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A B S T R A C T

The tumor microenvironment is complex with the cancer stem cell (CSC) as a member within its community.
This population possesses the capacity to self-renew and to cause cellular heterogeneity of the tumor. CSCs are
resistant to conventional anti-proliferative drugs. In order to be curative, it is imperative that CSCs must be
eliminated by cancer therapy. A variety of dietary phytochemicals and repositioned drugs can act synergistically
with conventional anti-cancer agents. In this review, we advocate the development of a novel approach, namely
combination therapy by incorporating both phytochemicals and repositioned drugs to target CSCs. We cover
select dietary phytochemicals (curcumin, resveratrol, EGCG, genistein) and repurposed drugs (metformin, ni-
closamide, thioridazine, chloroquine). Five of the eight (curcumin, resveratrol, EGCG, genistein, metformin) are
listed in “The Halifax Project”, that explores “the concept of a low-toxicity ‘broad-spectrum’ therapeutic ap-
proach that could simultaneously target many key pathways and mechanisms” [1]. For these compounds, we
discuss their mechanisms of action, in which models their anti-CSC activities were identified, as well as ad-
vantages, challenges and potentials of combination therapy.

1. Introduction to cancer and phytochemical-drug pairing

In the course of its lifespan, a somatic cell undergoes changes in
genome and epigenome due to intrinsic (cell-developmental) and ex-
trinsic (environmental) factors. When accumulated changes disrupt its
regulation of cell growth and death, the resulting uncharted growth
leads to cancer. Carcinogenesis is a multi-step process: initiation, pro-
motion, progression and metastasis. The “hallmarks of cancer” denote
alterations in cancer cell physiology [2]. Indeed, only a very limited
number of genes (140 or so), covering a dozen signaling pathways on
the processes of cell fate, cell survival and genome maintenance, are
relevant and designated as “driver” mutations [3]. Histologically, a
tumor is heterogeneous, consisting of cancer cells at various stages of
differentiation, as well as other cell types (fibroblasts, immune cells,
endothelial cells). These cells behave as members of a community; the
tumor microenvironment (niche) is a complex interactive network [4].

Cancer stem cell (CSC) is the cell within a tumor that possesses the
dual capacity to self-renew and cause the heterogeneous lineages of
cancer cells that comprise the tumor [5]. Conventional chemotherapy
targets the bulk of proliferating cancer cells. Examples are paclitaxel for
several cancer types and imatinib (tyrosine kinase inhibitor) for chronic

myelogenous leukemia (CML). However, CSCs are resistant to these
anti-cancer drugs [6]. A curative cancer therapy must acknowledge CSC
plasticity and their complete elimination.

Many CSC-targeting dietary phytochemicals can act synergistically
with conventional anti-cancer agents. Recently, investigators dis-
covered CSC-targeting repurposed drugs [7]. We advocate here a novel
approach: combination therapy with the pairing of CSC-targeting phy-
tochemicals and repositioned drugs. Our interest in ovarian cancer led
us to phytochemical-drug combinations [8,9]. Anti-cancer studies have
demonstrated benefits of specific phytochemical combinations over
individual compounds [10]. Dietary phytochemicals and repositioned
drugs should provide easier access towards clinical use, because of the
former's “Generally Regarded as Safe” (GRAS) status and the latter's
prior Food and Drug Administration (FDA) approval. This innovative
approach is advantageous: both compounds target CSCs, an activity
insurmountable by current anti-cancer agents.

For CSC targeting, we recommend four dietary phytochemicals
(curcumin, resveratrol, EGCG, genistein) and four repurposed drugs
(metformin, niclosamide, thioridazine, chloroquine). (See Fig. 1 for
molecular structure.) These eight are selected based on literature survey
and our own experience. In our view they are the most promising for
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applications of CSC-targeting phytochemical-drug combinations. Fur-
thermore, five (curcumin, resveratrol, EGCG, genistein, metformin) are
listed by an international task force of 180 clinicians and scientists of
“The Halifax Project”, with dedicated objective to “explore the concept
of a low-toxicity ‘broad-spectrum’ therapeutic approach that could si-
multaneously target many key pathways and mechanisms” for cancer
treatment [1]. Block et al. (2015) stated: “among approaches, cur-
cumin, genistein, resveratrol and EGCG boast a wealth of fundamental
research” [1]. (We are aware investigators may disagree with our se-
lection of phytochemicals; others will also be cited.) All eight have ef-
ficacy, are low cost and free of intellectual property constraints. These
attributes make sure the combinations can be widely affordable, and
are economical compared to current chemo- and targeted therapies.

Different from conventional anti-cancer drugs with unique mole-
cular targets, dietary phytochemicals and repurposed drugs are

pleiotropic. Each has a multitude of cellular targets (as shown later in
compound description). Multilateral targeting of molecular and cellular
pathways will inhibit CSC growth or induce CSC differentiation, and
hinder the CSC's ability to develop resistance. In this case, “promiscuous
drugs” is a virtue; “dirty” might be better [11,12]. A phytochemical-
drug combination is advantageous for synergistic effects. Such pairing
allows lower effective doses than using a single compound for activity.
Lower doses mean less potential toxicity and fewer side effects. For a
particular cancer, various combinations can be explored to look for the
ideal pair at optimal doses. For clinical use, the combination can be
used alone (if both CSCs and bulk cancer cells are eliminated), or as
adjuvant to conventional cancer therapy (the combination targets CSCs
and conventional therapy eliminates the bulk cancer cells).

