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Simple Summary: The Corfu δ0β+ thalassemic allele, a unique thalassemic allele combining a
deletion of the δ-globin (HBD) and a single nucleotide variant in the β-globin gene (HBB) in cis has, so
far, been described only in individuals of Greek origin. The heterozygosity of Corfu δ0β+ is detected
in 1–2% of the β-thalassemia carrier population and presents a distinct hematological phenotype
of microcytic, hypochromic anemia with normal HbA2 and elevated HbF levels. The study of the
Corfu δ0β+ allele is important for genotype resolution, genetic counseling and prenatal/antenatal
diagnosis, and the management of patients.

Abstract: The Corfu δ0β+ thalassemic allele is a unique thalassemic allele consisting of the simulta-
neous presence in cis of a deletion of the δ-globin (Hemoglobin Subunit Delta, HBD) and a single
nucleotide variant in the β-globin gene (Hemoglobin Subunit Beta, HBB). The allele has, so far, been
described in individuals of Greek origin. The objectives of the study are to ascertain the prevalence
of the Corfu δ0β+ allele in comparison to other β-thalassemia variants encountered in Greece using
our in-house data repository of 2558 β-thalassemia heterozygotes, and to evaluate the hematological
phenotype of Corfu δ0β+ heterozygotes in comparison to heterozygotes with the most common β+-
and deletion α0- thalassemia variants in Greece. The results of the study showed a relative incidence
of heterozygotes with Corfu δ0β+ at 1.56% of all β-thalassemic alleles, and a distinct hematological
phenotype of the heterozygotes characterized by microcytic, hypochromic anemia with normal levels
of HbA2 (Hemoglobin A2) and elevated HbF (Hemoglobin F) levels. The application of a specific
methodology for the identification of the Corfu δ0β+ allele is important for precise prenatal and
antenatal diagnosis programs in Greece.

Keywords: Corfu δ0β+ thalassemic allele; β-thalassemia variants; β-thal hematological phenotype;
normal HbA2; high HbF

1. Introduction

δ-thalassemia is caused by defects in the δ-globin (Hemoglobin Subunit Delta, HBD)
gene that result in lower HbA2 levels. Isolated δ-thalassemia has no clinical significance
but may confound the diagnosis of individuals with β-thalassemia. δβ-thalassemia is a
genetically heterogeneous group of disorders in which both the expression of the δ-globin
gene and the in cis β-globin (Hemoglobin Subunit Beta, HBB) gene are affected [1,2].

The unique complex Corfu δ0β+ allele was first described in one of our patients from
the Greek island of Corfu, who presented with non-transfusion dependent thalassemia
at the age of 4 years with hemoglobin (Hb) of 9.2g/dL, comprising mainly HbF and low
levels of HbA (5.8% with zero HbA2). The parents of the propositus were characterized

Biology 2022, 11, 432. https://doi.org/10.3390/biology11030432 https://www.mdpi.com/journal/biology

https://doi.org/10.3390/biology11030432
https://doi.org/10.3390/biology11030432
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://orcid.org/0000-0002-3205-4287
https://doi.org/10.3390/biology11030432
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology11030432?type=check_update&version=1


Biology 2022, 11, 432 2 of 9

as heterozygotes for “normal HbA2, type 2 thalassemia”, which has a distinct hematolog-
ical phenotype, with reduced red blood cells indices, decreased osmotic fragility and an
unbalanced α/β-globin synthesis ratio comparable to that of heterozygotes with typical
β0-thalassemia variants distinguished by increased HbA2 levels [3,4]. Molecular studies on
the propositus identified homozygosity of a complex allele carrying a 7.2 kb deletion δ0

variant, partially removing δ-globin gene, in cis to IVSI-5G>A β+ variant [HBB:c.92+5G>A;
NG_000007.3:g.57237_64443del7207] [4,5]. Further studies from our group had, very early,
indicated a link between the Corfu δ0β+ allele and a statistically significant raised HbF
level [6].

Studying naturally occurring thalassemic variants has significantly improved our
understanding of the mechanisms underlying the developmental switching of hemoglobin
(Hb) during normal growth [7]. Reactivation of the γ-globin genes (Hemoglobin Subunit
Gamma1/2, HBG1/HBG2) for the treatment of thalassemia and sickle cell disease has
recently been the focus of many research efforts, with respective gene-editing clinical trials
already showing very promising results [8].

