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Abstract
The intrinsic or mitochondrial apoptosis pathway is controlled by the interaction of antiapoptotic and pro-
apoptotic members of the BCL-2 protein family. Activation of this death pathway plays a crucial role in cancer
progression and chemotherapy responses. The BCL-2-related ovarian killer (BOK) possesses three BCL-2 homology
domains and has been proposed to act in a similar pro-apoptotic pathway as the pro-apoptotic proteins BAX and
BAK. In this study, we showed that stage II and III colorectal cancer patients possessed decreased levels of BOK
protein in their tumours compared to matched normal tissue. BOK protein levels in tumours were also prognostic
of clinical outcome but increased BOK protein levels surprisingly associated with earlier disease recurrence and
reduced overall survival. We found no significant association of BOK protein tumour levels with ER stress markers
GRP78 or GRP94 or with cleaved caspase-3. In contrast, BOK protein levels correlated with Calreticulin. These data
indicate BOK as a prognostic marker in colorectal cancer and suggest that different activities of BOK may
contribute to cancer progression and prognosis.

Introduction
Colorectal cancer (CRC) is a leading cause of cancer-

related mortality. Current treatment options for
patients are dependent on disease stage at diagnosis and
consist of surgery and adjuvant or palliative che-
motherapy. However, drug resistance, both innate and
acquired, remains an obstacle in the effective treatment
of this disease. The B-cell lymphoma gene 2 (BCL-2)
proteins, consisting of both pro-apoptotic and anti-
apoptotic members, play a crucial role in carcinogenesis
and responses to chemotherapy by controlling the
activation of the mitochondrial or intrinsic apoptosis
pathway1. The pro-apoptotic multidomain proteins
BCL-2-associated protein x (BAX) and BCL-2-antago-
nist/killer (BAK) are activated during apoptosis and

form pores in the mitochondrial outer membranes that
allow for the release of pro-apoptotic factors2–4. This
process is commonly referred to as mitochondrial outer
membrane permeabilisation (MOMP). BAX and BAK
have been explored in CRC regarding their potential as
prognostic biomarkers5. Genetic mutations in the Bak
gene are rare in CRC6, and reports whether BAX
expression levels are associated with improved or poor
survival in CRC patients are contradictory5,7,8. Their
poor prognostic potential in CRC may be due to the fact
that BAX and BAK functions are largely redundant, as
double bax/bak deletion is required to prevent apop-
tosis in most cell types9, whereas single gene deletions
have minimal effects on cell survival10. Previous studies
have also shown that BAX and BAK protein levels are
generally exceeding the levels of antiapoptotic BCL-2
proteins in colon cancer cells and CRC patient tumour
samples, suggesting that single inhibition of BAX or
BAK may not be sufficient to induce resistance in colon
cancer cells and that rather the complex biology of the
BCL-2 interaction network determines cell survival11,12.
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The BCL-2-related ovarian killer (BOK) possesses, similar
to BAX and BAK, three BCL-2 homology (BH1–3) domains,
and thus it has been proposed to act in a similar pro-
apoptotic pathway. However, the role of BOK in cancer cell
death is still controversial and its role as a prognostic bio-
marker in CRC has not yet been explored. BOK over-
expression results in MOMP, caspase-3 activation, nuclear
fragmentation and apoptosis in several cell systems13–19.
Recently, BOK has been attributed pro-apoptotic properties
during defects in endoplasmic reticulum (ER)-associated
degradation (ERAD), where it promotes MOMP20,21. ERAD
is upregulated in response to ER stress resulting in unfolded
proteins being retro-translocated from the ER lumen to the
cytosol for their ubiquitylation and degradation, thereby
contributing in resolving ER stress. Other groups, including
ours, demonstrated that BOK is dispensable for most forms
of apoptotic cell death in mouse cortical neurons, haema-
topoietic and mouse embryonic fibroblasts22–25 or even
exerts pro-survival effects during Ca2+-mediated neuronal
injury and ER stress21,22,24,26. Hence, the function of BOK in
apoptosis signalling is still a matter of debate and may be
stimulus- and tissue-specific27. Physiologically, BOK reg-
ulates ER Ca2+ homeostasis and has been shown to bind to
the IP3 receptors at the ER, protecting them from proteolytic
cleavage28. In addition, BOK may also regulate cell
proliferation29.
So far, only one study provided evidence for a potential role

of BOK as a tumour suppressor in cancer, demonstrating that
the Bok gene was silenced in many human cancers30. Owing
to its unexplored role in CRC, we here investigated BOK
expression in CRC and subsequently explored whether it was
associated with clinical outcome and examined whether BOK
protein levels correlated with ER stress.