If the approach of CSC-targeting dietary phytochemical-reposi-
tioned drug combination is important, what are the reasons for its being

Fig. 1. Chemical structures of selected phytochemicals and drugs.
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overlooked? The gap in knowledge exists because cancer investigators
in different areas may not be familiar with contributions of each other.
Phytochemicals for cancer chemoprevention and therapy have a long
history; current interests extend to CSCs. On the other hand, drug re-
purposing, especially regarding CSC-targeting, is new. Pairings of
dietary phytochemicals or repurposed drugs with cancer chemother-
apeutics have been around, but we propose the pairing of CSC-targeting
dietary phytochemicals and repurposed drugs. This novel combination
is an innovative concept worthy of promotion.

To present a more comprehensive picture, we start with con-
siderations to CSC methodologies on which various observations were
made, in the “evolving concept” of CSC [13,14]. We follow with com-
pound description, and end with challenges and the need of applying
CSC-targeting phytochemical-drug combinations in the current climate
of cancer therapy.

2. Identification and drug resistance of cancer stem cells

Human CSCs were first discovered in leukemia and then char-
acterized in solid tumors. Utilizing an array of mechanisms, CSCs are
insensitive to conventional cancer treatments, but these mechanisms
can be targets of phytochemicals and drugs (as described later)
[15–19]. (See Fig. 2 for key mechanisms of CSC resistance to therapy.)
CSCs may be quiescent and exhibit a slow proliferating nature. They
may possess an efficient DNA repair system, activated by genomic in-
stability and regulated by epigenetic modifications via histone deace-
tylases. Pro-survival signaling pathways may be activated (Hedgehog,
Wnt, Notch, PI3K, NFκB). CSCs may have high levels of anti-apoptotic
molecules. For drug resistance, both the activation of drug transporters,
with high level expression of ATP-binding cassette (ABC) membrane
transporters for drug efflux, and the enzyme aldehyde dehydrogenase
(ALDH), for drug metabolic activities, have been detected. In addition,

their niche has less reactive oxygen species (ROS), thus less susceptible
to radiation therapy.

One notable CSC-associated feature is epithelial-mesenchymal
transition (EMT), a process when epithelial cells lose polarity and be-
come less adhesive [20]. With these changes the cells become invasive,
migratory and mesenchymal-like with “stemness” properties. The pro-
cess involves the activation of transcription factors (Snail, Twist) and
change in marker proteins (E-to N-cadherin). First seen in embry-
ogenesis, EMT has been viewed as reappearance of embryonic features
in cancer cells. The process is reversible and has been linked to CSCs for
tumor heterogeneity and metastasis. EMT involvement with CSCs is
under active research [21].

CSCs can be identified by in vitro and in vivo methods. They are
isolated via fluorescence-activated cell sorting (FACS) by their surface
antigens or detoxification capacity. CSCs express identifying cell surface
antigens, for example, ovarian CSCs express CD133 (prominin-1); these
molecules can serve as biomarkers allowing their isolation by FACS.
ALDH is a detoxification enzyme that oxidizes aldehydes to carboxylic
acids, for further metabolism or excretion via the liver. Its activity has
been utilized for CSC selection by FACS, using a fluorescent substrate
(ALDEFLUOR) [22]. The “side population” (SP) assay identifies CSCs
apart from the main population of cancer cells in flow cytometry, by
their fast expulsion of a fluorescent dye (Hoechst 33342). However, cell
surface markers for CSC selection are also present in normal stem cells
and other cell types, they are not unique to CSCs [6]. Both SP and ALDH
selections were originally developed for hematopoietic stem cells
(HSCs) and then adapted to CSCs.

Spheroid culture is another method for identifying CSCs. A cancer
cell (transformed due to mutations) exhibits anchorage independence, a
characteristic allowing it to form a cell colony in the absence of sub-
stratum, as shown by soft agar colony formation assay (normal cells die
in the absence of attachment via the process of anoikis). For serum-free

Fig. 2. Key mechanisms of cancer stem cell resistance to therapy.
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spheroid cultures (spheres), cancer cells grow as spheroids in suspen-
sion (in untreated plastic ware) when provided with specific growth
factors (insulin, epidermal growth factor, basic fibroblast growth
factor), unlike ordinary tissue culture where cells usually grow as a
monolayer (with fetal bovine serum for growth factors and other
components). Spheroids mimic the three-dimensional nature of tumors
with limited oxygen available to the internal cells. This hypoxic con-
dition favors expression of pluripotency maintaining transcription fac-
tors, thus promoting the differentiation to CSCs and facilitating the
state of “stemness” [6]. Spheroids can form secondary and tertiary
spheres in subsequent cultures. CSCs known as “neoplastic sphere-
forming cells” are measured by enumerating secondary spheres gener-
ated when re-plating the spheres, based on the assumption that the
secondary spheres are clones [23]. The technique of spheroid culture
was originally developed for neurobiology and then adapted to CSCs
[24].

Apart from in vitro methods, the “gold standard” for CSC is “neo-
plasia-initiating cells” that regenerate detectable neoplastic populations
as xenografts in immunodeficient mice in vivo [23]. CSCs, isolated from
either a fresh tumor or an established cell line, are transplanted to in-
itiate tumor growth in immunocompromised recipient animals. Dif-
ferent models are available: athymic nude mice, non-obese diabetic/
severe combined immunodeficiency (NOD/SCID) mice, and NOD/SCID
interleukin-2 receptor gamma chain null (Il2rg−/−) (NSG) mice. The
abundance of CSCs in a tumor sample can be estimated as the xeno-
transplantation yield, which confirms the presence of CSCs by limiting
dilution analysis [6].

