ± 0.163 7 Vander Waal, Conventional Hydrogen, Pi-Donor Hydrogen, 
Alkyl, Pi-Sigma, Pi-Alkyl 

Arg120, Leu123, His90, 
Val89, Trp100,Ser119, 
Pro86 

Discoidol 6.13 ± 0.530 1 VanderWaal, Alkyl, Conventional Hydrogen Gln451 
CYP19A1 Dictyosterol 8.8 ± 0.0 4 Van Der Waals, Conventional Hydrogen, Carbon Hydrogen, 

Alkyl, Pi-Alkyl, 
Tyr361, Pro429,Phe430, 
Gln428 

Discoidol 6.5 ± 0.0 1 Van Der Waals, Conventional Hydrogen, Carbon Hydrogen, Met374 
HSP90AB1 Pt-4 7.53 ± 0.048 6 Van Der Waals, Conventional Hydrogen, Pi-Donor Hydrogen, 

Alkyl, Pi-Sigma, Pi-Alkyl, Carbon–Hydrogen, Alkyl, Pi-Pi 
Stacked 

Tyr129, Trp 162,Leu 107, 
Phe138, Val150, Asn51 

MTOR Pt-4 6.43 ± 0.108 4 Van Der Waals, Hydrogen, Alkyl, Pi-Sigma Pro1426, His1454, 
Tyr1583, Ser1584 

MAPK8 PQA-18 6.13 ± 0.227 5 Vander Waal, Carbon–Hydrogen, Alkyl, Pi-Sigma, Pi-Alkyl Leu110, Gln37, Arg69, 
Ser34, Ser155  

N. Patil et al.                                                                                                                                                                                                           



Heliyon 10 (2024) e28852

12

Fig. 8. Protein-Ligand Interactions showcasing major amino acids involved in bond formation between metabolites-receptor through LigPlot: A 
Comprehensive Structural Analysis Tool for Molecular Recognition studies (A: PQA18- MAPK8, B: Discoidol-CYP19A1, C:Pt4-MTOR, D: Pt4- 
HSP90AB1, E: Dictyosterol-CYP19A1, F: Discoidol-COX2, G: PQA11-COX2). 

Fig. 9. Different measures of molecular dynamic simulation A. RMSD plot, B. RMSF plot, C. SASA plot, D. H bond plot, E. Radius of Gyration, F. 
Total solvent energy plot. 

N. Patil et al.                                                                                                                                                                                                           



Heliyon 10 (2024) e28852

13

(− 291.351), whereas COX2-Discoidol complex displayed portrayed highest total solvent energy (− 445.535) (Fig. 9F). That strongly 
suggest COX2-PQA11 complex contribute highest solvent solubility in triclinic solvent box. 

4. Discussion 

In AD, it’s believed that the primarily trigger for immune response in the brain is the presence of Abeta proteins, that activate 
microglial cells, a type of immune cell in the brain. Initially, these microglial cells become enlarged as they attempt to process the 
Abeta, but over time, they become less effective. Unfortunately, sustained immune system activation, caused by continuous exposure 
to Abeta, can actually worsen the progression of AD. This prolonged immune response sets off a vicious cycle, known as reactive 
microgliosis, leading to an accumulation of Abeta and the release of pro-inflammatory signaling molecules. This harmful cascade 
ultimately damages neurons, fuels neuroinflammation, and contributes to neurodegeneration [40]. It is critical to recognize that TNF-α 
is one of the most significant pro-inflammatory signaling molecules in AD. TNF- α elevates the expression of specific adhesion mol
ecules on blood vessel walls, including VCAM-1, ICAM-1, and E-selectin. This facilitates the entry of white blood cells and other 
immune cells into the brain, worsening inflammation [41]. Furthermore, the enzyme COX-2 plays a significant role in mediating 
inflammation, particularly in peripheral tissues in the early stages of AD but less prevalent in later stages. While the exact metabolic 
processes involving COX-2 in AD are not fully understood, there is evidence to suggest its involvement [42]. Moreover, a study by 
Dudal & Sheri in 2003 found that microglia, immune cells in the brain, isolated from intracranial C6 tumors showed a significant 
increase in the levels of a molecule called PGE2 and the increase was linked to the activity of COX-2 [43]. Additionally, recent research 
has revealed that highly activated COX-2 and PGE2 can elevate the levels of another molecule, IL-1β mRNA, in primary rat microglia 
cells when they are exposed to lipopolysaccharide (LPS), a bacterial component that triggers immune responses [44]. Moreover, 
research from Wang et al., in 2015 suggests that high levels of IL-1β are associated with a greater risk of developing Alzheimer’s 
disease. In AD-affected brains, activated glial cells (a type of immune cell in the brain) can further intensify immune responses and 
make Aβ, a hallmark protein of AD, more effective at activating these immune cells [45]. Additionally, previous studies, such as the one 
conducted by Buxbaum et al., in 1992, have shown that IL-1β not only influences the production and processing of amyloid precursor 
protein (APP) but also increases the expression of other molecules that are relevant to AD, such as IL-6 and TNF-α [46]. High levels of 
COX-2 can trigger specific signaling pathways within cells, like phosphatidylinositol-3-kinase/Protein Kinase B (PI3–K/AKT) and 
Protein kinase A/cAMP-response element binding protein (PKA/CREB) in a manner that depends on several other molecules, including 
HSP70, PGE2, and cAMP [47] (Fig. 10). 

