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Background: The neddylation pathway is overactivated in human cancers. Inhibition of neddylation pathway has
emerged as an attractive anticancer strategy. The mechanisms underlying neddylation overactivation in cancer
remain elusive. MLN4924/Pevonedistat, a first-in-class NEDD8-activating enzyme (NAE, E1) inhibitor, exerts sig-
nificant anti-tumor effects, but its mutagenic resistance remains unresolved.
Methods: The expression of NEDD8-conjugating enzyme UBC12/UBE2M (E2) and NEDD8 were estimated by bio-
informatics analysis and western blot in human lung cancer cell lines. The malignant phenotypes of lung cancer
cells were evaluated both in vitro and in vivo upon UBC12 knockdown. Cell-cycle arrest was evaluated by quan-
titative proteomic analysis and propidium iodide stain and fluorescence - activated cell sorting (FACS). The
growth of MLN4924 - resistant H1299 cells was also evaluated upon UBC12 knockdown.
Findings: The mRNA level of UBC12 in lung cancer tissues was much higher than that in normal lung tissues, in-
creased with disease deterioration, and positively correlated with NEDD8 expression. Moreover, the overexpres-
sion of UBC12 significantly enhanced protein neddylation modification whereas the downregulation of UBC12
reduced neddylation modification of target proteins. Functionally, neddylation inactivation by UBC12 knock-
down suppressed the malignant phenotypes of lung cancer cells both in vitro and in vivo. The quantitative prote-
omic analysis and cell cycle profiling showed that UBC12 knockdown disturbed cell cycle progression by
triggering G, phase cell-cycle arrest. Further mechanistical studies revealed that UBC12 knockdown inhibited
Cullin neddylation, led to the inactivation of CRL E3 ligases and induced the accumulation of tumor-
suppressive CRL substrates (p21, p27 and Wee1) to induce cell cycle arrest and suppress the malignant pheno-
types of lung cancer cells. Finally, UBC12 knockdown effectively inhibited the growth of MLN4924-resistant
lung cancer cells.
Interpretation: These findings highlight a crucial role of UBC12 in fine-tuned regulation of neddylation activation
status and validate UBC12 as an attractive alternative anticancer target against neddylation pathway.
Fund: Chinese Minister of Science and Technology grant (2016YFA0501800), National Natural Science Founda-
tion of China (Grant Nos. 81401893, 81625018, 81820108022, 81772470, 81572340 and 81602072), Innovation
Program of Shanghai Municipal Education Commission (2019-01-07-00-10-E00056), Program of Shanghai Aca-
demic/Technology Research Leader (18XD1403800), National Thirteenth Five-Year Science and Technology
Major Special Project for New Drug and Development (2017ZX09304001). The funders had no role in study de-
sign, data collection, data analysis, interpretation, writing of the report.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Abbreviations: FACS, fluorescence-activated cell sorting; NAE, NEDD8-activating en-
zyme; CHX, cycloheximide; SPSS, Statistical Program for Social Sciences software; GFP, Post-translational protein neddylation is a process of the covalent at-

green fluorescent protein; CDKN1A, Cyclin Dependent Kinase Inhibitor 1A, p21;

CDKN1B, Cyclin Dependent Kinase Inhibitor 1B, p27.
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tachment of NEDDS, an ubiquitin-like molecular, to substrate proteins,
and thus regulates subcellular localization, stability, conformation and
functions of targeted proteins. Neddylation is a three-step enzymatic
cascade reaction, mediated by NEDD8-activating enzyme E1 (NAE, a

2352-3964/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.ebiom.2019.06.005&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.ebiom.2019.06.005
ljjia@shutcm.edu.cn
Journal logo
https://doi.org/10.1016/j.ebiom.2019.06.005
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/
www.ebiomedicine.com

82 L. Li et al. / EBioMedicine 45 (2019) 81-91

Research in context

Evidence before this study

The neddylation pathway is overactivated in human cancers. Inhi-
bition of neddylation pathway has emerged as an attractive anti-
cancer strategy. The mechanisms underlying neddylation
overactivation in cancer remain elusive. MLN4924/Pevonedistat,
a first-in-class NEDD8-activating enzyme (NAE, E1) inhibitor, ex-
erts significant anti-tumor effects, but its mutagenic resistance re-
mains unresolved. Base on this, we evaluated the role of UBC12 in
the over-activated neddylation pathway of lung cancer, and iden-
tified whether UBC12 could be used as a potential molecular tar-
get in lung cancer.