Many compounds (natural, natural-derived, synthetic) have been
reported as CSC-targeting [19,25,26]. Two strategies are available for
compound identification: a pathway-specific approach and a general
high throughput, mass screening approach. The first yielded cyclopa-
mine from the plant corn lily Veratrum californicum; it targets glio-
blastoma CSCs via the Hedgehog pathway but can act as a teratogen
that causes cyclopia. The second yielded salinomycin from the bac-
terium Streptomyces albus; it is toxic to humans so its use is confined to
the poultry industry, as a coccidiostat for treating a parasitic protozoan
disease [6]. For clinical uses, medicinal chemists must modify to re-
move teratogenicity or toxicity. Identified compounds must target only
CSCs and not normal stem cells. Even though CSCs differ from the bulk
cancer cells, they may share gene expression and signaling pathways
with normal stem cells. CSC-targeting phytochemicals and drugs are
discussed in the following sections.

3. Targeting of cancer stem cells with dietary phytochemicals

Dietary phytochemicals have advantages over other compounds
[27]: (1) they usually have very low or no toxicity, in contrast to most
chemotherapeutic drugs; (2) they are present in commonly consumed
food that is readily available to most people in daily life; (3) they have
shown potential as adjuvants to chemotherapy. Originally, they were
studied for cancer chemo-prevention [28]. As initiation (chemopre-
vention) and growth (cancer chemotherapy) may share common mo-
lecular mechanisms, they were applied to cancer therapy. Furthermore,
phytochemicals can overcome drug resistance in ovarian and other
cancers [29]. They act on genes and non-coding gene regulatory
pathways (microRNA) [30]. Most importantly, phytochemicals target
CSCs [31–36]. Commenting on CSCs and dietary phytochemicals, Kim
et al. (2012) wrote: “a diet-induced shift from deregulation to regula-
tion in cancer stem cells could have profound influence on cancer re-
lapses and therefore is of immense societal importance” [36]. Instead of
diet, here we propose the use of CSC-targeting phytochemical-drug
combinations for cancer therapy.

Our laboratories have been studying the phytochemicals curcumin,
quercetin and EGCG. These polyphenols act synergistically with cis-
platin (conventional anti-cancer drug) in growth inhibition of drug-
resistant ovarian cancer cell lines [8,9]. These compounds are active

against CSCs in vitro, as well as against cancer and other diseases in
animal models. Some are in clinical trials, though to date none has been
approved for cancer treatment. Here, we discuss four CSC-targeting
phytochemicals: curcumin, resveratrol, EGCG and genistein. (See
Table 1 for select cancer clinical trials of the four phytochemicals, from
https://clinicaltrials.gov/.)

3.1. Curcumin

Curcumin, a diferuloylmethane, is the biological principle from the
Indian spice turmeric that gives curry powder the yellow color.
Turmeric is produced from rhizome of the plant Curcuma longa; it has
multiple utilities and health benefits in traditional Indian medicine
(from insect bites to wound healing). A widely studied property of
curcumin is anti-inflammation. Curcumin inhibits many pro-in-
flammatory gene products, including enzymes (inducible nitric oxide
synthase, iNOS), transcription factors (nuclear factor kappa B, NFκB),
cytokines (tumor necrosis factor, TNFα) and chemokines (interleukin-8,
IL-8) [6]. Using the lipopolysaccharide (LPS)-induced murine sepsis
model, we reported curcumin ingestion by gavage down-regulated
iNOS gene expression in the murine liver [37]. Curcumin may sup-
presses carcinogenesis by down-regulating inflammation, which sup-
ports cancer cell survival, proliferation and invasion [2].

Another widely studied anti-cancer property of curcumin is CSC-
targeting [38–42]. (See Table 2 for select cellular targets of phyto-
chemicals and drugs in CSCs.) CSCs that resist conventional anti-cancer
drugs are susceptible to curcumin. Curcumin acts on stem cell signaling
pathways implicated in the process of carcinogenesis, including Wnt,
Notch, Hedgehog, and signal transduction and activator (STAT). For
example, in hepatocellular carcinoma CSCs, Tsai et al. (2015) reported
that curcumin inhibited SP, invasion, EMT and reduced tumor size and
lung metastasis in a nude mice xenograft model. Immunoblots revealed
that the sphingosine 1-phosphate receptor 3 (SIPR3) signaling pathway
was inhibited [43]. In cell culture, Subramaniam et al. (2012) reported
that curcumin-induced apoptosis of esophageal cancer cells and de-
creased esophageal CSC spheroid size and number. The molecular
mechanism was inhibition of the Notch pathway, seen as a decrease in
RNA and protein expression of γ secretase, Notch-1 protein and its li-
gand Jaggard-1 [44]. The investigators also found down-regulated on-
comir miRNA (miR-21, miR-34a) and up-regulated tumor suppressor
miRNA (let-7a miRNA) in the curcumin-treated esophageal CSC
spheroids. Similar to the esophageal example, for colorectal CSCs, Ra-
masamy et al. (2015) reported curcumin-induced epigenetic modifica-
tions, including the methylation of epidermal growth factor receptor
(EGFR) promoter, expression of microRNA oncomirs relevant to me-
tastasis (for EMT), as well as suppression of CSC markers (CD133,
ALDH+) [42]. Thus, curcumin modifies epigenetically by inducing
specific methylation changes and regulating microRNA expression.
Huminiecki et al. (2017) have reviewed the functional genomic studies
of curcumin from microarray, methylation array, microRNA array to
RNA-seq and concluded that curcumin has “powerful effects” on gene
expression, including “genes involved in cell signaling, apoptosis, and
the control of cell cycle” [45].

Curcumin can induce CSC differentiation [41]. Zhuang et al. (2012)
reported that curcumin promoted differentiation of glioma CSCs and
induced autophagy, using immunofluorescence to show decrease in
stemness markers (CD133) and increase in differentiation markers (βIII
tubulin) [46].