To the best of our knowledge, the Corfu δ0β+ allele has been recorded exclusively
amongst β-thalassemia heterozygotes of Greek origin, whereas limited data on its pre-
sentation have been published. This survey addresses: (i) the relative prevalence of the
Corfu δ0β+ allele amongst all β-thalassemia variants prevailing in Greece; (ii) the precise
definition hematological phenotype of Corfu δ0β+ heterozygotes and (iii) the evaluation
of the specific hematological phenotype in heterozygotes with the Corfu δ0β+ allele com-
pared to heterozygotes with either with β+ (IVSI-110 G>A) (HBB:c.93-21G>) or the most
common α0-thalassemia deletion variants found in Greece, i.e., Mediterranean type I
(NG_000006.1: g.(23641_23662)(37868_37901)del IthalID:312) and 20.5 Kb (NG_000006.1:
g.(18148_18200)_(37868_37901)del IthalID:314).

2. Patients and Methods
2.1. Patients

The molecular basis of β-thalassemia variants (including Corfu δ0β+) was retrospec-
tively ascertained in a total of 2558 Greek β-thalassemia heterozygotes comprising 1264
parents of 682 β-thalassemia patients followed in our Thalassemia Unit and 1294 individ-
uals, mostly of reproductive age, referred for carrier screening between 1992 and 1998.
According to the Greek thalassemia prevention program, carrier screening involves the
first step of hematological phenotyping, followed by molecular genotyping driven by
hematological findings consistent with β-thalassemia heterozygosity.

For the evaluation of the hematological phenotype associated with the Corfu δ0β+

allele, data from 50 heterozygotes were studied and compared to those of 58 heterozy-
gotes with the β+ (IVSI-110 G>A) variant and 45 heterozygotes with α0 deletion variants
(Mediterranean type I or 20.5Kb). For this assessment, data from children, pregnant women,
subjects with iron deficiency and subjects with triplicated α or α+ variants were excluded.

The Ethics Committee of ‘Aghia Sophia’ Children’s Hospital approved permission
for medical review, a waiver of informed consent and the anonymous publication of data,
according to the 1964 declaration of Helsinki and its later amendments of October 2013.
(Ethical Approval Code, 19027 02/10/2021) (www.wma.net, last access 13 December 2021)

2.2. Methods

Our study is a retrospective analysis of data concerning the characterization of:

(a) The hematological phenotype based on relevant red cell parameters, including Hb (g/dL),
MCV (Mean Corpuscular Volume) (fl), MCH (Mean Corpuscular Hemoglobin)(pg),
RDW (Red cell Distribution Width)(%), HbA2 (%) and HbF (%),as measured by standard
hematological and biochemical methods; and

(b) The underlying genotype as evaluated with molecular methods and criteria previ-
ously described. Molecular genotyping was performed at the Laboratory of Medical

www.wma.net
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Genetics (LMG), Athens University and included methods specifically applied to
detect the Corfu δ0β+ variant. [6,9,10]

2.3. Statistical Analysis

Statistical analysis was performed utilizing Graph-Pad Prism version 8. Descriptive
statistics were calculated for all phenotype variables in the two groups. For comparison of
the hematological phenotype associated with heterozygotes with the Corfu δ0β+ variant,
the two-tailed non-paired t test was used with the statistical significance level set at p = 0.05.
Tukey’s box plots were used for the graphic representation of comparative measurements
of RBC indices between the three groups of heterozygotes for Corfu δ0β+, α0 variants and
IVS1-110G>A variants, respectively.