Results
Bok mRNA levels are not prognostic of overall survival
in CRC
We first investigated whether Bok mRNA levels were

altered in CRC by analysing the Bok gene expression levels
in 26 matched normal and primary tumour samples in the
The Cancer Genome Atlas (TCGA) Colon Adenocarci-
noma (COAD) cohort. Student’s t-test was carried out
and revealed no statistical difference in Bok mRNA
expression between normal and tumour tissues (Fig. 1a).
Next we explored Bok gene expression in relation to
overall survival (OS) in two different sets of CRC patients:
283 and 556 patients derived from the TCGA COAD and
Cartes d’Identité des Tumeurs (CIT) cohorts, respectively.
Survival analysis of these two groups showed no sig-
nificant correlation between Bok gene expression and OS
(Fig. 1b, c). Similar findings were observed when corre-
lating Bok gene expression with disease-free survival
(DFS) (data not shown, p= 0.079049 for the CIT cohort;
log-rank test).

Bok gene methylation sites are hypomethylated in both
normal and tumour tissues but are not prognostic of
overall survival in CRC
In order to investigate whether Bok gene methylation

sites were altered between normal vs tumour tissue, we
carried out methylation analysis on 38 matched normal
and primary tumour samples from the TCGA COAD
cohort. Gene methylation analysis demonstrated that 7 of
the 14 Bok methylation sites were significantly different
between normal and tumour samples in the TCGA
COAD cohort and that those 7 sites were all hypo-
methylated in both tumour and normal tissues (Fig. 2a;
Student’s t-test). We next explored whether Bok gene
methylation sites correlated with OS. Methylation values
of the seven identified sites were averaged, and the mean
of the averages was used as cutoff to assign high or low
levels of methylation. Survival analysis revealed that Bok
methylation status did also not correlate with patient OS
(Fig. 2b). Similar findings were observed when investi-
gating individual methylation sites (data not shown).

CRC patient samples show decreased expression levels
of BOK
The pro-apoptotic activity of BOK has recently been

reported to be controlled post-translationally. BOK sta-
bility is highly dependent on BOK binding to IP3 receptors
and is furthermore controlled by components of the ER
stress and ERAD pathway through which it is ubiquiti-
nated and degraded by the proteasome21,25,26. Thus we
next evaluated the expression levels of BOK protein and
the key ER stress markers 78 kDa glucose-regulated pro-
tein/binding immunoglobulin protein (GRP78), heat
shock protein 90 kDa beta member 1 (GRP94) and Cal-
reticulin in fresh-frozen tumour resections of CRC
patients. Because no BOK antibodies are available to
detect BOK protein by immunohistochemistry, we
employed quantitative western blotting to determine
whether BOK protein levels varied in tumour and mat-
ched normal tissue (n= 28 matched sample) of resected
and quality-assured tumour cases of Stages II and III CRC
patients (Table 1). We found that BOK protein levels were
significantly reduced in tumour samples compared to
their matched normal tissues (Fig. 3a, b; p= 0.0262, two-
sided Wilcoxon signed-rank test). Because the data sug-
gested a high degree of heterogeneity in BOK protein
levels between patients, we also subjected the data to a
structured unbiased approach for potential outlier iden-
tification (for details, see Materials and methods section).
Using this approach, we identified eight potential outliers.
Despite the exclusion of these potential outliers from the
analysis, BOK protein levels still resulted in significantly
decreased tumour compared to matched normal tissues
(Fig. 3c; p= 0.0002, two-sided Wilcoxon signed-rank
test).
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Expression of ER stress markers does not correlate with
BOK protein levels
Next, the protein levels of GRP78, GRP94 and Calreti-

culin were determined in tumour and matched normal
tissues from the same cohort of CRC patients. Quantita-
tive western blotting revealed no differential expression of
these ER stress markers between tumour and matched
normal CRC patient samples (Fig. 4; two-sided Wilcoxon
signed-rank test). Further analysis identified a lack of
correlation between tumour levels of BOK and ER stress
markers, GRP78 and GRP94. However, we observed a
positive correlation between tumour levels of BOK and
Calreticulin (Table 2; p= 0.0072, two-sided Wilcoxon
signed-rank test). We also observed no correlation
between BOK levels and cleaved caspase-3 levels
(Table 2).
We also examined whether protein levels of BOK and