Curcumin can alter chemo-sensitivity. It synergizes with conven-
tional drugs and has specificity for CSCs. In vitro, curcumin enhanced
cisplatin effects on non-small cell lung CSC [47]. We found that cur-
cumin (5 μM daily for 10 days via medium change) reduced SP of the
C6 rat glioma cells, possibly via inhibition of the drug transporter [48].
In vivo, curcumin enhanced paclitaxel effects on brain tumor CSCs; it
sensitized breast CSCs to mitomycin C in a nude mice xenograft model
[49].
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Several reasons have been proposed to explain the CSC-specific
action and low adversity towards normal stem cells [41]. Curcumin
uptake may be greater in CSCs, and curcumin may target the CSC mi-
croenvironment which obviously differs from those of normal stem
cells. For example, Buhrmann et al. (2014) reported that curcumin
sensitized colorectal CSCs towards fluorouracil (5-FU) and suppressed
the crosstalk between CSCs and stromal fibroblasts in the tumor niche,
using co-culture and assaying EMT markers by immunoblotting [50].

3.2. Resveratrol

Resveratrol is a stilbene (3,4′,5-tri-hydroxy-trans-stilbene) from
grapes, peanuts and pine nuts, and is present in red, but not white, wine
because it is associated with the skin of grapes. It is a pleiotropic agent
with multiple cellular targets. For example, it inhibits the mammalian
target of rapamycin (mTOR) pathways and cyclooxygenase (COX) en-
zymes to play roles in inflammatory diseases, diabetes, obesity, cardi-
ovascular diseases, neurological disorders and cancer [51–53]. Re-
sveratrol also activates AMP-activated protein kinase (AMPK, a key
nutrient sensor) and sirtuin deacetylases, leading to lifespan extension
in yeasts, nematodes, fruit flies, fish and obese mice (but not normal
mice) [54]. It retards the ageing process in mammals, similar to caloric
restriction. Furthermore, resveratrol is a phytoalexin (compound pro-
duced by plants against pathogens, such as fungal infections to the
grape plant) and we found this property can be harnessed for inhibiting
the growth of human cutaneous fungal species, thus potentially useful
for tinea (ringworm, athlete's foot) [55].

In cancer, resveratrol can target CSCs. Park and Pezzuto (2015)
have reviewed the molecular alterations resulting from resveratrol in-
tervention in different breast, prostate, lung and colorectal cancer
models [51]. The general approach in these studies is to isolate the
CSCs, assay the effects of resveratrol in vitro and in vivo (comparing
CSCs with the bulk cancer cells) and determine which molecular me-
chanisms are modulated. For example, Fu et al. (2014) reported re-
sveratrol cytotoxicity to breast CSCs in vitro [56]. Mechanistically,

immunofluorescence and immunoblot of microtubule-associated pro-
tein light chain 3 (LC3) and β catenin proteins showed that it induced
autophagy and suppressed the Wnt pathway. Resveratrol also inhibited
spheroid formation, decreased ALDH+ cells and decreased tumor size
in murine xenografts. Shankar et al. (2011) reported resveratrol in-
hibited pancreatic CSC spheroid formation via the induction of apop-
tosis, inhibition of mRNA expression of the pluripotency maintenance
transcription factors (Oct 4, Nanog), as well as interference with EMT
[57]. Similar inhibition was also observed in a transgenic mouse model
of pancreatic ductal adenocarcinoma. With glioblastoma multiforme,
Yang et al. (2012) found that CSCs pre-treated with resveratrol in vitro
were less tumorigenic, as the xenografted SCID mice survive better than
the untreated counterpart [58]. The investigators also performed mi-
croarray analyses and shRNA confirmation to compare the effects of
resveratrol on CSCs (CD133+) and non-CSCs (CD133-). Resveratrol
inhibited “stemness” gene expression and induced CSC differentiation
via suppression of the STAT3 pathway.

Resveratrol, like curcumin, can be CSC-specific and spare the
normal stem cells. Pandey et al. (2011) reported that resveratrol
blocked gene expression of fatty acid synthase and inhibited breast CSC
growth, but the enzyme in normal human mammary epithelial cells was
not susceptible [59]. Fu et al. (2014) reported resveratrol was cytotoxic
to breast CSCs but not normal breast epithelial cells [56]. Similarly,
Sayd et al. (2014) reported that resveratrol blocked enzymatic induc-
tion of sirtuin activity and inhibited the growth of glioma CSCs, but had
no effect on normal neural stem cells (from fetal brains) [60].

3.3. EGCG

Epigallocatechin gallate (EGCG), a polyphenol (flavone-3-ol) from
the plant Camellia sinensis, is the major component in green tea. Its
many health benefits include cancer chemoprevention and treatment,
reduction of atherosclerosis, hypercholesterolemia, Alzheimer's and
other ageing-related diseases. Before CSCs, EGCG was first studied for
its effect on normal stem cells. Chen et al. (2003) reported tea

Table 2
Select cellular targets for dietary phytochemicals and repositioned drugs in cancer stem cells (CSCs).

Phytochemicals Drugs

Curcumin Resveratrol EGCG Genistein Metformin Niclosamide Thioridazine Chloroquine

Signaling pathway
Hedgehog + + + +
Wnt + + + + +
Notch + + + + +
Kinases + + + + + + +

Inflammation
NFκB + + + + + +
IL-6 + +
STAT 3 + + + + + +

Epigenetics
Micro RNA + + +
SIRTUIN + +

Drug resistance
Efflux + + + +
ALDH + +

Metabolism
AMPK + + + +
ROS + + + +

No Anchorage
Spheroids + + + + + + + +

EMT + + + + +
Metastasis + + +
Apoptosis + + + + + + +
Autophagy + + + + +
Differentiation + + + + +
Drug Synergy + + + + + + +

Information adapted from reviews [6, 7, 41, 52, 78, 91, 105] and additional references cited in text. A Plus sign indicates effect of the compound on a particular
cellular target or pathway or process.
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components, including EGCG, inhibited normal rat neurosphere adhe-
sion and migration [61]. EGCG has pleiotropic activity on multiple
cellular targets, both genetic and epigenetic (including DNA methyl-
transferase, NFκB, AMPK signaling pathway) [62–64]. It can act on its
target with very impressive sensitivity, KD of 39.9 nM for the 67 Kd
laminin receptor [65].