Added value of this study

In this study, we found that the mRNA level of UBC12 in lung can-
cer tissues was much higher than that in normal lung tissues, in-
creased with disease deterioration, and positively correlated with
NEDD8 expression. Functionally, neddylation inactivation by
UBC12 knockdown suppressed the malignant phenotypes of
lung cancer cells both in vitro and in vivo. Further mechanistical
studies revealed that UBC12 knockdown inhibited Cullin
neddylation, led to the inactivation of CRL E3 ligases and induced
the accumulation of tumor-suppressive CRL substrates (p21, p27
and Wee1) to induce cell cycle arrest and suppress the malignant
phenotypes of lung cancer cells. Finally, UBC12 knockdown ef-
fectively inhibited the growth of MLN4924-resistant lung cancer
cells.

Implications of all the available evidence

These findings highlight the crucial role of UBC12 in fine-tuned
regulation of neddylation activation status and validate UBC12
as an attractive alternative anticancer target against neddylation
pathway.

heterodimer consisting of NAE1 and UBA3), NEDD8-conjugating en-
zymes E2 (UBE2M/UBC12 or UBE2F), and NEDDS ligases E3 (including
RBX1/ROC1, RBX2/ROC2, MDM2, etc.) [1-3]. Among E2 enzymes,
UBC12 pairs with RBX1/ROC1 to regulate the neddylation of Cullin 1,
2, 3, 4a, 4b and 7, while UBE2F pairs with RBX2/ROC2 to regulate the
neddylation of Cullin 5 [4]. So far, the best identified neddylation sub-
strates are the Cullin family members. NEDD8 conjugates to Cullin is
necessary for the activation of CRLs, the largest multiunit ubiquitin li-
gase family in cells which is in charge of the ubiquitination and degrada-
tion of about 20% of ubiquitinated cellular proteins, including
transcription factors, tumor suppressors, and onco-proteins [5]. It has
been found that CRLs are dysregulated in many types of cancers, and
thus leading to the accelerated degradation of tumor suppressors and
promotion of tumorigenesis and tumor progression [6,7].

Recently, the neddylation pathway, including E1, E2, E3 and global
neddylation of substrates, is reported to be hyperactivated in several
types of cancers and associated with disease progression, such as
worse patient overall survival [8,9]. Moreover, targeting overactivated
protein neddylation pathway has been demonstrated as an effective an-
ticancer strategy [10-16]. MLN4924, a small molecular inhibitor of NAE
[17,18], has been developed as a first-in-class neddylation inhibitor. In-
tensive studies reported that MLN4924 induced the accumulation of
tumor-suppressive CRLs substrates to suppress cancer cell growth and
metastasis both in vitro and in vivo, owing to the inhibition of Cullin
neddylation and CRLs activation [19-26]. Due to its high efficiency and
well-tolerated toxicity in preclinical trials, MLN4924 has advanced

into clinical trials for human hematological malignancies and solid tu-
mors [27-30].

While MLN4924 has been intensively investigated in preclinical and
clinical trials, the induction of drug-resistant mutations in UBA3, the
molecular target of MLN4924, raises the necessity to identify other ther-
apeutic targets against neddylation pathway [31-33]. In this study, we
found that UBC12 was overexpressed in human lung cancer, increased
with disease deterioration, and positively correlated with NEDDS8 ex-
pression. Moreover, targeting UBC12 effectively suppressed the malig-
nant phenotypes of lung cancer both in vitro and in vivo. These
findings validate UBC12 as a novel alternative therapeutic target against
neddylation pathway.

2. Materials and methods
2.1. Cell culture and reagents

293T cells, human lung cancer cell lines A549 and H1299 were ob-
tained from the American Type Culture Collection (Manassas, VA).
Human lung cancer cell lines H1975, PC9, HCC1833, HCC1838,
HCC827, HCC2030, HCC1438 and H596 were given by Dr. Yihua Sun
(Department of Thoracic Surgery, Fudan University Shanghai Cancer
Center). Cells were cultured in Dulbecco's modified Eagle's medium
(DMEM, hyclone, Logan, UT), containing 10% fetal bovine serum
(Biochrom AG, Berlin, Germany) and 1% penicillin-streptomycin solu-
tion at 37 °C with 5% carbon dioxide.