ER stress markers were associated with CRC disease
stage. Patient samples were subdivided by tumour stage
in Stage II (n= 11) and Stage III (n= 22) disease. No
statistically significant difference was observed in the
levels of BOK and GRP78 between Stages II and III
disease tumour samples (Figs 3d and 4c; Mann–Whitney
U test). No statistically significant difference was also
observed in the levels of GRP94 and Calreticulin

between Stages II and III disease tumour samples (data
not shown).

BOK protein levels are a prognostic marker candidate of
clinical outcome in CRC patients
We finally assessed whether protein levels of BOK and/

or ER stress markers levels associated with clinical out-
come. Samples were divided into two subgroups based on
the clinical response of patients: (i) favourable outcome,
patients displaying no cancer mortality and/or no disease
recurrence within the 4-year follow-up time period; and
(ii) unfavourable outcome, patients exhibiting disease
recurrence and/or death from disease within the 4-year
follow-up time period.
Interestingly, BOK protein levels were increased in

tumour samples from colorectal patients with unfavour-
able outcome compared to favourable outcome (Fig. 5a, b;
Mann–Whitney U test, p= 0.0192). In contrast, no sig-
nificant association was observed between GRP78, GRP94
and Calreticulin expression and clinical outcome (Fig. 5a,
c and data not shown; Mann–Whitney U test). To
investigate potential germline effects, we lastly examined
whether expression of BOK in normal tissue correlated
with clinical outcome. Correlation analysis showed no
association between BOK expression levels and disease
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stage and/or clinical outcome in normal tissue (data not
shown).

Discussion
This study identifies the BAX/BAK-like BCL-2 protein

family member BOK as a promising prognostic marker in

CRC. We demonstrated that BOK protein levels in col-
orectal tumour were significantly decreased compared to
their matched normal samples, suggesting that reduced
BOK protein levels may contribute to carcinogenesis and
tumour establishment. More importantly, we also show
that elevated BOK levels correlated with recurrence and

Table 1 Details of the disease stage, chemotherapy treatment, sex and disease outcome of the 33 patients within the study

