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Abstract

Background/Objectives—Obesity (body mass index (BMI) ≥ 30) is associated with an 

increased risk of estrogen-dependent breast cancer after menopause. Levels of aromatase, the rate-

limiting enzyme in estrogen biosynthesis, are elevated in breast tissue of obese women. Recently, 

the regulation of aromatase by the p53-HIF1α/PKM2 axis was characterized in adipose stromal 

cells (ASCs) of women with Li-Fraumeni Syndrome, a hereditary cancer syndrome that 

predisposes to estrogen-dependent breast cancer. The current study aimed to determine whether 

stimulation of aromatase by obesity-associated adipokine leptin involves the regulation of the p53-

HIF1α/PKM2 axis.

Subjects/Methods—Human breast ASCs were used to characterize the p53-HIF1α/PKM2-

aromatase axis in response to leptin. The effect of pharmacological or genetic modulation of PKC, 

MAPK, p53, Aha1, Hsp90, HIF1α and PKM2 on aromatase promoter activity, expression and 

enzyme activity was examined. Semi-quantitative immunofluorescence and confocal imaging were 
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used to assess ASC-specific protein expression in FFPE sections of breast of women and 

mammary tissue of mice following a low fat (LF) or high fat (HF) diet for 17 weeks.

Results—Leptin-mediated induction of aromatase was dependent on PKC/MAPK signaling and 

the suppression of p53. This, in turn, was associated with an increase in Aha1 protein expression, 

activation of Hsp90 and the stabilization of HIF1α and PKM2, known stimulators of aromatase 

expression. Consistent with these findings, ASC-specific immunoreactivity for p53 was inversely 

associated with BMI in breast tissue, while HIF1α, PKM2 and aromatase were positively 

correlated with BMI. In mice, HF feeding was associated with significantly lower p53 ASC-

specific immunoreactivity compared to LF feeding, while immunoreactivity for HIF1α, PKM2 

and aromatase were significantly higher.

Conclusions—Overall, findings demonstrate a novel mechanism for the obesity-associated 

increase in aromatase in ASCs of the breast and support the study of lifestyle interventions, 

including weight management, which may reduce breast cancer risk via effects on this pathway.

Introduction

Estrogen receptor positive (ER+) breast cancers account for over 70% of breast cancer 

diagnoses (1). Despite low levels of circulating estrogens, the majority of ER+ breast 

cancers occur after menopause (2). In these women, it is hypothesized that estrogens 

synthesized locally within the breast fat are responsible for driving the growth of hormone-

dependent cancers. The local biosynthesis of estrogens is dependent on the expression of the 

aromatase enzyme which catalyzes the final and key step in estrogen biosynthesis. Recently, 

it was demonstrated that breast aromatase is increased as a function of both body mass index 

(BMI) and menopausal status (3, 4). Consistently, obesity, defined as having a BMI of 30 or 

above, increases the risk of ER+ breast cancer in postmenopausal women, may impair the 

efficacy of breast cancer treatment, and increases the risk of recurrence and cancer-

associated death (5, 6). More specifically, the risk of ER+ breast cancer is approximately 

doubled in obese compared to healthy weight postmenopausal women (7). With obesity, the 

excessive storage of fat in adipocytes leads to an unhealthy expansion of adipose tissue 

which is associated with endoplasmic reticulum stress, adipose tissue fibrosis and localized 

hypoxia, leading to the initiation of an inflammatory response (8, 9). Increased fat mass is 

also associated with dramatic changes in adipokine secretion, including the increased 

production of the appetite-suppressing peptide hormone leptin. Inflammatory mediators and 

leptin are key stimulators of aromatase transcript expression in adipose stromal cells (ASCs) 

of the breast, and metabolic pathways have recently been implicated in this regulation 

(reviewed in 10). For example, inflammatory mediator PGE2 and leptin have been shown to 

drive aromatase expression via the suppression of the metabolic regulators LKB1/AMPK 

(11). This leads, in turn, to the nuclear translocation of CREB-coactivators, the CRTC 

proteins, and increased expression of aromatase. PGE2 was also demonstrated to stimulate 

aromatase via effects on tumor suppressor p53 and oncogene hypoxia-inducible factor-1α 
(HIF1α). Specifically, p53 was identified as a transcriptional repressor of the aromatase 

gene via binding to a p53 response element on promoter PII, the main promoter used to 

drive aromatase expression in the ovary and obesity- or cancer-associated breast adipose 

tissue (12), while PGE2 stabilized HIF1α, leading to cooperative binding with CREB to 
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aromatase promoter PII and stimulation of aromatase expression (13). Findings in Li-

Fraumeni Syndrome (LFS) patients, who have germline mutations in the TP53 gene and are 

at increased risk of ER+ breast cancer (14), were consistent with in vitro studies (12, 15). 