In cancer, EGCG can target CSCs. It inhibited ALDH activity,
spheroid formation, and expression of “stemness” genes (Oct 4 and
Nanog) in human neuroblastoma CSCs [66]. Similar results were ob-
served in breast CSCs. EGCG treatment significantly decreased the ex-
pression of Nanog, the number of ALDH+ cells, and the tumor volume
in mouse xenografts [67]. Furthermore, Chen et al. (2017) reported
EGCG inhibited the spheroid formation of colorectal CSCs, the me-
chanism being inhibition of the Wnt pathway, as shown by a decrease in
β catenin in immunoblot [68].

EGCG works in combination with other phytochemicals and con-
ventional drugs to enhance anti-cancer effects, targeting bulk cancer
cells and CSCs [69]. It synergized with quercetin to decrease spheroids,
inhibited activation of EMT and increased apoptosis in prostate CSCs
[70]. It synergized with temozolomide to decrease spheroids and P-
glycoprotein synthesis in glioma CSCs [71]. We found that EGCG acted
synergistically with cisplatin to inhibit the cisplatin-resistant ovarian
cancer cell line C200 in cell culture [9]. In vivo, the EGCG and cisplatin
combination decreased tumor formation in xenografts of head and
neck, and nasopharyngeal CSCs [72,73]. It induced chemo-sensitivity to
cisplatin by enhancing apoptosis and inhibiting the phosphorylation of
STAT3 in nasopharyngeal CSCs [74]. These findings suggest its use as
an adjuvant in cancer therapy [75].

3.4. Genistein

Genistein, an isoflavone (4,5,7-trihydroxyisoflavone) from the le-
gume plant Glycine max, is found in soybeans. It has been classified as a
phytoestrogen because it binds estrogen receptor. Genistein is the active
ingredient in soy-rich food that contributes to the lower rates of pros-
tate and breast cancers in China and Japan, as compared to Western
countries. Besides as anti-cancer agent, genistein has other health
benefits, including osteoporosis, heart diseases and cognition [76–79].

Genistein has multiple cellular targets and acts on a spectrum of
protein tyrosine kinases and DNA topoisomerase II. It targets CSCs in
solid tumors. Huang et al. (2014) reported genistein inhibited spher-
oids, “stemness” (Oct 4 and Nanog gene expression) and reduced xe-
nograft tumor volume of gastric CSCs [80]. Genistein also inhibited
drug transporter and extracellular signal-regulated kinase (ERK)
pathway in these CSCs. In both breast and prostate CSCs, genistein
down-regulated the Hedgehog pathway (reducing Gli 1 gene expres-
sion) and decreased spheroid formation in cell culture and tumor vo-
lume in xenografts [81,82]. In chronic myelogenous leukemia (CML),
genistein reduced the leukemic progenitor cells by inhibiting expression
of the tyrosine kinase coded from the breakpoint cluster region/Abelson
murine leukemia viral oncogene homolog (BCR/ABL) fusion gene [83].
However, as a protein tyrosine kinase inhibitor, genistein targets both
leukemic stem cells and normal stem cells.

Genistein acts synergistically with conventional anti-cancer agents;
it also targets the CSC microenvironment. It overcame docetaxel re-
sistance, and decreased the tumor size of docetaxel-resistant prostate
CSCs (than either compound administered separately) [82]. Breast
adipose tissue contributes to breast cancer development. Montales et al.
(2013) found that genistein acted on the CSC niche and inhibited the
differentiation of mammary stromal fibroblast-like cells to adipocytes
[84]. The mechanism was inhibition of PPARγ and fatty acid synthase
gene expression. Interestingly, the investigators discovered genistein's
biphasic effect, only seen in low dose (40 nM) but not high dose (2 μM).
Montales et al. (2012) also found the effect of genistein to be trans-
ferrable [85]. When fed to mice at concentrations present in soy protein
isolate (250mg/kg food), their sera could inhibit the spheroid

formation of human breast CSCs when added at 1–5% in cell culture.
This suggests the presence of “CSC inhibiting factors” in the circulation
after genistein consumption. Furthermore, genistein has transgenera-
tional effect. Maternal dietary supplementation with genistein leads to
DNA hyper-methylation in the embryo, and this methylation state is
maintained until adulthood. The color change in the fur of genistein-fed
agouti mice indicates an epigenetic biosensor for nutritional and en-
vironmental alterations on the fetal genome. Phytochemicals such as
genistein modify the epigenome and the effect starts early in embry-
ogenesis [86].

4. Targeting of cancer stem cells with repositioned drugs

FDA-approved small-molecule drugs for some diseases/disorders
have been shown to target CSCs by the process of drug repurposing. The
NIH National Center for Advancing Translational Sciences (NCATS)
defines: “Repurposing generally refers to studying drugs that are al-
ready approved to treat one disease or condition to see if they are safe
and effective for treating other diseases”. The rationale is to expedite
drug discovery. NCAT estimates 14 years for a new drug development.
Therefore, the strategy is “to reduce this time frame, decrease costs and
improve success rates …. Many agents approved for other uses already
have been tested in humans, so detailed information is available on
their pharmacology, formulation and potential toxicity. Because re-
purposing builds upon previous research and development efforts, new
candidate therapies could be ready for clinical trials quickly …”
(https://ncats.nih.gov/preclinical/repurpose#learn-more). Drug re-
purposing, also known as drug repositioning, drug re-tasking, drug re-
profiling or therapeutic switching, is a way to obtain fast and cost-ef-
ficient drug discovery, since this strategy effectively enables the pre-
clinical studies to be bypassed. Resources (DRUGSURV, Drug
Repurposing Hub) are available for this “new tricks for old drugs”
[7,87–89]. Investigators can perform experimentation in silico, in vitro
or in vivo in search for new targets of existing drugs. For CSCs, drug
libraries are screened in assays of CSC inhibition, as shown below for
niclosamide and thioridazine. Here, we discuss four CSC-targeting
drugs: metformin, niclosamide, thioridazine and chloroquine.