Patient Sex Location Chemo treatment RCPath Staging Outcome

1 F Right None B II Good

2 F Right None B II Good

3 M Left None B II Good

4 F Right colon Unknown C III Good

5 F Rectosigmoid 5FU/Leu C III Good

6 M Caecal None C III Good

7 M Sigmoid 5FU/Leu B II Good

8 M Anterior resection 50.4/28 + 5FU A II Good

9 M Sigmoid 5FU/Leu C III Good

10 M Caecal None B II Good

11 M Sigmoid None B II Good

12 F Caecal Unknown C III Good

13 F Rectosigmoid 5FU/Leu C III Good

14 F Sigmoid FOLFOX C III Good

15 M Left/colonic 5FU/Leu C III Good

16 M Anterior resection 50.4/28 + 5FU B II Good

17 M Anterior resection 50.4/28 + 5FU C III Good

18 M Right None B II Poor

19 M Caecal 5FU/Leu C III Poor

20 F Sigmoid FOLFOX C III Poor

21 F Rectal None B II Poor

22 F Sigmoid FOLFOX C III Poor

23 M Sigmoid 5FU/Leu C III Poor

24 M Right 5FU/Leu C III Poor

25 M Caecal FOLFIRI C III Poor

26 M Sigmoid None B II Poor

27 M Rectal Unknown C III Poor

28 F Ascending FOLFOX C III Poor

29 F Rectal FOLFOX/ Avastin C III Poor

30 M Colonic 5FU/Leu/Avastin/Irin/Cetux C III Poor

31 F Caecal 5FU/folinic acid C III Poor

32 M Rectal 5FU/Leu C III Poor

33 M Anterior resection 50.4/30 + 5FU C III Poor

5FU 5-Fluorouracil, Fol Fluorouracil, Irin Irinotecan, Leu Leucovorin, Cetux Cetuximab, 50.4/28 total amount of 50.4 Gy radiotherapy in 28 fractions, None no
chemotherapy received, RCPath Royal College of Pathologists grade
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unfavourable clinical outcome in Stages II and III CRC
patients. This apparent discrepancy may reflect the con-
tributions of different activities of BOK during tumour
establishment vs recurrence and metastasis.
The BCL-2 proteins, consisting of both pro-apoptotic

and antiapoptotic members, play a central role in cancer
progression and in responses to both genotoxic and tar-
geted therapies1. For this reason, they are frequently stu-
died for their use as prognostic biomarkers5,12,31. Of the
BAX/BAK-like BCL-2 protein subfamily, the role of BOK
is just recently being explored in the context of human
cancers. A somatic copy-number alterations study inves-
tigating 3131 cancer specimens suggested that BOK may
act as a tumour suppressor across several human can-
cers30. Lack of BOK expression was also observed in sev-
eral multiple myeloma cell lines21. In line with these
findings, we found that BOK protein levels were sig-
nificantly lower in tumour tissue of CRC patients com-
pared to matched normal samples, suggestive of a role as a
tumour suppressor. However, when correlating BOK
protein levels to clinical outcome, we found that increasing
BOK protein levels were associated with unfavourable
outcome. Interestingly, analysis of two independent large-
scale cohorts also indicated that Bok mRNA expression
was not prognostic in CRC, suggesting that BOK is pri-
marily post-translationally regulated. These findings were

supported by an analysis of Bok gene methylation sites,
which also failed to correlate with clinical outcome.
BOK has been shown to possess pro-apoptotic functions

when overexpressed, promoting cytochrome-c release,
caspase-3 activation and nuclear fragmentation13–17. Exact
mechanisms of its pro-death functions are controversial;
however, a recent study proposed that BOK’s pro-death
function is controlled by ER stress and the ERAD path-
way21. Nevertheless, there is evidence that the function of
BOK may indeed have diverted from those of BAX and
BAK. As mentioned above, double Bax/Bak deletion is
required to prevent apoptosis in most cell types27, sug-
gesting that BOK is not required for apoptosis in most
settings. Indeed, we did not observe a direct correlation of
cleaved caspase-3 levels and BOK protein levels in the
CRC tumour samples. Unlike BAX and BAK, BOK is
predominately found in the membranes of the ER and
Golgi apparatus and has been shown to interact with IP3
receptors 1 and 2. In fact, its stability is highly dependent
on BOK binding to the IP3 receptors, and only free BOK is
controlled by the ERAD pathway through which it is
ubiquitinated and degraded by the proteasome21,32. Of
note, it has been shown that increased expression of IP3
receptors in different types of cancer, including CRC, may
be responsible for metastasis formation and tumour
aggressiveness and may be employed as biomarkers33,34.
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Table 2 Correlation analysis between BOK protein expression levels and ER stress markers (GRP78, GRP94 and
Calreticulin) and indicator of apoptosis pathway (cleaved caspase-3) in CRC

Bok tumour correlation GRP78 GRP94 Calreticulin Cleaved Caspase 3

Number of XY pairs 32 32 24 24

Pearson r −0.1516 −0.2383 0.5338 0.0014

P-value (two-tailed) 0.4074 0.1890 0.0072 0.8629

P-value summary ns ns ** ns

Note that due to exhaustion of tissues reduced matched pairs were available for Calreticulin and cleaved caspase-3
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Furthermore, BOK may also regulate cell proliferation.
BOK has been found in proliferating trophoblast cells
during early placental development and was localised to
the nucleus of proliferating cells and regulated the
expression of cyclin E129. It is therefore conceivable that
proliferative effects or effects on ER calcium homeostasis
rather than pro-apoptotic effects of BOK associate with
poor prognosis in CRC. Furthermore, antiapoptotic effects
have also been associated with BOK21,22,24,26.
Our study also argues against a direct association of ER