Namely, that mutation of p53 was associated with elevated aromatase expression in the 

breast adipose stroma. Further studies demonstrated that in addition to direct effects on 

promoter activity, loss of p53 function in LFS, leads to the stabilization of HIF1α and 

pyruvate kinase M2 (PKM2) proteins via Hsp90-dependent mechanisms (15). PKM2 is 

another metabolic regulator that has been implicated in the shift in mechanism of energy 

metabolism from mitochondrial respiration to aerobic glycolysis referred to as the Warburg 

effect, a phenomenon that occurs frequently in cancer. HIF1α and PKM2 were shown to co-

localize to the nucleus of ASCs, bind to the aromatase promoter and stimulate its expression 

(13, 15). This novel axis, first characterized in a hereditary cancer syndrome and implicating 

p53-HIF1α/PKM2-aromatase has, to date, not been examined in the context of obesity, and 

despite numerous studies examining the impact of obesity-associated factors on isolated 

ASCs, little is known about the in situ expression of aromatase in relation to obesity. The 

aim of the current study was to determine whether aromatase regulation by leptin involves 

the p53-HIF1α/PKM2-aromatase axis and to examine, in situ, the relationship between BMI 

and the breast ASC-specific immunoreactivity of members of the p53-HIF1α/PKM2-

aromatase axis.

Material and Methods

Materials

MTT assay kits, glucose-6-phosphate, pepstatin, leupeptin, glucose-6-phosphate 

dehydrogenase, DMSO, L-LDH, leptin, calphostin C, phosphoenolpyruvate, pyruvate 

kinase, NADH, antibodies to β-actin and primers for aromatase were obtained from Sigma. 

SP600125, SB202190, PD98059, and 17-Allylamino-17demethoxygeldanamycin (17-AAG) 

were obtained from Cayman Chemicals. PU-H71 was purchased from Tocris Bioscience. 

Monoclonal aromatase antibody 677 was obtained from the Baylor College of Medicine. 

Antibodies to ERK1/2 (1:1000; #9102), pERK1/2 (1:1000; #4370), p38 (1:1000; #8690), 

phospho-p38 (1:1000; #4511), JNK (1:1000; #9252), phospho-JNK (1:500; #9255), PKM2 

(1:1000; #4053) and HIF-1α (1:1000; #14179) were from Cell Signaling Technology. The 

p53 antibody (1:1000; SC-6243) was from Santa Cruz. Antibody to Aha1 was purchased 

from Abcam (1:1000; EPR13888). Lipofectamine 2000 and PKC activity kits were from 

(Invitrogen). Control siRNA or siRNAs to Aha1, HIF-1α and PKM2 were from Thermo 

Scientific. Primers for p53 (QT00060235) and β-actin (QT01680476) were purchased from 

Qiagen. Western blotting detection reagents were from Perkin Elmer. Reagents for the 

luciferase assay and pSVβgal were from Promega. The aromatase promoter (CYP19PII)-

luciferase construct was kindly provided by Dr. S. Chen (City of Hope, Duarte, CA). 1β-

[3H]-androstenedione and [32P]-ATP were from Perkin-Elmer Life Science. Expression 

vectors for p53 were from Addgene.

Human adipose stromal cells and breast tissue

Immortalized human mammary ASCs HMS32-hTERT were provided by Dr. Brittney-Shea 

Herbert (Indiana University School of Medicine) (16). Human primary preadipocytes 
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(ASCs) derived from subcutaneous fat and preadipocyte growth medium were purchased 

from Cell Applications, Inc. Cellular cytotoxicity was assessed by measurements of cell 

number, lactate dehydrogenase release, and 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay. No evidence of cell toxicity was detected in any 

of the experiments described below.