2.2. Analyzing of gene expression datasets from primary lung tumors

Two Affymetrix microarray datasets (Shedden and Hou) were ob-
tained. The CEL files of microarray data were normalized using Robust
Multi-Array Average (RMA) method and log 2 transformed data were
used [34-36]. Hou's data (65 normal lung tissues, 45 lung adenocarci-
nomas, 19 large cell lung cancer, and 27 squamous cell lung cancer)
was used for the comparison of tumor VS normal of UBC12. Shedden's
data (442 lung adenocarcinomas) was used for the analysis of tumor
differentiation and patient survival. We also obtained TCGA RNA-seq
data from 500 lung adenocarcinomas. The clinical information from
each patient was also obtained from the original publications.

2.3. Generation of stable cell lines by CRISPR/Cas9 system

For packaging lenti-virus used in UBC12 knockdown, three guide
RNA sequences specifically against UBC12 were inserted into vector
lenti-guide-puro, respectively. 293T cells were co-transfected with
lenti-viral vectors lenti-guide-puro (4 pg) and packaging vectors
AGP091 (3.0 pg) and AGP090 (1.2 pg). Forty-eight hours after transfec-
tion, the viral supernatants were collected, filtered, and infected A549 or
H1299 cells. Polybrene (sigma-Aldrich, St. louis, MO) was added into
viral supernatant at the concentration of 10 ug/mL. Six hours after incu-
bation, the viral supernatant was replaced with normal DMEM with 10%
FBS.

2.4. Cell proliferation and clonogenic survival assays

Cell proliferation assay was determined with the ATPlite lumines-
cence assay kit (PerkinElmer) according to the manufacturer's instruc-
tion. For clonogenic assay, cells were seeded into 6 cm dishes (300
cells per dish) in triplicate and cultured for 10 days. More information
is provided in the Supplementary Methods. Representative results of
three independent experiments with similar trends are presented.

2.5. Immunoblotting and cycloheximide (CHX) - chase analysis

For CHX-chase experiments, UBC12-knockdown cells and control
cells were treated with 50 pg/mL CHX (sigma) for indicated time points.



L. Li et al. / EBioMedicine 45 (2019) 81-91 83

Cell lysates were prepared for immunoblotting analysis using antibod-
ies against UBC12, UBA3, Cullin1, Cullin2, Cullin5, p21 (abcam), NAET1,
Cullin3, Cullin4a, p27, Weel, p-H3, NEDD8 (Cell Signaling, Boston,
MA), Cullin4b (protein Tech). 3-actin (protein Tech) was used as the
loading control.

2.6. Propidum iodide staining and fluorescence-activated cell-sorting
analysis

For cell-cycle profile analysis, UBC12-knockdown cells and control
cells were stained with propidium iodide (PI) and peformed
fluorescence-activated cell sorting (FACS) analysis as described previ-
ously [37]. More information is provided in the Supplementary
Methods.

2.7. Transwell migration assay

The standard transwell migration assay, using a transwell polycar-
bonate filter (8-um pore size; Corning, Lowell, MA), was performed to
analyze the cell migration abilities [10]. More information is provided
in the Supplementary Methods.

2.8. Subcutaneous-transplantation tumor model and experimental lung
metastasis in vivo

For tumor formation assay, five-week-old female athymic nude mice
were purchased from the Shanghai Experimental Animal Center
(Shanghai, China). 2 x 10° stable cells were subcutaneously injected
into the right back or left back. Tumor size was measured by a vemier
caliper and calculated as (length x width?)/2.

For experimental metastatic models, six-week-old female Balb/c-
nude mice were intravenously injected with GFP conjugated A549
cells (control cells or UBC12-knockdown cells). Mice were sacrificed at
the end of the studyand detected as described in the Supplementary
Methods (available online) [10]. All procedures were performed in ac-
cordance with the National Institutes of Health Guide for the Care and
Use of Laboratory Animals.

2.9. Statistical analysis

Survival was analyzed using the Kaplan-Meier method and com-
pared using the log-rank test with Statistical Program for Social Sciences
software (SPSS) Version 16.0. The overall survival time was defined as
the duration from the date of diagnosis to the date of either death or
censoring (which could occur either by loss to follow-up or by termina-
tion of the observation).