These pathways eventually lead to the activation of BACE-1, an enzyme involved in the production of Aβ, through the phos
phorylation of a protein called NF-κB at specific sites. This complex series of events highlights the interplay between various molecules 
in the brain, ultimately connecting COX-2 to the production of Aβ and neuroinflammation. Furthermore, this cycle is not a one-way 
street, BACE-1, when activated, can also stimulate the production of COX-2 in glial cells when they are exposed to Aβ. This bidirec
tional relationship between inflammatory cells and neurons can significantly contribute to the development of AD [48]. To combat this 
cycle of inflammation and neuronal damage, researchers have explored the potential of natural compounds. These compounds have 
shown promise in reducing inflammation and potentially slowing down AD progression. For example, a study by Li XJ et al., in 2021 
suggested that Frankincense oil, derived from the Boswellia carterii plant, contains a compound with the potential to inhibit COX-2 
expression in an animal model of hind paw inflammation [49]. Similarly, research involving the fibrous root of the Chinese plant 
Alangium chinense revealed sesquiterpenes with anti-inflammatory properties, outperforming standard drugs in terms of their effec
tiveness [50]. These findings suggest that natural compounds may hold the key to managing inflammation and AD. Terpenes, which 
are naturally occurring compounds found in various plants, have also shown promise in reducing inflammation. A study by Hu et al., in 
2017 highlighted the ability of β-Caryophyllene, a terpene, to inhibit inflammatory activity in microglial cells exposed to hypoxia and 
amyloid β (Aβ) peptide. Additionally, linalool, another terpene, has been found to reduce the expression of pro-inflammatory markers 
in the brains of mice with a genetic predisposition to AD [51]. These examples underscore the potential of natural compounds in 
addressing inflammation in AD. In this research, for further validation interaction between selected secondary metabolites and their 
target receptors, we conducted molecular docking and molecular dynamics simulations. These analyses revealed that the COX2 
(PTGS2) receptors exhibited favorable interactions with two ligands, PQA-11 and Discoidol. These interactions displayed strong 
binding affinities, reinforcing the potential therapeutic relevance of these compounds. Furthermore, research suggests that targeting 
specific genes involved in inflammatory pathways could help prevent AD. PQA11 and Discoidol polyketides are compounds found to 
effectively inhibit the activation of inflammatory pathways. This approach, which is supported by a KEGG enrichment analysis, focuses 
on critical genes associated with AD and the RAGE-mediated NF-κB signaling pathway. This pathway is vital for the binding of Aβ to 
receptors, and blocking it can protect against AD [52]. Importantly, PTGS2, also known as COX-2, has been found to have increased 
expression in the neocortical region of AD-affected brains. This indicates that PTGS2 (COX-2) may be a potential target for treating AD 
by disrupting the inflammatory pathway. In summary, this approach, explores the potential role of the cyclooxygenase enzyme, 
particularly COX-2, in the development and progression of AD. It suggests that COX-2 could be a significant therapeutic target due to 
its involvement in neuronal functions and its increased presence in AD-affected brains. Currently, there are no FDA-approved medi
cations that can target COX-2 for AD treatment. However, the findings from this research, combined with ongoing investigations, offer 
hope for the use of naturally occurring selective COX-2 inhibitors as a means of preventing and treating AD. 