The study and sample collection for immunofluorescence-based studies was approved by the 

Institutional Review Boards of Memorial Sloan Kettering Cancer Center (MSKCC) and 

Weill Cornell Medical College in New York, USA (#1004010984). Women undergoing 

mastectomy at MSKCC for the treatment or prevention of breast cancer (n= 52) were 

consented under a standard tissue acquisition protocol. Normal breast tissue from a quadrant 

uninvolved by tumor was collected in 4% neutral buffered formaldehyde. Formaldehyde-

fixed tissue was later processed and embedded in paraffin. Patient medical records were 

reviewed to record patient information including age and menopausal status. Height (in 

meters) and weight (kg) recorded on the day of surgery were used to calculate BMI as 

kg/m2. Clinicopathologic features are reported in Supplemental Table 1. Sample size was 

determined based on both the availability of tissue samples and the statistical power for 

detecting expected correlation between aromatase levels and BMI. With 50 subjects we have 

>85% power to detect a Pearson correlation of around 0.45 using a two-sided hypothesis test 

with a significance level of 0.05.

PKC, aromatase and Hsp90 ATPase activity assays

Total PKC activity was measured in cell lysates. To determine cytosolic and membrane-

bound PKC activity, cell lysates were centrifuged at 100,000 × g for 30 min. The resulting 

supernatant contains cytosolic PKC; membrane-bound PKC activity is present in the pellet. 

DEAE cellulose columns were used to partially purify PKC enzymes. PKC activity was then 

measured by incubating partially purified PKC with [32P]-ATP (3000–6000 Ci/mmol) and 

the substrate myelin basic protein for 20 min at room temperature. The activity of PKC is 

expressed as cpm incorporated/μg of protein. Aromatase activity was measured as described 

previously (3). Aromatase activity is expressed as femtomoles/μg protein. The Hsp90 

ATPase assay was based on a regenerating coupled enzyme assay and was performed as 

described previously (17). Hsp90 ATPase activity is expressed as pmol/min/mg protein.

Western Blotting

Cells were sonicated using a lysis buffer (150 mM NaCl, 100 mM Tris, pH 8.0, 1% Tween 

20, 50 mM diethyldithiocarbamate, 1 mM EDTA, 1 mM phenylmethylsulfonyl fluoride, 10 

μg/ml aprotinin, 10 μg/ml trypsin inhibitor, and 10 μg/ml leupeptin). Cell lysates were 

centrifuged and the supernatants were used to determine the protein concentration according 

to Lowry et al. (18). Cell lysates were subjected to SDS-PAGE to separate proteins under 

reducing conditions on 10% polyacrylamide gels and transferred onto nitrocellulose sheets. 

The blots were then probed with the ECL western blot detection system after incubation 

with primary and secondary antibodies.
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Quantitative Real-time PCR

RNA was isolated from cells using the RNeasy mini kit (Qiagen). RNA was reversed 

transcribed to cDNA using murine leukemia virus reverse transcriptase and oligo (dT)16 

primer and the cDNA was used for amplification. Primers for aromatase have been described 

previously (3). Real-time PCR was done using 2x SYBR green PCR master mix on a 7500 

Real-time PCR system (Applied Biosystems). Using the ddCT (relative quantification) 

analysis protocol, relative fold induction was determined.

Transient Transfections

Cells were grown to 60–70% confluence in 6-well dishes and were transfected using 

Lipofectamine 2000 (Invitrogen) for 24h. Following transfection, the medium was replaced 

with serum-free medium for another 24h. Luciferase and β-galactosidase enzyme activities 

were measured in cellular extracts. Luciferase activity in cell lysates was normalized to β-

galactosidase enzymatic activity. For experiments involving gene silencing, cells were 

transfected with 2μg of siRNA oligonucleotides using DharmaFECT 4 transfection reagent 

according to the manufacturer’s instructions.

Diet-induced obesity mouse model

Sixteen female C57BL/6J mice (n=8/group) were purchased from The Jackson Laboratory 

(JAX) and ovariectomized at 4 weeks of age. At the age of 5 weeks, mice were randomly 

assigned to be fed a 10% low fat diet (LFD, 12450Bi) or a 60% high fat diet (HFD, 

D12492i) for 17 weeks. All mice were sacrificed at 22 weeks of age. Mouse mammary fat 

pads were obtained and fixed in 4% neutral buffered formaldehyde. Fixed tissue sections 

were used to assess the levels of p53, HIF1α, PKM2 and aromatase in adipose stromal cells 

using immunofluorescence. Sample size was selected based on investigators’ previous 

experience in conducting animal studies. Mouse experiments were conducted in accordance 

with protocols approved by the Institutional Animal Care and MMaterial Use Committee at 

Weill Cornell Medicine (New York, NY). Investigators were not blinded.