All data are presented as the mean 4+ standard error from at least
three independent experiments. The statistical significance of differ-
ences between groups was assessed using the Graph Pad 5 software
(Graph Pad Software, San Diego, CA, USA). The unpaired 2-tailed t-test
was used for the comparison of parameters between groups. For all
the tests, three levels of significance (*p < .05, **p < .01, ***p <.001)
were used.

3. Results

3.1. Overexpressed UBC12 correlates with global neddylation and predicts
poor survival in lung cancer

To evaluate the role of UBC12 in the occurrence and development of
lung cancer, two published Affymetrix microarray datasets were used
for the expression of UBC12 in tumor vs normal comparison analyses,
tumor differentiation and patient survival [34,35]. Firstly, UBC12
mRNA expression in all three types of lung cancer was much higher
than in normal lung tissues (lung adenocarcinoma vs normal, p =
.001; large cell lung cancer vs normal, p <.001; squamous cell lung

cancer vs normal, p = .27) (Fig. 1a). Synchronously, UBC12 mRNA ex-
pression is much higher in poorly differentiated tumor in 442 lung ade-
nocarcinomas (Fig. 1b). Moreover, Kaplan-Meier analysis revealed that
the patients with high mRNA level of UBC12 conferred poorer overall
survival than those with low expression in lung cancer patients
(Fig. 1c). To further validate these findings, Kaplan-Meier analysis of
the mRNA level of neddylation enzymes from TCGA datasets also
showed that the overall survival rate was lower in lung cancer patients
with the high mRNA level of UBC12 or NEDDS8 than in the patients with
low mRNA level of these two genes (Fig. 1d and e). In contrast, there
was no significant correlation between the mRNA levels of NAE1 and
UBA3, two E1 components, and the overall survival of lung cancer pa-
tients (Supplementary Fig. 1a and 1b). Finally, correlation analysis re-
vealed that the mRNA level of NEDD8 and UBC12 had statistically
significant correlation in lung cancer (Fig. 1f).

3.2. Direct regulation of protein neddylation modification by UBC12

To further evaluate the relevance between the expressions of
neddylation enzymes NAE1, UBA3, UBC12 and the global protein
neddylation (NEDD8-conjugated proteins) in lung cancer cells, we
first determined the expression levels of NAE1, UBA3, UBC12 and global
protein neddylation in 9 lung cancer cell lines. Interestingly, the expres-
sion level of UBC12, but not NAE1 and UBA3, displayed the consistent
trends with the level of global protein neddylation (Fig. 2a and b).
These findings suggested that the expression of UBC12 was positively
correlated with protein neddylation modification levels.

Next, we determine the effects of UBC12 expression on protein
neddylation, two lung cancer cell lines (PC9 and HCC827) with low ex-
pression of UBC12 were genetically constructed to express UBC12 sta-
bly. As shown in Fig. 2c, UBC12 overexpression enhanced the
neddylation levels of Cullin1, 2, 3, 4a and 4b as the classical UBC12 sub-
strates, with no effect on Cullin 5. In contrast, downregulation of UBC12
expression in A549 and H1299 cells, in which displayed the high expres-
sion level of endogenous UBC12, significantly reduced the neddylation
levels of Cullin1, 2, 3, 4a and 4b, but not Cullin 5 (Fig. 2d). These findings
demonstrate that UBC12 expression tightly controls the protein
neddylation.

3.3. Downregulation of UBC12 suppressed the malignant phenotypes of
lung cancer cells in vitro

After demonstrating the regulatory effect of UBC12 on Cullin
neddylation, we further evaluated the effects of UBC12 downregulation
on the malignant phenotypes in A549 and H1299 cells by knocking
down UBC12 using CRISPR/Cas9 system. We evaluated the effect of
UBC12 knockdown on the cell proliferation of lung adenocarcinoma
cells using ATP-lite luminescence assay. The results showed that
UBC12 knockdown significantly inhibited cell proliferation (Fig. 3a).
Similarly, UBC12 knockdown exerted remarkable suppressive effect
on clonogenic survival of these two cell lines (Fig. 3b and c). Moreover,
UBC12 downregulation significantly inhibited the transwell migration
of A549 and H1299 cells (Fig. 3d and e). Altogether, these findings dem-
onstrate that UBC12-mediated protein neddylation is required for the
maintenance of malignant phenotypes of lung cancer cells.