4.1. Metformin

Probably the most promising discovery is metformin, a synthetic
biguanide derived from the herb French lily (Galega officianalis) [90]. It
is an inexpensive and long-approved drug for type 2 diabetes, pre-
scribed to an estimated 150 million individuals worldwide. It modulates
energy metabolism by targeting AMPK and other AMPK-independent
effects. Besides diabetes, metformin has been shown to be applicable to
cardiovascular and neurodegenerative diseases [91–95]. It is in a clin-
ical trial for longevity and ageing [96].

Metformin was explored for CSC-targeting because it targets mul-
tiple signaling pathways (Wnt, AMPK, NFκB) [93,95]. Metformin has
been used in combination therapy. For example, it synergized with the
conventional combination of 5-fluorouracil (5-FU), epirubicin and cy-
clophosphamide (FEC chemotherapy) in inhibiting breast CSCs derived
from spheroids [97]. It enhanced the effect of denosumab, an antibody
against RANKL (receptor activator of NFκB ligand, a cytokine), in in-
hibiting breast CSC spheroids [98]. It enhanced the sensitivity of pan-
creatic CSCs to gemcitabine in vivo, significantly reducing the tumor
volume in murine xenografts [99]. When given in combination, met-
formin and doxorubicin showed the advantage of targeting both breast
CSCs and non-stem cancer cells, by reducing the overall tumor growth
and tumor remission in nude mice [100]. Synergy was found with pa-
clitaxel and carboplatin in prostate and lung CSCs murine xenografts
[101]. For phytochemicals, Montales et al. (2015) reported that met-
formin and genistein targeted colon CSC spheroid formation and pro-
liferation, and the combination increased the effectiveness of 5-FU
[102]. Ning et al. (2016) reported that both curcumin and metformin
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individually inhibited pancreatic CSC spheroids [103], the two com-
pounds should be tested as a combination. These examples suggest a
combinational strategy for metformin to target CSCs and cancers [104].

4.2. Niclosamide

The next most promising existing drug is niclosamide, an anthel-
minthic against tapeworms [105]. It is also active against viruses (se-
vere acute respiratory syndrome, SARS virus), possibly because it
blocks proton carriers. Niclosamide was explored for CSC-targeting
based on the general association that a developmental stage of tape-
worm, the metacestode, resembles cancer in having uncontrolled pro-
liferation, invasion and metastasis, and can be difficult to kill without
collateral damage to the surrounding host tissues [106].

Niclosamide can block multiple CSC signaling pathways, including
Wnt, Notch, STAT3 and NFκB [107]. Wieland et al. (2013) selected
niclosamide as the lead for glioblastoma targeting after screening the
160 member Killer Plate compound library [108]. Simultaneous in-
hibition of multiple pathways (Wnt, Notch, mTOR, NFκB) was indicated
when niclosamide pretreatment inhibited glioblastoma xenograft de-
velopment in nude mice. From 1258 drugs in the LOPAC chemical li-
brary, Wang et al. (2013) [109] and Yo et al. (2012) [110] selected
niclosamide for its inhibition of breast and ovarian CSCs, respectively.
Niclosamide inhibited spheroid formation and reduced tumor volume
of xenografts in NOD/SCID mice. It acted on cisplatin-resistant ovarian
CSCs. Spheroids from patient-derived CD133+ and ALDH+ ovarian
cancer were susceptible to niclosamide, with inhibition of the Wnt
pathway (shown by β catenin immunoblot) [111]. Furthermore, it
complements platinum drugs. Niclosamide in combination with car-
boplatin inhibited primary ovarian CSCs [111] and in combination with
cisplatin inhibited breast CSC spheroid formation and reduced tumor
size of xenografts in nude mice [112].

4.3. Thioridazine

Thioridazine, a phenothiazine, is dopamine receptor antagonist
originally prescribed as an anti-psychotic drug for schizophrenia in the
1960s. Withdrawn by Norvatis in 2005 due to cardiac side effects, the
generic version is still available. Interest in thioridazine has recently
been revived as anti-microbial against methicillin-resistant
Staphylococcus aureus (MRSA) and multidrug-resistant Mycobacterium
tuberculosis [113].

Thioridazine targets CSCs. It can inhibit CSCs from a spectrum of
origins: myeloid leukemia, glioblastoma, lung, liver, ovarian and breast
cancers [114–118]. It inhibits CSC spheroid formation and induces
apoptosis in vitro, and the treated cells show reduced xenograft tumor
volume in mice. Sachlos et al. (2012) selected thioridazine in their
screening for acute myeloid leukemia (AML) CSC-specific but not
normal pluripotent stem cell-reactive molecules from 590 compounds
of the NIH Clinical Collection and Canadian Collection [119]. Thior-
idazine was found to induce AML differentiation; it also synergized with
cytosine arabinoside (cytarabine, AraC) in AML CSC killing. In glio-
blastoma CSCs, it induced autophagy (seen as expression of biomarker
LC3) [114]. In lung, hepatoma and breast CSCs, it induced apoptosis in
association with activation of caspases, inhibition of “stemness” gene
expression (Oct4, CD133), and inhibition of the mTOR pathway, re-
spectively [115–117]. Synergy with conventional drug has been shown:
thioridazine was co-delivered with doxorubicin in mixed polymeric
micelles to target both breast CSCs and bulk cancer cells [118]. We
found that thioridazine and curcumin may act synergistically in in-
hibiting spheroids from ovarian cancer cells, with the combination
more effective than either compound alone. (See Fig. 3 for inhibition of
spheroids by thioridazine and curcumin).