Immunofluorescence, confocal microscopy and the adipose stromal cell-specific 
assessment of immunofluorescent staining

Formalin-fixed paraffin-embedded sections from human breast tissue and mouse mammary 

glands were deparaffinized with xylene and rehydrated in descending grades of ethanol. 

Immunofluorescence was performed after antigen retrieval. For p53 and aromatase, sections 

were subjected to microwave in 10mM Citric Acid for 2 min at high power followed by 5 

min at 50% power, while staining for HIF1α and PKM2 was performed after heating 

sections in 10mM Tris/1mM EDTA buffer for 30min in a 100°C water bath. Sections were 

then cooled for 30 min at room temperature and washed in PBS and blocked with 0.5% 

BSA/PBS for 30min. Sections were incubated with primary antibodies overnight at 4°C, 

followed by the application of the appropriate secondary antibody, either 1:750 of anti-

mouse Alexa Fluor 546 or 1:1000 anti-rabbit Alexa Fluor 488 and 1:2000 Hoechst 33342 

(Invitrogen) for 2 h. Finally, the sections were washed and mounted with ProLong® Gold 

Antifade Mountant (P36934-Thermo Fisher Scientific) and stored in dark at 4°C until 

imaging. Imaging was done using a Nikon inverted confocal microscope (1024 × 1024 
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pixels, 3 × 3 tiled images, 3 images per case). Identical confocal settings were used to limit 

intra-experimental variability. Metamorph® software (Molecular Devices, USA) was used to 

quantify nuclear immunoreactivity for p53, HIF1α and PKM2 and peri-nuclear aromatase 

immunoreactivity in ASCs specifically, as previously described (19). Investigators were 

blinded to BMI or experimental group when performing these studies.

Statistical analyses

Differences in patient characteristics across BMI categories were examined using the non-

parametric Kruskal-Wallis rank sum test for continuous variables and Fisher’s exact test for 

categorical variables. Continuous experimental data were expressed as mean ± standard 

deviation (SD). Comparisons between two groups were made by Student’s t test. If multiple 

treatment groups were examined, statistical analysis was done using one-way ANOVA 

followed by Dunnett’s test whereby the effect of treatment was compared to control. 

Statistical significance was defined as *p ≤ 0.05; **p ≤ 0.005; ***p ≤ 0.0005; ****p ≤ 

0.0001. Correlations between protein immunoreactivity and BMI or immunoreactivity of 

two proteins, as well as the strength of the correlation between the aromatase expression and 

each blood parameter in the study cohort was examined using the non-parametric Spearman 

method. Data analysis was performed using GraphPad Prism version 5.02 (GraphPad 

Software, San Diego, CA, USA) and R version 3.3.1[ref: R Core Team (2016). R: A 

language and environment for statistical computing. R Foundation for Statistical Computing, 

Vienna, Austria. URL: https://www.R-project.org/.].

Results

Leptin induces aromatase gene expression via effects on PKC and ERK1/2

Treatment with leptin caused a dose-dependent increase in aromatase activity in both 

immortalized (Figure 1A) and primary human ASCs (data not shown). Consistent with a 

hypothesized effect on aromatase gene transcription, leptin also caused a dose-dependent 

increase in aromatase mRNA levels (Figure 1B) and promoter activity (Figure 1C). The 

signal transduction pathway by which leptin stimulated aromatase gene expression was 

examined. Treatment of ASCs with leptin for 30 min activated PKC and the increase in PKC 

activity was found in the membrane fraction (Figure 1D). To determine if the observed 

increase in PKC activity contributed to the induction of aromatase, calphostin C, an inhibitor 

of PKC activity, was used. Calphostin C blocked the leptin-mediated induction of aromatase 

activity (Figure 1E). PKC can activate MAPK signaling. Interestingly, leptin activated 

ERK1/2, p38 and JNK MAPKs (Figure 1F–H). Selective inhibitors of these MAPKs were 

tested for their ability to block the leptin-mediated induction of aromatase. PD98059, an 

inhibitor of MAP kinase kinase, was the only inhibitor to block the induction of aromatase 

by leptin (Figure 1F).