3.4. UBC12 knockdown induced G, phase cell-cycle arrest in lung cancer
cells

To investigate how UBC12 knockdown inhibits the growth of lung
cancer cells, a quantitative proteomic strategy based on mass spectra
was used to identify the up- and down-regulated proteins upon
UBC12 knockdown in A549 cells. The results showed that there were
499 proteins were up-regulated >2 folds and 483 proteins were
down-regulated >2 folds. KEGG enrichment analysis of up-regulated
proteins revealed the cell cycle pathways were disturbed upon UBC12
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Fig. 1. Overexpressed UBC12 correlated with global neddylation and predicted poor survival in lung cancer. a) UBC12 mRNA was lower in normal lung tissues as compared to tumors (p <
.01, Hou's data). b) UBC12 mRNA was higher in poor differentiated tumor (p <.01, Shedden's data). (ADC, lung adenocarcinoma; LCC, large cell lung cancer; SCC, squamous cell lung
cancer; Mod, Moderate). c) Kaplan-Meier curve was analyzed for overall survival rate of patients with lung adenocarcinoma according to the mRNA expression level of UBC12
(Shedden's data). d) and e) Kaplan-Meier curves were analyzed for overall survival rate of patients with lung adenocarcinomas (TCGA data) according to the mRNA expression level
of NEDD8 (d) and UBC12 (e), respectively (p = .022 for NEDDS; p = .045 for UBC12, log-rank test). f) Correlation between neddylation enzymes and global protein neddylation was

analyzed in lung cancer (Pearson chi-square test, TCGA data).

knockdown (Fig. 4a). Among these, 14 proteins were involved in cell
cycle regulation as analyzed in sub protein-protein interaction network,
including cyclin associated proteins (CCNB1, CCNA2, CCND3 and CDK4)
and cyclin dependent kinase inhibitors (CDKN1A/p21 and CDKN1B/
p27) (Fig. 4b). Consistently, we found that p21 and p27 were also signif-
icantly accumulated upon UBC12 knockdown (Fig. 4d). Based on these
findings, cell-cycle profile of cells was further performed by PI staining
and FACS analysis. As shown in Fig. 4c, downregulation of UBC12 trig-
gered G,-M phase cell cycle arrest. To further determine at which
phase of cell cycle was arrested upon UBC12 knockdown, we detected
the expression status of Wee1, which is a well-defined CRLs substrate
and an inhibitor of G,-M phase transition, as well as phosphorylated-
Histone H3 (p-H3, ser10), a hallmark of M phase cells. As shown in
Fig. 4d, Wee1 was significantly accumulated, whereas p-H3 sharply de-
creased upon downregulation of UBC12, indicating that UBC12-
downregulated cells were arrested at G, phase and failed to pass to M
phase.

Since p21, p27 and Weel serve as the substrates of CRL E3 ligases,
we hypothesized that UBC12 knockdown blocks the turnover of these
cell cycle inhibitors due to CRLs inactivation. To test this hypothesis,
we used cycloheximide (CHX) to block protein translation and

determine the turnover rate of p21, p27 and Wee1 upon UBC12 knock-
down. As shown in Fig. 4e and f, UBC12 knockdown significantly de-
layed the turnover of p21, p27 and Wee1, and extended the half-life of
these cell cycle-inhibitory CRLs substrates. Taken together, these find-
ings indicate that UBC12 knockdown induce cell cycle arrest by trigger-
ing the accumulation of p21, p27 and Weel.