3. Results
3.1. Types and Prevalence of HBB Variants

Table 1 summarizes the types and prevalence of HBB variants in 2558 β-thalassemia
heterozygotes; the distribution of HBB gene variants is listed in order of frequency. A total
of 22 HBB gene thalassemia variants were identified: 10 null variants leading to complete
impairment of β-globin synthesis (β0); 4 with severe reduction in β-globin synthesis (β+);
5 with mild (β++); and 3 variants with very mild (so-called silent) reduction in β-chain
synthesis (βsil). The incidence of the “silent” variants was, in general, very low (<1%),
except for 1.76% heterozygotes for the HBB:c.-151C>T (−101 C>T) variant. The most
prevalent variants with an incidence of ~5% and more (considered characteristic for the
Greek population) were: β+ IVSI-110 G>A with an incidence of 40.42%, followed by CD39
(17.67%); IVSI-1G>A (11.96%); IVSI-6 T>C (10.44%); and IVSII-745 G>A (4.93%) accounting
for 85.4% (2.175/2.558) of all variants in the cohort. The incidence of the Corfu δ0β+ allele
was 1.56%.

Table 1. Type and relative incidences of common and rare β thalassemia variants in a cohort from the
Greek population of β thalassemia heterozygotes.

N
Thalassemia Variant

Hematologic Phenotype * Number of Cases Frequency (%)
NM_000518.5 Known as

1 c.93-21G>A IVSI-110 G>A β+ 1034 40.42

2 c.118C>T CD39 C>T β0 452 17.67

3 c.92+1G>A IVSI-1 G>A β0 306 11.96

4 c.92+6T>C IVSI-6 T>C β++ 267 10.44

5 c.316−106C>G IVSII-745 C>G β+ 126 4.93

6 c.315+1G>A IVSII-1 G>A β0 74 2.89

7 c.-137C>G −87 C>G β++ 67 2.62

8 c.20delA Cd6 del A β0 61 2.38

9 c.-151C>T −101 C>T βsil 45 1.76

10 c.92+5G>A IVSI-5G>A plus Corfu delta δ0β+ 40 1.56

11 c.25_26delAA Cd8 del AA β0 21 0.82

12 c.17_18delCT Cd5 del CT β0 18 0.70

13 c.*6C>G +1480 C>G βsil 16 0.63

14 c.*111A>G PolyA A>G β++ 14 0.55

15 c.76_92+27del 44bp del β0 4 0.16

16 c.-78A>C −28 A>C β++ 3 0.12
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Table 1. Cont.

N
Thalassemia Variant

Hematologic Phenotype * Number of Cases Frequency (%)
NM_000518.5 Known as

17 c.92G>C CD30 AGG>ACG β0 3 0.12

18 c.316-3C>A IVSII-848 C>A β+ 2 0.08

19 c.−80T>A −30 T>A β++ 2 0.08

20 c.*96T>C +1570 T>C βsil 1 0.04

21 c.114G>A CD37 TGG>TGA β0 1 0.04

22 c.135delC CD44 del C β0 1 0.04

TOTAL 2558 100.00

* Level of suppression of β-globin synthesis: β0 = total; β+ = severe; β++ = mild; βsil = minimal. N: number

3.2. Corfu δ0β+ Hematological Phenotype

To better ascertain the relevant hematological and biochemical indices of the rare
Corfu δ0β+ heterozygotes, we included data from 10 additional (50 in total) heterozygotes
recruited after 1998. The findings are illustrated in Figure 1. Hemoglobin levels were
reduced in both male and female heterozygotes, with a mean of 12.28 ± 1.4g/dL in males
and 11.13 ± 0.81 g/dL in females. Furthermore, the hematological indices of MCV, MCH
and RDW were outside the normal range, such that MCV and MCH were significantly
lower and RDW significantly higher in the Corfu δ0β+ thalassemia heterozygotes (Figure 1).
HbA2 levels were within the normal range (2.7 ± 0.5 %), and HbF levels varied widely,
ranging between 0.2 and 9.8% (mean: 3.39 ± 2.34%, median: 2.9%) (Figure 1).
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Figure 1. Definition of the hematological phenotype of Corfu δoβ+; assessment of relevant hema-
tological and biochemical parameters in 50 Corfu δoβ+ thalassemia heterozygotes; shaded areas
correspond to normal range.