5. Conclusion 

In conclusion, PQA11 and Discoidol have the capacity to interact with 65 and 59 targets associated with Alzheimer’s disease (AD). 
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These compounds have been identified as having potential in the treatment of AD through their interactions with multiple AD-related 
targets. The polyketidic nature of these compounds enables them to engage with seven targets related to inflammation, thereby 
inhibiting the expression of proinflammatory cytokines such as IL-1, IL-2, and TNF-α, as well as suppressing the formation of amyloid 
beta plaques in AD. This study is expected to expand the range of treatment options for AD and further underscores the feasibility of 
applying network pharmacology to analyze Traditional Chinese Medicine (TCM) prescriptions. However, further in vivo experiments 
are necessary to validate the effects of PQA11 on AD. Additionally, while only two compounds, PQA11 and Discoidol, have been 
identified as potential active ingredients of D. discoideum against AD, more experiments are required to screen for other compounds 
with anti-AD activity, particularly those interacting with seven or more targets. 
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Fig. 10. The suggested sequence of signaling events in AD pathogenesis, involving COX-2-mediated interaction between IL-1b and Ab, is as follows: 
COX-2 triggers the release of IL-1β through a series of pathways in glial cells, including HSP70, PGE2, cAMP, PI3–K/AKT, PKA/CREB, and NF-kB. 
The elevated IL-1β, in turn, prompts the expression of COX-2 in neuron cells. Increased COX-2 levels activate the PI3–K/AKT and PKA/CREB 
pathways in a manner dependent on HSP70, PGE2, and cAMP, ultimately leading to the activation of BACE-1 by phosphorylating NF-kB. BACE-1 
then reciprocally triggers COX-2 expression in glial cells in response to Aβ. These interactions between inflammatory and neuron cells may 
contribute to AD development. Importantly, the progression of this cascade can be inhibited by the compounds Discoidol and PQA11, potentially 
slowing AD progression. 
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[24] Janet Piñero, Josep Saüch, Ferran Sanz, Laura I. Furlong, The DisGeNET cytoscape app: exploring and visualizing disease genomics data, Comput. Struct. 
Biotechnol. J. 19 (2021) 2960–2967, https://doi.org/10.1016/j.csbj.2021.05.015. 

[25] Michael Rebhan, Vered Chalifa-Caspi, Jaime Prilusky, Doron Lancet, GeneCards: a novel functional genomics compendium with automated data mining and 
query reformulation support, Bioinformatics 14 (8) (1998) 656–664, https://doi.org/10.1093/bioinformatics/14.8.656. 

[26] Allan Peter Davis, Thomas C. Wiegers, Jolene Wiegers, Brent Wyatt, Robin J. Johnson, Daniela Sciaky, Fern Barkalow, Melissa Strong, Antonio Planchart, 
Carolyn J. Mattingly, CTD tetramers: a new online tool that computationally links curated chemicals, genes, phenotypes, and diseases to inform molecular 
mechanisms for environmental health, Toxicol. Sci. (2023) kfad069, https://doi.org/10.1093/toxsci/kfad069. 

N. Patil et al.                                                                                                                                                                                                           

https://doi.org/10.1016/j.heliyon.2024.e28852
https://doi.org/10.3390/proteomes11040033
https://doi.org/10.3390/proteomes11040033
https://doi.org/10.1002/alz.13016
https://doi.org/10.2147/IJN.S200490
https://doi.org/10.1111/jnc.12202
https://doi.org/10.1111/jnc.12202
https://doi.org/10.3390/pharmaceutics14061117
https://doi.org/10.3390/pharmaceutics14061117
https://doi.org/10.1016/S0011-393X(03)00059-6
https://doi.org/10.1155/2012/907162
https://doi.org/10.1111/cns.14019
https://doi.org/10.1111/cns.14019
https://doi.org/10.1016/j.jep.2012.07.019
https://doi.org/10.2174/1570159X19666210113144703
https://doi.org/10.1523/JNEUROSCI.1521-05.2005
https://doi.org/10.1523/JNEUROSCI.1521-05.2005
https://doi.org/10.3945/jn.109.109785
https://doi.org/10.3390/ijms20092313
https://doi.org/10.1016/j.jep.2004.07.019
http://refhub.elsevier.com/S2405-8440(24)04883-7/sref15
http://refhub.elsevier.com/S2405-8440(24)04883-7/sref15
https://doi.org/10.1016/j.neurobiolaging.2014.10.043
https://doi.org/10.22038/ajp.2019.12839
https://doi.org/10.1055/a-1023-7385
https://doi.org/10.3389/fphar.2018.01192
https://doi.org/10.3389/fphar.2018.01192
https://doi.org/10.3390/plants12030510
https://doi.org/10.3389/fphar.2022.820806
https://doi.org/10.3390/cells8010006
https://doi.org/10.3390/cells8010006
https://doi.org/10.1016/j.cellsig.2008.12.008
https://doi.org/10.1016/j.cellsig.2008.12.008
https://doi.org/10.1016/j.csbj.2021.05.015
https://doi.org/10.1093/bioinformatics/14.8.656
https://doi.org/10.1093/toxsci/kfad069


Heliyon 10 (2024) e28852

16
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