stress and BOK protein levels in CRC. Levels of the ER-
resident chaperone GRP78, which is the primary sensor of
ER stress and plays a key role in the unfolded protein
response, failed to correlate with BOK protein levels or
with clinical outcome. Although we have not specifically
investigated the signalling components of the ERAD
pathway in relation to BOK protein levels, ERAD is acti-
vated in response to several ER stress stimuli35. However,
the possibility remains that ERAD is activated indepen-
dent of a broad ER stress response21 and, through such
mechanisms, regulates BOK protein levels in CRC. In
contrast, BOK levels correlated positively with Calreticu-
lin levels. As Calreticulin is not only ER resident but also
detectable on the cell surface of cancer cells where it

promotes antigen presentation and cellular phagocytic
uptake36, it possible that this correlation relates to ER
stress-independent functions.
In summary, this study highlights the ‘BAX/BAK-like’

protein BOK as a prognostic marker in CRC, with
increased BOK tumour levels indicating unfavourable
clinical outcome in Stage II/III CRC patients.

Materials and methods
Patient cohort
Patient tissue samples were collected and stored in the

APOCOLON colorectal tissue biobank at Beaumont
Hospital (Dublin, Ireland). Informed consent was received
from all patients and ethical approval, for use of the stored
material, was granted by Beaumont Hospital Ethics
(Medical Research) Committee. Snap-frozen colorectal
tumour and matched normal tissue from surgical resec-
tions of 33 CRC patients were collected. In 17 cases,
patients had a good outcome, which was defined as no
mortality or disease recurrence within the 4-year follow-
up period, while 16 cases had a poor outcome, specifically,
disease recurrence or death from disease within that
timeframe. Matched normal tissue was available from
n= 28 patients. Clinical follow-up was obtained for all
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Fig. 5 BOK but not GRP78 as a potential prognostic biomarker in stage II/III CRC patients. a Representative western blotting comparing the
levels of BOK and GRP78 in colorectal tumour (T) and matched normal (N) colonic tissue samples of CRC patients with good and poor outcomes. β-
Actin was used as loading control. b, c Scatter plots depicting protein levels of BOK b and the ER stress protein GRP78 c in the total CRC patient
cohort with good (n = 17 for BOK, n = 16 for GRP78) vs poor (n = 16 for BOK, n = 16 for GRP78) outcomes. BOK protein levels were significantly
increased in those patients who observed a poor clinical outcome compared with patients with good clinical outcome (*p = 0.0192; Mann–Whitney
U Test). The mean, median and SD are stated below the panels. In contrast, GRP78 did not correlate with clinical outcome (p = 0.1995; Mann–Whitney
U Test)
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patients and patient characteristics are summarised in
Table 1.

Western blotting
For clinical samples, tissue was lysed in ice-cold tissue

lysis buffer (50mmol/L HEPES (pH7.5), 150mmol/L
NaCl, 5 mmol/L Na-EDTA) and protease inhibitor
cocktail (Calbiochem, Hampshire, UK) followed by
mechanical homogenisation on ice. Following centrifuga-
tion (14000× g for 10 min), supernatant was collected and
stored at −80 °C until further use.
For the cell line standards, HeLa cell pellets were col-

