
NeuroImage: Clinical 8 (2015) 440–447

Contents lists available at ScienceDirect

NeuroImage: Clinical

j ourna l homepage: www.e lsev ie r .com/ locate /yn ic l
Thalamic–hippocampal–prefrontal disruption in relapsing–remitting
multiple sclerosis
Kyle C. Kerna, Stefan M. Goldb, Brian Leea, Michael Montagc, Jessica Horsfallc,
Mary-Frances O3Connord, Nancy L. Sicottea,c,*

aDepartment of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
bInstitute for Neuroimmunology and Clinical Multiple Sclerosis Research, University Hospital Hamburg-Eppendorf, Hamburg, Germany
cDepartment of Neurology, University of California Los Angeles, Los Angeles, CA, USA
dDepartment of Psychology, University of Arizona, Tucson, AZ, USA
Abbreviations: AD, axial diffusivity; BDI, Beck Depres
Selective Reminding Test; BVMT, Brief Visuospatial Mem
Retention Test; CVLT-II, California Verbal Learning Test II
EDSS, Expanded Disability Status Scale; FA, fraction
Automated Segmentation Tool; FLAIR, Fluid Attenua
Functional MRI of the Brain Software Library; FOV, fie
MPRAGE,Magnetization Prepared Rapid Acquisition Grad
nance image; NEX, number of excitations; PASAT, Paced
RAVLT, Rey Auditory Verbal Learning Test; RD, radial diff
RRMS, relapsing remittingmultiple sclerosis; SDMT, Sym
Tract-basedSpatial Statistics;TE,echotime;TI, inversion tim
nate fasciculus;WAIS,Wechsler Adult Intelligence Scale;W
* Corresponding Author: Department of Neurology, Ce

6414, 127 S. San Vicente Blvd., AHSP, Los Angeles, CA 900
E-mail address: Nancy.Sicotte@cshs.org (N.L. Sicotte).

http://dx.doi.org/10.1016/j.nicl.2014.12.015
2213-1582/© 2013 Published by Elsevier Inc. This is an op
a b s t r a c t
a r t i c l e i n f o
Article history:

Received 20 March 2014
Received in revised form 6 July 2014
Accepted 21 December 2014
Available online 27 December 2014

Keywords:
Limbic system
Cognition
Memory
Multiple sclerosis
MRI
Diffusion tensor imaging

Background: Cortical, thalamic and hippocampal gray matter atrophy in relapsing–remitting MS (RRMS) is asso-
ciated cognitive deficits. However, the role of interconnecting white matter pathways including the fornix, cin-
gulum, and uncinate fasciculus (UF) is less well studied.
Objective: To assessMS damage to a hippocampal–thalamic–prefrontal network and the relative contributions of
its components to specific cognitive domains.
Methods:We calculated diffusion tensor fractional anisotropy (FA) in the fornix, cingulum and UF as well as tha-
lamic and hippocampal volumes in 27 RRMS patients and 20 healthy controls. A neuropsychological battery was
administered and 4 core tests known to be sensitive toMS changes were used to assess cognitive impairment. To
determine the relationships between structure and cognition, all tests were grouped into 4 domains: attention/
executive function, processing speed, verbal memory, and spatial memory. Univariate correlationswith structur-
al measures and depressive symptoms identified potential contributors to cognitive performance and subse-
quent linear regression determined their relative effects on performance in each domain. For significant

predictors, we also explored the effects of laterality and axial versus radial diffusivity.
Results: RRMS patients had worse performance on the Symbol Digit Modalities Test, but no significant impair-
ment in the 4 cognitive domains. RRMS had reduced mean FA of all 3 pathways and reduced thalamic and hip-
pocampal volumes compared to controls. In RRMS we found that thalamic volume and BDI predicted
attention/executive function, UF FA predicted processing speed, thalamic volume predicted verbal memory,
and UF FA and BDI predicted spatial memory.
Conclusions: Hippocampal–thalamic–prefrontal disruption affects cognitive performance in early RRMS with
mild to minimal cognitive impairment, confirming both white and gray matter involvement in MS and demon-
strating utility in assessing functional networks to monitor cognition.
© 2013 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Background

Cognitive dysfunction in multiple sclerosis (MS) has a prevalence
from 35% to 60% (Benedict and Zivadinov, 2011) and relates to disease
progression (Amato et al., 2001), vocational status, and quality of life
(Rao et al., 1991). However, conventional disease measures such as
the Expanded Disability Status Scale (EDSS) and T2 lesion volume poor-
ly predict cognitive decline. Advances in MRI and Diffusion Tensor Im-
aging (DTI) may identify better biomarkers for cognition.

MS is a demyelinating autoimmune disorder of focal inflammatory
lesions in CNSwhite matter (WM) (Noseworthy et al., 2000). But imag-
ing and pathology studies also demonstrate diffuse changes in both gray
matter (GM) and WM contributing to cognitive dysfunction (Rovaris
et al., 2002). Identifying early biomarkers predictive of subclinical
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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changes in cognitive networks allows for monitoring of both disease
progression and efficacy of treatments such as anticholinesterases or
cognitive therapy (Benedict and Zivadinov, 2011).