3.5. Targeting UBC12 suppressed cell growth and induced CRLs substrates
accumulation in MLN4924-resistant cells

MLN4924, as a small molecular inhibitor of NAE, has been inten-
sively investigated in preclinical and clinical trials. However, the induc-
tion of drug-resistant mutations in UBA3 impedes the subsequent
development of MLN4924 and raises the necessity to identify the alter-
native therapeutic targets against neddylation pathway. To test the hy-
pothesis that targeting UBC12 may be effective in MLN4924-resistant
cells, we generated MLN4924-resistant H1299 cells (H1299-MR cells)
by culturing cells in the media containing low dose of MLN4924
(330 nM) for 6 months. After that, a resistant population of H1299
cells that were capable of growth in the presence of 330 nM MLN4924
was selected. We found that the IC50 of MLN4924 rose from 127.7 nM
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Fig. 2. Direct regulation of protein neddylation modification by UBC12. a) Immunoblotting was used to determine the expression levels of neddylation activating enzyme (NAE1 and
UBA3), neddylation conjugating enzyme (UBC12/UBE2M) and the global protein neddylation. b) The expression levels of neddylation enzymes were further quantified by
densitometric analysis using Image | software. The correlation was analyzed by GraphPad Prism5.0 software. ¢) Immunoblotting was used to analyze the neddylation levels of Cullin 1,
2, 3,44, 4b, 5 and global protein neddylation upon UBC12 overexpression in lung cancer cells PC9 and HCC827. d) Immunoblotting was used to analyze the neddylation levels of Cullin
1,2, 3, 4a, 4b, 5 and global protein neddylation upon knocking down UBC12 in lung cancer cells A549 and H1299.

in H1299-wt cells to 2500 nM in H1299-MR cells (Fig. 5a). Mechanism
studies revealed that, MLN4924 (1000 nM) almost completely inhibited
Cullins neddylation in H1299-wt cells, while it only had minor to mod-
est inhibitory effect on Cullins neddylation in H1299-MR (Fig. 5b, left
panel). As a result, the classical substrates of CRLs, including Wee1,
p27, p21, p-IkBa and ORC1, were significantly accumulated in H1299-
wt cells, but not in H1299-MR cells upon MLN4924 treatment, indicat-
ing that MLN4924 failed to inactivate CRL E3 ligases due to the constant
Cullins neddylation of H1299-MR cells (Fig. 5b, right panel).

Next, we test whether targeting UBC12 suppressed the growth of
H1299-MR cells. As shown in Fig. 5c-e, the proliferation and colony for-
mation of H1299-MR cells were significantly suppressed upon UBC12
knockdown. Mechanistic study revealed that UBC12 knockdown signif-
icantly inhibited neddylation modification of UBC12 classical substrates
Cullin 1, 2, 3, 4a and 4b, but not non- UBC12 substrate Cullin5 in H1299-
MR cells (Fig. 5f). As a result, CRLs substrates, including Wee1, p27, p21,
CDT1 and ORC1, were significantly accumulated by UBC12 knockdown
in MLN4924-resistent H1299-MR cells (Fig. 5f).

3.6. UBC12 knockdown inhibited the growth and metastasis of lung cancer
in vivo

After demonstrating the anticancer effects of UBC12 knockdown
in vitro, we finally investigated the anticancer effects of targeting
UBC12 in two xenograft models in vivo. In the subcutaneous tumor
model, we found that downregulation of UBC12 significantly sup-
pressed tumor formation and growth when compared with the control
groups. Strikingly, only 30% (3/10) mice transplanted with UBC12-
knockdown A549 cells developed tiny tumors while 100% (10/10)
mice transplanted with wild type cells developed large tumors
(Fig. 6a-d). Furthermore, we evaluated the efficacy of UBC12 knock-
down on the tumor growth and metastasis in an experimental metasta-
tic model. For this purpose, we first established an experimental lung
metastatic model by i.v. injection of A549-GFP (green fluorescent pro-
tein) cells, and then to measure the metastatic tumor nodules in lung
with a fluorescence-based imaging system. Though fluorescence imag-
ing analysis, micrometastases and metastases were easily visualized
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and observed in the lungs of control mice, but not in the lungs of UBC12-
knockdown mice (Fig. 6e and f). Collectively, UBC12 knockdown signif-
icantly inhibited the growth and metastasis of lung cancer in vivo.

4. Discussion

The severe threat of lung cancer to human health raises an urgent
necessity to further elucidate the mechanisms for lung carcinogenesis

and develop targeted drug. Our previous study reported that
neddylation modification was over-activated in lung cancer and in-
versely correlated with the overall survival rate of lung cancer patients
[10,38]. However, the mechanisms underlying neddylation over-
activation have not been clearly elucidated. This study revealed that
UBC12 played a crucial role in the fine-tuned regulation of the activity
of neddylation pathway, with evidences: a) at mRNA level, the expres-
sion of UBC12 in lung cancer was much higher than that in normal
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tissues, and increased with the aggravation of tumor deterioration;
b) overexpressed UBC12 mRNA in lung cancer predicted poor survival,
and was positively correlated with the mRNA expression of NEDD8 in
lung cancer tissues; c) at protein level, the expression of UBC12, but
not E1 subunits (NAE1 and UBA3) was positively associated with the
level of global protein neddylation in diverse lung cancer cell lines;

and d) overexpression of UBC12 significantly strengthened the protein
neddylation whereas downregulation of UBC12 reduced protein
neddylation modification.