Downregulation of p53 contributes to the leptin-dependent induction of aromatase

Previously, we reported that p53 suppresses aromatase expression in ASCs (15, 19). In the 

current study, transfection of ASCs with a p53 expression vector prevented the induction of 

aromatase promoter activity by leptin (Figure 2A). Activation of ERK1/2 MAPK has 

previously been shown to downregulate p53 protein levels (20). Hence, the effect of leptin 
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on p53 was examined. Treatment with leptin suppressed p53 protein levels without affecting 

p53 mRNA levels (Figure 2B). The downregulation of p53 by leptin was dependent on PKC 

and ERK1/2, as use of calphostin C and PD98059 prevented the leptin-mediated decreased 

in p53 levels in a dose-dependent manner (Figure 2C). Loss of p53 has been shown to 

stimulate Hsp90 ATPase activity via the induction of Aha1, a co-chaperone of Hsp90, 

resulting in induction of aromatase (15). Leptin caused a dose-dependent increase in Aha1 

protein levels and silencing Aha1 blocked the leptin-mediated induction of aromatase 

(Figure 2D). In addition to inducing Aha1, leptin stimulated Hsp90 ATPase activity (Figure 

2E) and the importance of the leptin-mediated induction of Hsp90 ATPase on aromatase was 

defined using prototypic inhibitors of Hsp90 ATPase, 17-AAG and PU-H71. Each of these 

Hsp90 ATPase inhibitors blocked the leptin-mediated induction of aromatase activity 

(Figure 2F).

Leptin-mediated induction of aromatase expression is dependent on HIF1α and PKM2

HIF1α and PKM2 are Hsp90 client proteins that regulate aromatase expression (13, 15). 

Leptin induced the levels of both HIF1α and PKM2 proteins (Figure 3A). Silencing either 

HIF1α or PKM2 blocked the leptin-mediated induction of aromatase protein (Figure 3B) 

and aromatase promoter activity (Figure 3C). The inductive effects of leptin on HIF1α and 

PKM2 proteins were inhibited by treatment with calphostin C and PD98059 (Figure 3D & 

E, respectively). Inhibition of Hsp90 ATPase also attenuated the leptin-mediated induction 

of HIF1α and PKM2 (Figure 3F).

BMI and high fat feeding are associated with immunoreactivity of proteins in the p53-
HIF1α/PKM2-aromatase axis in ASCs of women and mice

A total of 52 women were enrolled with median BMI 24.9 (IQR 23–29.42). Average 

fluorescent staining intensity for p53, HIF1α, PKM2 and aromatase was measured in ASCs 

of FFPE tissue sections. Aromatase immunoreactivity was positively correlated with BMI 

(Figure 4A), while nuclear p53 levels were inversely correlated with BMI (Figure 4B). 

Immunoreactivity for both HIF1α and PKM2 were positively correlated with BMI (Figure 

4C & D, respectively). Associations between the average fluorescence intensity for each 

protein were also examined on a case-by-case basis. Aromatase immunoreactivity was found 

to be inversely correlated with p53 nuclear expression (Figure 4E). Consistent with the 

hypothesis that HIF1α and PKM2 are co-regulated in ASCs, a positive correlation was also 

observed between both proteins (Figure 4F). Aromatase was positively correlated with both 

HIF1α and PKM2 (Figures 4G & H). In C57BL/6J mice, high fat feeding was associated 

with ASC-specific differences in levels of proteins of the p53-HIF1α/PKM2-aromatase axis 

(Figure 5). Specifically, immunoreactivity for aromatase, HIF1α and PKM2 were 

significantly higher in high fat-fed mice compared to low fat-fed mice. Conversely, nuclear 

p53 levels were significantly lower in the HFD group compared to the LFD group.

Discussion

The current study provides novel mechanistic insights into the regulation of aromatase by 

leptin. Furthermore, it also characterizes the ASC-specific immunoreactivity of aromatase 
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and related pathways in relation to obesity in breast tissue from women and in the mammary 

fat pad of mice.

Obesity is associated with an increase in aromatase expression and activity in the breast 

tissue of women (3, 4). The current study supports these findings and demonstrates for the 

first time that the obesity-associated increases in aromatase observed in human breast tissue 

occur, at least in part, due to the increased in situ expression of aromatase in ASCs. A 

number of factors known to be altered in obesity have been shown to affect aromatase 

expression in isolated ASCs. These range from inflammatory mediators associated with 

white adipose tissue inflammation and adipokines, to gut-derived peptide hormones (10, 21).