4.4. Chloroquine

Chloroquine, a 4-aminoquinoline, is an anti-malarial [120]. First
discovered in 1936 b y Hans Andersag at Bayer, it was ignored until
rediscovery by US Army during World War II. Highly effective and well
tolerated, chloroquine remains the drug of choice for malaria. Its ac-
cumulation within lysosomes raises organelles' pH and inhibits lyso-
somal function in the malaria parasite. Chloroquine is also used for
immunosuppression in rheumatoid arthritis.

Chloroquine, either independently or in combination with conven-
tional drugs, has efficacy against several cancers. It inhibits CSCs from a
spectrum of origins: glioma, liver, pancreatic, urothelial, ovarian and
breast cancer [121–128]. It inhibits autophagy and spheroid formation;
it induces CSC apoptosis. These effects have been demonstrated in
primary glioma CSCs, CD133+ liver CSCs enriched by deprivation of
oxygen and nutrients, pancreatic CSCs, urothelial carcinoma CSCs, and
breast CSCs.

The CSC-targeting chloroquine shows synergistic effects with con-
ventional therapy [127]. It sensitizes radiation and chemotherapeutic
agents in cancer [91,120]. For example, chloroquine increased the cy-
totoxicity of gemcitabine-mitomycin combination against urothelial
carcinoma CSCs [124]. It synergized with gemcitabine to decrease
tumor volume in pancreatic CSC xenografts [123], and with carboplatin
in breast CSC xenografts [126].

5. Additional CSC-targeting phytochemicals and repurposed drugs

We discuss four phytochemicals and four drugs that target CSCs,
and view them as the most promising for a novel approach of phyto-
chemical-drug combination. There are others.

Exploring CSC-targeting phytochemicals is a growing field. Other
dietary phytochemicals include quercetin, a flavonol found in common
fruits and vegetables such as apples, cranberries and onions; sulfor-
aphane, an isothiocyanate found in cruciferous such as broccoli, cau-
liflower and kale; indole-3-carbinol, another compound from cruci-
ferous vegetables; and cucurbitacin I, from cucumber. Non-dietary
phytochemicals include parthenolide from herbal medicine feverfew
plant (Tanacetum parthenium), celastrol from traditional Chinese medi-
cine thunder god vine (Tripterygium wilfordii), berberine from herbal
medical plant Chinese goldthread (Coptis chinensis), oxymatrine from
Chinese herbal medical plant Sophora flavescens, silybin (silibinin) from
milk thistle (Silybum marianum), and gossypol from cotton plant (genus
Gossypium) [6].

Similarly, the list of CSC-targeting existing drugs is expanding.
Other repurposed drugs include anti-allergy drug tranilast, cholesterol-
lowering statins (simvastatin and lovastatin), and anti-alcoholism drug
disulfiram [6,19,25,128,129]. We anticipate more to come.

6. Challenges on CSC-targeting phytochemical-drug combinations

For challenges we start with the safety issue. With GRAS status
dietary phytochemicals are apparently safe. For example, when cur-
cumin was given to cancer patients at 3600mg/day for 4 months, only
minor adverse effects were observed. Daily oral doses of EGCG, for
4 weeks at 800mg/day in 40 volunteers, caused only minor adverse
effects. A single oral dose of resveratrol at 5 g in 10 volunteers caused
only minor adverse effects [6]. With prior FDA approval, repurposed
drugs are also presumably safe. Although individual compounds are
safe, for the selected synergistic CSC-targeting phytochemical-drug
combination, pharmacokinetics and pharmacodynamics features, toxi-
city profiles, are still needed because this information is lacking. Cur-
rent clinical trials may yield useful data. (See Table 1 for phytochemical
clinical trials.)

Molecular targets of phytochemicals are under scrutiny. Recent
findings suggest that promiscuity (multiple targets) results from per-
turbation of cellular membranes, leading to alteration of multiple
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membrane protein functions [130]. This multi-target nature of poly-
phenolic phytochemicals hamper therapeutic development because, in
high throughput drug screening assays, phytochemicals (including
curcumin, resveratrol, EGCG and genistein) are known as “pan-assay
interference compounds” (PAINS) and “invalid metabolic panaceas”
(IMPs) for their non-specific inhibitions [131–133]. Whereas there may
be truth to the designation, the fact that phytochemicals (such as cur-
cumin) will cause global changes in gene expression shows there are
more than mere non-specific protein interactions [45]. Nonetheless,
multi-target interactions, specific or non-specific, at the protein or nu-
cleic acid level, will be a plus in CSC-targeting as long as normal stem
cells are spared.