No significant differences in the severity of relevant red cells indices (Hb, MCV, MCH,
RDW) were identified between heterozygotes with Corfu δ0β+, β+ (IVS1-110 G>A) or
with α0-thalassemia heterozygotes (Figure 2). Significant differences were noted for levels
of HbA2 and HbF. The Corfu δ0β+ heterozygotes had HbA2 levels in the normal range,
in contrast to heterozygotes with IVS1-110 G>A, in which HbA2 levels were increased;
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and to α0-thalassemia heterozygotes, in which HbA2 levels were decreased (p < 0.001).
Heterozygotes with Corfu δ0β+ had significantly higher HbF levels compared to those with
β+ IVSI-110 G>A (p < 0.001). Compared to heterozygotes with α0-thalassemia deletion
variants, no differences were found in the hematological phenotype of Corfu δ0β+ heterozy-
gotes, except for the highly significant differences in HbF (p < 0.001) and the lower levels in
HbA2 and RDW (Figure 2).
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δoβ+ heterozygote (boxplots with lines), 58 with IVSI-110 variant (plain boxplots) and 45 with α0

deletion thalassemia (dotted boxplots). The upper whisker span represents the 75th percentile plus
1.5 times the interquartile distance and the lower the 25th percentile minus 1.5 times the interquartile
distance. Dots represent individual values falling beyond the whiskers. Shaded areas correspond to
normal range. NS: Non Significant/* p < 0.05. ** p < 0.01, *** p < 0.001 and **** p < 0.0001.

4. Discussion

Studies on the molecular basis and worldwide distribution of β-thalassemia variants
have identified more than 300 variants with an extremely heterogeneous distribution. Most
β-thalassemia variants are rare, whereas usually, only 3–5 variants account for more than 80%
of β-thalassemia variants in any given population and follow a population-specific manner.

In this study, the molecular characterization of 2558 β-thalassemia heterozygotes
identified 22 β-thalassemia gene variants, five of which were the most common (~85.4%).
The incidence of the Corfu δoβ+ variant allele, a unique variant so far reported exclusively
in individuals of Greek origin, was 1.56%. In a previous assessment, the Corfu δoβ+ variant
was shown to account for ~36% of normal HbA2 type 2 β-thalassaemia heterozygotes [6].
The remaining heterozygotes concerned the coinheritance of either βo or β+ variants in
trans or in cis with δo or δ+ thal variants or mild β++ thal variants [11], the detection of
which may enable differential diagnosis. It is of interest that neither of the Corfu δoβ+

components, namely the Corfu HBD deletion and the HBB IVSI-5 G>A variant, have so far
been observed independently in Greece and Cyprus, suggesting a founder effect for the
compound allele [11].

In a similar study on 3769 Greek β-thalassemia heterozygotes, a total of 33 HBB
gene variants were identified, of which the same most prevalent five variants covered
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90.4% of the heterozygotes. The IVSI-5 G>A variant was detected in 14 β-thalassemia
heterozygotes, whereas the δ0 of the Corfu δ0β+ variant was not assessed and may have
escaped detection [12].

In this report, the largest group of patients with Corfu δ0β+ heterozygosity is presented.
In this respect, we assessed the hematological phenotype of Corfu δ0β+ heterozygotes
and compared it to β+-thalassemia heterozygotes with either the most common Greek
variant (IVSI-110 G>A), which has similar severity to the IVSI-5 G>A β+ variant of the
Corfu δ0β+ allele, or to heterozygotes with deletion type α0 thalassemia variants. As
illustrated in Figure 2, hematological red cell indices were similar, whereas HbA2 and
HbF levels differed. Corfu δ0β+ heterozygotes showed normal HbA2 in contrast to the
significantly increased levels in IVSI-110 G>A heterozygotes and significantly lower in
heterozygotes with deletion type α0 thalassemia. In respect to HbF, the majority of Corfu
δ0β+ heterozygotes showed considerably elevated HbF levels, in most above 4%, similar to
that of classical heterozygotes of the (δβ)0 thalassemia [6].

The clinical and hematological phenotypes of Corfu δ0β+, either homozygotes or
compound heterozygotes with β0 thalassemia variants, have been previously presented in
a very small number of patients. All patients had the clinical phenotype of non-transfusion-
dependent thalassemia with moderate anemia in childhood (range of Hb 7.2–9.2g/dL),
low HbA (<10%) and high levels of HbF [13]. In contrast, compound heterozygotes of
other so-called “type 2 normal HbA2 thalassemic variants” with β0 or β+ variants have the
clinical phenotype of thalassemia major, with severe anemia necessitating transfusions in
the first years of life [3,9,11].