Mechanistic insights into the regulation of aromatase have come from in vitro studies where 

isolated ASCs are manipulated either pharmacologically or through gene silencing, or from 

the analysis of hereditary cancer syndromes. One example is the identification of the 

increased expression of aromatase in the ovaries, testis and breast of Peutz Jeghers 

Syndrome patients (22–24). The majority of Peutz Jeghers cases occur as a consequence of 

mutations in the STK11 gene that encodes LKB1 and these studies paved the way to the 

identification of the LKB1/AMPK/CRTC axis as a novel regulator of aromatase in the 

context of breast cancer (11). These studies also suggested that pathways that were 

dysregulated in hereditary cancer syndromes could be affected by environmental factors, 

including inflammatory and adipokine changes that occur as a consequence of obesity and 

tumor formation (11). More recently, we have demonstrated that patients with Li-Fraumeni 

Syndrome, a hereditary cancer syndrome that predisposes to many cancers including ER+ 

breast cancer, is associated with an increase in aromatase expression in the breast adipose 

stroma (15, 19). Elucidation of the p53-HIF1α/PKM2-aromatase axis was undertaken in 

breast tissue from these women, leading to the hypothesis that aromatase may also be 

regulated by this axis in response to host changes, including obesity. Leptin is a well-

characterized obesity-associated factor that has been causally linked to the increased growth 

of breast cancer cells, and despite some studies showing an inverse or no association, most 

epidemiological studies support a positive association between circulating leptin levels and 

breast cancer risk (25, 26). Leptin has also been shown to be associated with breast 

aromatase levels in women with breast cancer in the context of obesity (27), as well as being 

a potent stimulator of aromatase expression and activity in isolated adipose stromal cells (11, 

28, 29), MCF-7 breast cancer cells (30), endometrial cancer cells (31) and luteinized 

granulosa cells (32). The current study therefore aimed to characterize the regulation of 

aromatase in breast adipose stromal cells by leptin via effects on the p53-HIF1α/PKM2 axis.

Consistent with previous studies, leptin was shown to stimulate aromatase expression in 

ASCs via effects on promoter PII (11). The current study, however, also demonstrates that 

the effects of leptin are dependent on activation of PKC at the plasma membrane and 

ERK1/2. This mechanism of action is similar to that described in MCF-7 breast cancer cells, 

whereby the induction of aromatase transcript expression by leptin was attenuated when 

MAPK inhibitor PD98059 or ERK dominant negative constructs were used (30). In the 

present study, leptin also led to a decrease in p53 protein levels. Multiple studies have 

reported that leptin downregulates p53 in other cell types, including hepatic and breast 

cancer cells (33, 34), trophoblastic cells (20), granulosa cells (35) and prostate cancer cells 
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(36). Previously, p53 was found to bind to a p53 response element on aromatase promoter 

PII and suppress aromatase expression (19). This may be one mechanism whereby 

suppression of p53 by leptin leads to the increased expression of aromatase. Interestingly, 

the decreases in p53 protein levels seen in response to leptin treatment were also associated 

with an increase in Aha1 protein expression, Hsp90 ATPase activity and the stabilization of 

HIF1α and PKM2 proteins, consistent with findings in Li-Fraumeni patients (15). Moreover, 

the increase in aromatase in response to leptin was found to be dependent on the 

stabilization of both HIF1α and PKM2. In addition to directly interacting with PKM2, 

HIF1α has previously been shown to bind to a hypoxia response element on aromatase 

promoter PII and act cooperatively with CREB to increase aromatase expression (13). Leptin 

has previously been shown to increase HIF1α and PKM2 levels in the vasculature and breast 

cancer cells, respectively (37, 38). Leptin levels have also been shown to be positively 

correlated with HIF1α in endometrial and colorectal cancer (39, 40).

In vitro findings suggest that leptin is a driver of the obesity-associated increase in ASC-

specific expression of aromatase, and that the p53-HIF1α/pKM2-aromatase axis is actively 

regulated by environmental cues, including obesity (Figure 6). Importantly, changes in the 

levels of proteins in the p53-HIF1α/PKM2-aromatase axis observed in vitro in response to 

leptin were reflected in studies of normal breast tissue in relation to BMI or in the mammary 

fat pad of a diet-induced mouse model of obesity. Leptin is not the only factor that may be 

responsible for changes in the expression of the proteins in vivo. Inflammatory mediators 

increased in obesity, including PGE2, have been shown to regulate p53 and HIF1α levels in 

adipose stromal cells, and obese adipose tissue is recognized to be more hypoxic than 

healthy adipose tissue, a major driver of HIF1α stabilization. Nevertheless, it is likely that 

obesity-associated factors, including leptin, converge to regulate metabolic pathways and 

aromatase in ASCs, leading to a hormonal milieu conducive to tumor growth.