lected. Cell pellets were then lysed with sodium dodecyl
sulfate (SDS) lysis buffer (Protein lysis buffer: 1% Triton
X-100, 50 mM HEPES, pH7.4, 150mM NaCl, 1.5 mM
MgCl2, 1 mM EGTA, 100mM NaF, 10 mM Na pyr-
ophosphate, 1 mM Na3VO4, 10% glycerol) and containing
freshly added protease and phosphatase inhibitors. Pro-
tein concentration was measured using micro-
bicinchoninic acid assay (Pierce, Rockford, IL). The pro-
tein concentration of each lysate is then diluted to 1mg/
mL using lysis buffer and the appropriate volume of 4×
Laemmli buffer (40% glycerol, 8% SDS, 0.25M Tris-HCl
pH6.8) containing freshly added 2-mercaptoethanol
(1:10). The samples were then heated to 95 °C for 5 min
before using immediately for SDS-PAGE or storing for
future use at −80 °C. Total protein (10 µg) was resolved
using SDS-PAGE, transferred to nitrocellulose mem-
branes and blocked in TBS-T/5% milk for 1 h. Mem-
branes were incubated overnight at 4 °C with either: a
rabbit monoclonal BOK antibody (clone 1–5) diluted
1:25022,24, a rabbit polyclonal Calreticulin antibody dilu-
ted 1:1000 (Cell Signalling Technologies, Dublin, Ireland),
a mouse monoclonal KDEL antibody diluted 1:500 (clone
10C3, Enzo Life Sciences, Exeter, UK), a rabbit polyclonal
Cleaved Caspase-3 (Asp175) antibody 1:500 (Cell Signal-
ling Technologies, Dublin, Ireland) and a mouse mono-
clonal β-actin antibody diluted 1:5000 (clone AC-74;
Sigma, Dublin, Ireland). The blots were then washed in
TBS-T and incubated in the appropriate horseradish
peroxidase secondary antibody (Pierce) diluted 1:10,000 at
room temperature for 1 h. The KDEL antibody used binds
the amino acid sequence Lys-Asp-Glu-Leu (KDEL) pre-
sent at the carboxy-terminus of GRP78 and GRP94,
allowing for both GRP78 and GRP94 detection. Detection
of protein bands was carried out using chemilumines-
cence (EMD Millipore, Billerica, MA, USA) on a LAS-
3000 Imager (FUJIFILM UK Ltd. Systems, Bedford, UK).
We used 12-bit images to ensure that saturation limits
were not reached, allowing for suitable quantitative
detection method. We have previously used these meth-
ods also for absolute quantification studies37. Image J was
utilised as image analysis software to perform densito-
metric evaluations of the specific bands (i.e., BOK, GRP78,

GRP94, Calreticulin and cleaved caspase-3) relative to
control bands (β-actin) in each blot. The background
signal was compensated for, and we thus derived the
relative quantity of our proteins of interest to determine
tumour to matched normal ratios for each patient.

Bok mutation, methylation and gene expression analysis
on publicly available data sets
Two publicly available data sets were used to analyse

Bok gene methylation status and gene expression level.
We accessed TCGA preprocessed data (28/01/2016)
through Firebrowse (firebrowse.org, Broad Institute
TCGA Genome Data Analysis Center (2016): Analysis
Overview for Colon Adenocarcinoma (Primary solid
tumor cohort)—28 January 2016. Broad Institute of MIT
and Harvard. doi:10.7908/C1F76BX1) with level 3
Methylation status plus patient follow-ups of COAD
patients to analyse Bok gene methylation. The status of 14
methylation sites of the Bok gene were compared in
matched normal and tumour tissues (n= 38) after which
survival analysis was carried out. We also downloaded the
NCBI Gene Expression Omnibus (GEO) GSE39582 (22/
05/2013) data set38 that contains mRNA expression and
patient follow-ups of the CIT CRC cohort. DFS and OS
survival of patients (n= 556) were compared against high
vs low levels of Bok mRNA.

Statistical analysis
For the TCGA COAD and CIT cohorts, significance of

Bok methylation sites differences between matched nor-
mal and tumour tissues was determined using Student’s t-
test followed by Benjamini–Hochberg multiple correction.
We used Kaplan–Meier log-rank tests to compare differ-
ences between survival curves. All of TCGA data analyses
were performed within R (V.3.3.0, The R Foundation)
including the survival analysis (using the ‘survival’ pack-
age V.2.39–4).
All results from the patient samples were analysed using

the GraphPad InStat software. The expression of indivi-
dual proteins in tumour and matched normal samples was
compared with two-sided Wilcoxon signed-rank test for
related variables.
Potential outliers were investigated using a structured

unbiased approach. First, we evaluate whether measure-
ments were outliers not only in the normal measurements
but also in the context of tumour vs normal measure-
ments. We then computed the difference between the
expression of BOK in tumour and normal tissue and
considered the points for potential outlier if (1) either
the difference in expression between tumour and
normal resulted in greater than value 75th+ 1.5× (value
75th− value 25th) or (2) lesser than value 25th− 1.5×
(value 75th− value 25th). The expression of the tumour
to normal ratios was calculated using Mann–Whitney
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U test for independent samples. Results were considered
significant when the p-value was <0.05.
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