Additional concerns are phytochemical bioavailability in vivo and
product quality. For some polyphenolic compounds, effects in vivo,
although significant, are less prominent than ones observed in vitro
[134]. The bioavailability issue has been addressed with enhancing
compounds, such as piperine from the spice black pepper (Piper nigrum),
which amplifies the effect of phytochemicals (including curcumin).
Bioavailability can be aided by formulations and special delivery sys-
tems, such as nanoparticles for curcumin and micelles for niclosamide
[38,135–137]. Curcumin is an example which we managed to devise a
measure to enhance bioavailability. By oral gavage to mice on empty
stomach, we demonstrated in vivo effect: curcumin inhibition of the
inflammatory iNOS in murine liver (beneficial outcome) and exacer-
bation of murine visceral leishmaniasis, a protozoan parasitic disease
(detrimental outcome) [37,138]. Another concern is reliability of the
source of phytochemicals. Consistent and unadulterated phytochem-
icals are essential, for example, curcumin as Curcumin C3 Complex
from Sabinsa and EGCG as Polyphenon E from Mitsui Norin (as used in
some clinical trials, see Table 1) [6]. (Repurposed drugs, as synthetic
compounds, do not have this problem.) Yet another approach is the
synthesis of better analogs and derivatives (such as difluorinated-cur-
cumin and various chloroquine analogs), but they are beyond the scope
of this review [32,40,54,120].

Discrepancies in phytochemical research results are another chal-
lenge. Whereas we found curcumin inhibited SP in rat glioma [48], Shi
et al. (2015) found curcumin induced human glioma CSCs [139]. Ka-
karala et al. (2010) reported curcumin inhibited both breast CSCs and
normal human breast stem cells, thus affecting both CSCs and normal
stem cells [140]. These differences can be attributed to variations in

dosage, length of treatment periods, grade and stability of compounds
used, or other experimental conditions [133]. Polyphenolic phyto-
chemicals have antioxidant capacities against reactive oxygen species
(ROS), but under special conditions they exhibit pro-oxidant capacity
[141]. Whereas ROS are harmful in general, the removal of too much
ROS interferes with bodily functions, as seen in the warning presented
by scientists to the food industry [142].

Related to dosage is the concept of hormesis [143], which suggests
the fundamental nature of the dose-response curve is neither linear nor
threshold, but U- or J-shaped. A low dose stimulatory response is the
hormetic effect, representing overcompensation in response to disrup-
tions in homeostasis. A biphasic dose response is observed. At high
concentrations, phytochemicals can be toxic, whereas sub-toxic doses
may induce adaptive stress responses. Hormetic mechanisms of action
have been proposed to underlie many of the health benefits of phyto-
chemicals [6]. Protective effect of resveratrol is only observed in low
dose but not high dose in a mouse colon cancer model [144]. Similar
dose effects are seen in genistein [84].

For repurposed drugs, most research results indicate CSC-targeting,
there are discordance. Sancho et al. (2015) reported metformin-re-
sistant pancreatic CSCs [145] and Xin et al. (2016) reported metformin-
resistant liver CSCs [146]. In these studies, the effective dose of met-
formin is much higher than other drugs or phytochemicals. Moreover,
Asiedu et al. (2018) reported heterogeneity in metformin response in
both patient-derived and cancer cell lines [147]. Chloroquine is “a
double-edged sword of autophagy”, causing severe kidney damage
[148]. Whether it is the compound's pleiotropic nature that leads to
unexpected adverse effects is still unclear. For repurposed drugs, studies
are needed to determine that they can reach the CSC niche [7].

7. Conclusion

Combinational treatment has a long history in cancer che-
motherapy. The first successful example is the treatment of childhood
leukemia with “VAMP”, four drug combination (vincristine, amethop-
terin, 6-mercaptopurine, prednisone) in 1963 [149]. Our approach
continues this tradition. We recommend four phytochemicals (cur-
cumin, resverestrol, EGCG, genistein) and four drugs (metformin, ni-
closamide, thioridazine, chloroquine). This choice is in sync with se-
lections by the Halifax Project, aiming at multi-targeted compounds for

Fig. 3. Inhibition of growth of SKOV3 spheroids in the presence of thioridazine and curcumin at the indicated concentrations after 5 days. Combination was more
effective than either alone.
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cancer prophylaxis and treatment [1]. We advocate a novel approach of
CSC-targeting dietary phytochemical-repurposed drug combinations
and look forward towards clinical applications.

8. Future perspectives

In the United States, cancer drug prices are getting out of hand. The
March 2018 report to President Donald Trump stated: “The President's
Cancer Panel concluded that addressing the dramatic rise of cancer
drug prices must be made a national priority. … Innovative drugs offer
new hope for patients to achieve long-term remissions—even cur-
es—but virtually all new cancer drugs enter the market with a price tag
that exceeds $100,000 per year and, increasingly, much higher”
(https://PresCancerPanel.cancer.gov/report/drugvalue). Instead of
new cancer drugs, the older repurposed drugs in combination with
dietary phytochemicals are inexpensive and may work just as well.

Cancer is a worldwide problem affecting all nations rich and poor.
On this topic, Sullivan et al. (2017) warned: “Treating cancer with the
latest drugs and techniques is costly and will not improve survival
globally” [150]. They asserted: “Cancer is on the rise” and concluded
the focus should be “on building infrastructure, and delivering afford-
able, equitable and effective care”. Our idea of CSC-targeting phyto-
chemical-drug combination fits seamlessly in this scenario as effective
and affordable cancer treatment for the global population.

For World Health Organization (WHO), cancer is non-communic-
able chronic disease, and the increase in cancer is due to an aging po-
pulation and lifestyle changes. There is an urgent need for affordable
cancer treatment. Whether independently administered or in combi-
nation (as adjuvant with current therapy), development of a CSC-tar-
geting dietary phytochemical-repurposed drug combination will be af-
fordable, effective, and low toxicity. Our goal is to increase the
scientific community's awareness and build a momentum towards
conducting well-controlled clinical trials, done under uniform experi-
mental conditions and in a double-blinded manner, to fully validate this
novel combinatorial approach. Since we propose to combine dietary
phytochemicals and repurposed drugs, i.e. non-patentable natural
products and patent-expired older drugs, we envision financial supports
for this endeavor have to come from governmental and philanthropic
resources. The novel approach is ready for action.
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