Taken together, results from the current study further emphasize the effect of obesity and 

obesity-associated factors on the local expression of aromatase and associated increase in 

estrogen production. Efforts aimed at reducing weight or maintaining a healthy weight may 

have profound impact on inhibiting the development and growth of hormone-dependent 

breast cancers. Better understanding the mechanisms of aromatase regulation offer the 

possibility to explore novel therapeutic approaches, including targeting of leptin signaling.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Leptin induces aromatase gene expression via effects on PKC and ERK1/2
Immortalized ASCs were treated for 24h with 0–100 ng/ml leptin. Following treatment, 

aromatase (A) activity, (B) mRNA expression and (C) promoter PII activity were examined 

and found to be increased in a dose-dependent manner. (D) Leptin stimulated the 

translocation of cytosolic PKC to the membrane. (E) Treatment of cells with PKC inhibitor 

calphostin (Cal.) led to the dose-dependent inhibition of the leptin-mediated increase in 

aromatase activity. ASCs were pre-treated with vehicle or the indicated concentrations of 

calphostin (Cal.) for 2h. Subsequently, cells were treated with leptin or leptin plus calphostin 

for 24 h. (F; top) Leptin treatment caused a transient increased in ERK1/2 phosphorylation. 

ASCs were treated with vehicle or 100 ng/ml leptin for the indicated times. Cell lysates were 

subjected to Western Blotting. (F; bottom) Treatment with MEK1/2 inhibitor PD98059 

caused a dose-dependent decrease in the leptin-mediated induction of aromatase activity. 

ASCs were pretreated with vehicle or the indicated concentrations of PD98059 for 2h. 

Subsequently, the cells received vehicle, 100ng/ml leptin or leptin + 25–100 uM PD98059 

for 24h. (G,H; top) Western blotting demonstrating time-dependent effects of leptin on 
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phosphorylation of JNK (G) and p38 (H). No effect of inhibitors of JNK or p38 MAPK on 

aromatase activity was observed (G,H; bottom). ASCs were pretreated with indicated 

concentrations of SP600125 or SB202190, respectively for 2h. Subsequently, cells received 

vehicle, 100ng/ml leptin or leptin + the indicated concentrations of SP600125 or SB202190 

for 24h. Aromatase activity is expressed as femtomoles/μg protein. Data are presented as 

mean ± SD, n=6. C: control; L: leptin.
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Figure 2. Downregulation of p53 contributes to the leptin-dependent induction of aromatase
(A) p53 overexpression abolishes the leptin-mediated induction of aromatase promoter 

activity. ASCs were transfected with 0.9 μg aromatase promoter PII-luciferase and 0.2 μg 

psvβ-gal constructs. Cells also received 0.9 μg p53 expression vector or 0.9 μg control 

vector. 48h after transfection, cells were treated with vehicle or 100 ng/ml leptin for 24h and 

aromatase promoter activity was assessed. (B) Leptin caused a time-dependent decrease in 

p53 protein levels (top) with no effect on p53 mRNA expression (bottom). (C) Suppression 

of p53 protein levels in response to leptin were dependent on PKC and ERK1/2 activity. 

ASCs were pretreated with vehicle or the indicated doses of calphostin C (Cal.; top) or 
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PD98059 (bottom) for 2h. Subsequently, cells were treated with vehicle, 100 ng/ml leptin or 

100 ng/ml leptin plus the indicated concentrations of calphostin C or PD98059 for 24h. (D) 

The leptin-mediated increase in aromatase expression is dependent on the increased 

expression of Aha1. Top, Leptin induced Aha1 protein levels in a dose-dependent manner. 

Bottom, ASCs were transfected with 2 μg of control or Aha1 siRNA. 48h later, cell lysates 

were subjected to Western Blotting (left hand panel). In the right hand panel, following 

transfection cells were treated with vehicle or 100 ng/ml leptin for 24h, and aromatase 

protein levels were examined. (E) 24h treatment with 100ng/ml leptin caused a significant 

increase in Hsp90 ATPase activity. (F) Leptin-mediated induction of aromatase activity was 

dependent on Hsp90. ASCs were pre-treated with vehicle, 1 μM 17-AAG or 0.5 μM PU-H71 

for 2h. Subsequently, the cells received vehicle, 100ng/ml leptin, leptin and 17-AAG or 

leptin and PU-H71 for an additional 24h. Data are presented as mean ± SD, n=6. C: control; 