Targeting neddylation pathway has been demonstrated as a promis-
ing anticancer strategy, as supported by the development of MLN4924
(Pevonedistat/TAK924), an investigational small molecular inhibitor of
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NAE (E1) [39,40]. Currently, MLN4924 is evaluated in Phase II/III clinical
trials for multiple hematologic malignancies and solid tumors
[27,29,41]. However, the emergence of drug-induced mutations in
UBA3, the molecular target of MLN4924 [31,32,42], makes it necessary
to identify other potential targets against neddylation pathway. In this
study, UBC12 was validated as an alternatively attractive therapeutic

target in lung cancer. We found that the expression of UBC12 was not
only positively correlated with the status of neddylation activity, but
also required for the maintenance of the malignant phenotypes of
lung cancer cells. Consistently, genetically inhibition of UBC12 potently
inhibited the growth of lung cancer cells both in vitro and in vivo. More-
over, UBC12 knockdown significantly suppressed the growth of
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MLN4924-resistent cells by inhibiting Cullins neddylation and inducing
the accumulation of CRLs substrates effectively.

In mammalian cells, there are one NEDD8-activating enzyme (E1)
and two NEDD8-conjugating enzymes (E2, UBC12/UBE2M and UBE2F)
in neddylation pathway. For the two E2 enzymes, UBC12, pairing with
RBX1/ROC1 as the NEDDS8 E3 ligase, promotes the neddylation of most
of Cullin proteins (Cull, Cul2, Cul3, Cul4a, Cul4b and Cul7). However,
UBEZ2F, pairing with RBX2/SAG as the NEDDS E3 ligase, regulates the
neddylation of Cul5 [4,7]. While NAE E1 enzyme has been well-
defined as a promising anticancer target, the feasibility of screening E2
enzymes as therapeutic targets remains elusive. In this study, UBC12
was validated as an alternative anticancer target against neddylation
pathway. Compared to targeting E1, which inactivates the whole
neddylation pathway, inhibition of E2 may offer better cytotoxic selec-
tivity by inhibiting the NEDD8 conjugation of a subset, but not all of
neddylation substrates.

Unlimited proliferation and rapid growth are the characteristics of
cancer cells, which can be attributed to the sustaining proliferative sig-
naling and the accelerating cell cycle process. In cancer cells, the onco-
genic proteins promoting cell cycle progression are usually
overexpressed while the cyclic inhibitor proteins (such as p21 and
p27) are generally downregulated. Therefore, the blockage of cell
cycle procession by restoring the expression of tumor-suppressive cell
cycle inhibitors has been a long-term goal and a major strategy to
treat cancer [43-45]. In this study, we revealed that targeting UBC12
halted the cell cycle progression at G, phase by inducing the accumula-
tion of p21, p27 and Wee1 as CRLs substrates due to the inactivation of
CRL ubiquitin ligases. Consistently, inhibition of neddylation with
MLN4924/Pevonedistat, the first-in-class NAE inhibitor, also induced
G, phase cell cycle arrest in diverse types of cancer cells by upregulating
the expression of tumor-suppressive CRLs substrates [11,44-47]. These
findings further highlight UBC12 as an alternative therapeutic target
against neddylation pathway.

Based on our findings reported in this study, we propose a working
model regarding the crucial role of UBC12 in regulation of protein
neddylation and the malignant phenotypes of cancer cells. During
lung cancer development, overexpression of UBC12 and global protein
neddylation enhance the activation of CRLs ligases to promote the deg-
radation of tumor suppressors (such as p21 and p27) and facilitate car-
cinogenesis and cancer progression. In contrast, neddylation inhibition
by targeting UBC12 blocks protein neddylation and inactivates CRLs,
thus induces the accumulation of tumor-suppressive CRLs substrates
to induce cell-cycle arrest and inhibit tumor growth and metastasis.
Therefore, the further development of UBC12 inhibitors may provide
another choice for targeting the overactivated neddylation pathway
and potentially overcome emerging resistance to NAE (E1) inhibitors
(e.g, MLN4924).
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