Gene expression studies to resolve the molecular mechanism of β-globin gene cluster
regulation in the original homozygote Corfu δ0β+ patient concluded that the 7.2 kb deleted
region, including the HBD gene, contains sequences important for the normal regulation of
the HBG1/HBG2, HBD and HBB genes in the cluster. It appears that loss of key sequence
motives in the intergenic region between HBG1 and HBD are associated with disrupted
(delayed) activation of the HBB and HBD genes and a concomitant increased expression of
the HBG1/HBG2 genes in cis [5,13]. Further analysis showed a 1.7kb potential repressor
region upstream of HBD within the 7.2 kb Corfu deletion, which contains a possible binding
site for the transcriptional repressor protein Bcl11a [14–16]. Bcl11a has been identified as a
key regulator of developmental γ-globin silencing [17]. The deleted segment also contains
a 250 bp sequence recognized by the chromatin remodeling PYR repressor complex, a
potential regulator of hemoglobin switching, whereas chromatin conformation experiments
suggested that the segment enables the locus control region of the β-globin gene cluster to
activate globin expression in a developmental stage-specific manner [14] (Figure 3). Studies
on primary erythroid red cell cultures measuring HBG1/2 and HBB gene transcription
steady state mRNA and hemoglobin expression levels in two Corfu δ0β+ homozygotes,
four compound βo heterozygotes and two Corfu δ0β+ heterozygotes disclosed that, in the
presence of the Corfu delta deletion, a post-transcriptional mechanism disrupts HBG1/2
gene silencing and potentially induces raised HbF synthesis. Thus, a combination of
variants that cause a reduction in adult β-globin synthesis must be present for the Corfu
delta deletion to enhance HbF production [13]. This is also supported by a report on two
Italian families who carried only the Corfu HBD deletion variant, and in whom the 7.2 kb
deleted DNA of the HBD gene was associated with a normal function of the “in cis” HBB
and HBG1/2 globin genes [18]. Recent studies using the CRISPR-Cas9 methodology failed
to show a consistent increase in HbF and came to similar conclusions that the Corfu HBD
deletion requires a simultaneous disruption of the ß-globin expression to lead to levels of
increased γ-globin expression postnatally [14,16].
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Limitations of the present study include its retrospective nature and the fact that the
incidence of the allele was calculated on a partially selected population comprising parents
of β thalassemia patients (cascade screening) and subjects from the general population
selected for genotyping due to a hematological phenotype indicative of anemia and tha-
lassemia heterozygosity. The cohort consisted of adults of reproductive age (preconception
screening), with only a few (<20) children and pregnant women. Carrier screening included
both β- and α-gene variants to allow accurate genotyping and proper genetic counseling.
For the evaluation of the hematological phenotype only heterozygotes with normal ferritin
and iron status were studied. Heterozygotes with any comorbidities and similar red cells
changes were excluded.

5. Conclusions

The Corfu δ0β+ double-variant allele accounts for a substantial proportion of β-
thalassemic alleles in general and a significant proportion of thalassemic alleles with
type 2 normal HbA2 in Greece. The milder clinical phenotype in thalassemic patients with
genotypes involving the Corfu δ0β+ allele could be related to a disruption of a binding site
involved in HBG1/2 gene silencing and/or HBB gene activation [5,13]. Additional studies
on the nature and origin of this, as well as other complex variants, are likely to provide
insights into the ways that variants induce chromatin reconfiguration and enable reactiva-
tion or silencing of genes, like the β-globin cluster, such that development of respective
gene-editing-based treatments may be supported. The hematological phenotype of Corfu
δ0β+ heterozygotes is comparable to other β0 and β+ thalassemia heterozygotes, except the
normal HbA2 and the significantly higher HbF levels. Even in the era of next-generation
sequencing where a wider screening of alleles is applied, the hematological phenotype
remains important and should be taken into account, especially in the presence of nor-
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mal HbF levels, not exclusive of a Corfu δ0β+ allele in need of being distinguished from
an α thalassemic variant. The precise diagnosis of Corfu δ0β+ heterozygotes is of great
importance, especially in the context of genetic counseling, antenatal diagnosis and the
management of patients.
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