L: leptin
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Figure 3. Leptin-mediated induction of aromatase is dependent on HIF1α and PKM2
(A) 24h treatment of ASCs with leptin caused a dose-dependent increase in HIF1α (top) and 

PKM2 (bottom) protein levels. (B) Stimulation of aromatase protein expression and (C) 

promoter activity by leptin is dependent on HIF1α and PKM2 expression. ASCs were 

transfected with 2 μg of control siRNA or siRNAs to HIF1α or PKM2 for 48h. Cells were 

then lysed and subjected to Western Blotting for HIF1α and PKM2. Following transfection, 

cells received vehicle or 100 ng/ml leptin for 24h. Western blotting for aromatase was then 

carried out. For aromatase promoter activity, cells were transfected with 0.9 μg of the 

indicated siRNA, 0.9 μg of aromatase promoter PII-luciferase and 0.2μg of psvβ-gal 

constructs. 48h after transfection, cells received vehicle or 100 ng/ml leptin for 24h. 

Luciferase activity was normalized to β-galactosidase activity. Effects of leptin on HIF1α 
and PKM2 are dependent on PKC, ERK1/2 and Hsp90 ATPase activity. ASCs were 

pretreated with vehicle or the indicated doses of (D) calphostin C, (E) PD98059 or (F) 17-

AAG or PU-H71, for 2h. Then, cells were treated with vehicle, 100 ng/ml leptin or 100 

ng/ml leptin plus the indicated concentrations of respective inhibitors for 24h. Western 

blotting was performed on whole cell lysates. β-actin used as a loading control. Data are 

presented as mean ± SD, n=6. C: control; L: leptin
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Figure 4. BMI is positively correlated with immunoreactivity of proteins in the p53-HIF1α/
PKM2-aromatase axis in ASCs of women
Breast ASC-specific immunoreactivity for aromatase, p53, HIF1α, and PKM2 are correlated 

with BMI. (A) Average staining intensity for aromatase is positively correlated with BMI 

(n=48; ρ=0.59; p<0.001). (B) Average nuclear p53 immunoreactivity is negatively correlated 

with BMI (n=31; ρ=−0.40; p=0.03). Nuclear staining intensity for (C) HIF1α and (D) 

PKM2 are positively correlated with BMI (n=35; ρ=0.45; p=0.006 and n=32; ρ=0.52; 

p=0.002, respectively). Per case, aromatase is correlated with p53, HIF1α and PKM2, and 

HIF1α levels are correlated with PKM2. (E) Aromatase is inversely associated with nuclear 

p53 immunoreactivity (n=28; ρ= −0.34; p=0.04). (F) HIF1α and PKM2 are positively 
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correlated in ASCs (n=32; ρ=0.51; p=0.003). Aromatase is positively correlated with (G) 

HIF1α (n=31; ρ=0.36; p=0.04) and (H) PKM2 (n=31; ρ=0.67; p<0.001).
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Figure 5. Effect of high fat diet on ASC-specific p53, PKM2, HIF1α and aromatase
(A) p53 average staining intensity was significantly higher in LFD mammary fat pad ASCs 

compared to HFD. (B) Nuclear p53 (green) staining is present in ASCs in LFD mice and (C) 

lower in HFD-fed mice. Nuclear HIF1α (D) and PKM2 (G) average staining intensity was 

significantly lower in LFD-fed mice compared to HFD-fed mice. Levels of nuclear HIF1α 
(E; red) and PKM2 (H; green) immunoreactivity in LFD mice compared to HFD (F, I). (J) 

Aromatase average staining intensity was significantly lower in LFD compared to HFD 

mice. Lower aromatase (green) staining in (K) LFD compared to (L) HFD. Hoechst 33342 

nuclear stain (blue). Error bars represent mean ± SD.
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Figure 6. Proposed model for the leptin-mediated induction of aromatase in ASCs via the p53-
HIF1α/PKM2 axis in obesity
Leptin stimulates PKC translocation to the plasma membrane and ERK1/2 activity, leading 

to a decrease in p53 levels. p53 has been shown to act as a transcriptional repressor of Aha1 

and aromatase in breast ASCs. Loss of p53 leads to an increase in Aha1 expression and 

Hsp90 ATPase activity that results in the stabilization of HIF1α and PKM2. HIF1α and 

PKM2 have been shown to bind to aromatase promoter PII and increase transcriptional 

activity. The resultant increase in aromatase expression is hypothesized to drive estrogen 

production and breast cancer formation and growth in obese women.
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