Cognitive dysfunction inMS is alsomediated by GM changes includ-
ing cortical atrophy and cortical lesions found on MRI and histology
(Benedict et al., 2002; Geurts et al., 2005). Subcortical atrophy in the
thalamus (Cifelli et al., 2002; Houtchens et al., 2007) and hippocampus
(Sicotte et al., 2008) is also related to cognitive deficits. The thalamus is
affected early in MS(Cifelli et al., 2002), is associated with cognitive im-
pairment (Houtchens et al., 2007), and predicts disease progression
(Rocca et al., 2010). The hippocampus is implicated inMS-relatedmem-
ory impairment (Sicotte et al., 2008), but structural and functional
changes are also seen with intact spatial memory (Roosendaal et al.,
2010).

The anterior thalamic nuclei and the hippocampus interact bidirec-
tionally via the cingulum bundle and the fornix to form the Papez cir-
cuit, which is critical to memory encoding and recall (Aggleton and
Sahgal, 1993). MS-related damage has been shown in vivo in both the
fornix (Kern et al., 2012; Roosendaal et al., 2009) and the cingulum
(Mesaros et al., 2012). The uncinate fasciculus (UF) is also affected in
MS(Fink et al., 2010) and connects the anterior temporal pole to the
prefrontal cortex, completing a thalamic–hippocampal–prefrontal cir-
cuit (see Fig. 1). All 3 pathways affected in MS are linked to cognitive
performance, although the relative contributions remain ill-defined.

White matter damage in MS is traditionally assessed using T2 lesion
volume, but has shown only modest associations with cognition
(Rovaris et al., 1998). However, DTI is sensitive to microstructural
changes even in normal appearing tissue, and has been linked to cogni-
tion inMS(Dineen et al., 2009). DTI tractography allows identification of
specific WM bundles and quantification of tissue changes in vivo(-
Wakana et al., 2007). DTI tractography is suitable for investigating cog-
nitive networks, such as a thalamic–hippocampal–prefrontal circuit
that is likely disrupted in MS.

We hypothesize that microstructural damage in the thalamic–hip-
pocampal–prefrontal circuit is associated with cognitive function, par-
ticularly memory domains, in relapsing–remitting MS (RRMS). Given
the widely distributed connections of the thalamus and its known im-
pact on cognition in MS(Houtchens et al., 2007), we expect that
disrupting these circuits will also affect other cognitive domains fre-
quently affected including processing speed, attention and executive
function.Wehypothesize that early structural changes predict cognitive
performance in domains of attention and executive function, processing
speed, verbal memory and spatial memory before significant impair-
ment is evident. While pathways in this network have been implicated
individually, here we assess the relative contributions of insult to the
Fig. 1. Limbic pathways completing a thalamic–hippocampal–prefrontal circuit include
the cingulum, fornix and the uncinate fasciculus.
cingulum bundle, the fornix, the UF, the thalamus and the hippocampus
to cognitive performance in RRMS.

2. Methods

2.1. Subjects

Subjects included 27 RRMS patients diagnosed by McDonald
Criteria (McDonald et al., 2001) and 20 healthy controls matched for
age, gender and education level. Participants were recruited from the
University of California, Los Angeles multiple sclerosis clinic and from
the community using flyers, advertisements and social media. Control
subjects were free of any neurologic or medical conditions, were on
no medications, and had normal neurologic examinations. Patients
were excluded if they had a relapse or received steroids within the pre-
vious 3 months. Participants with a history of drug or alcohol abuse
within the previous 3 years were also excluded. Patients were assessed
with the Expanded Disability Status Scale (EDSS) and the Beck
Depression Inventory II (BDI-II) (Beck et al., 1997) to assess the con-
founding factor of depression, which is associated with cognition and
hippocampal volume (Gold et al., 2010; Gold et al., 2014; Heesen
et al., 2010).

2.2. Cognitive assessment

Cognitive tests included: the Wechsler Adult Intelligence Scale
(WAIS) and Memory Scale III(Wechsler, 1945), the Delis–Kaplan Exec-
utive Function System, the Symbol Digit Modalities Test (SDMT)
(Smith, 2002), the Paced Auditory Serial Addition Test (PASAT)
(Gronwall, 1977), the Buschke Selective Reminding Test (BSRT)
(Buschke, 1973), and the 7/24 Spatial-Recall Task (Rao et al., 1991).
For all tests, scores for subcomponents were converted into Z-scores
based on the control group. Similar to the Rao Brief Repeatable Neuro-
psychological Battery (BRNB) (Rao et al., 1991; Sepulcre et al., 2006)
and theMS-COG(Erlanger et al., 2014)we determined cognitive impair-
ment using 4 core tests that have been shown to be reliable and sensi-
tive to the effects of MS on cognition: SDMT, PASAT, BSRT learning,
and 7/24 learning. These core tests were combined into a composite
score and effect sizes d were calculated. To assess the relationships be-
tween structural, cognitive and clinical measures, individual tests
were grouped into 4 cognitive domains. The attention/executive func-
tion subscore consisted of the WAIS digit span and spatial span, and
Delis–Kaplan Executive Function system components: trailmaking,
Stroop, and verbal fluency. Processing speed tests included the SDMT
and the PASAT. Verbal memory was scored using Wechsler Memory
Scale III components: verbal paired associates I and II scores, and BSRT
components: total learning, consolidated long-term recall, and delayed
recall. Finally, the spatial memory subscore comprised of the 7/24
spatial-recall tests A and B and delayed recall. Z-scores were averaged
within each cognitive domain to create 4 domain Z-scores for each
subject.

2.3. MRI acquisition

All subjectswere scannedwith a Siemens Trio 3TMRI scanner. Scans
included: a T1 3D volume (MPRAGE, TR = 2200 ms, TE = 3.4 ms, TI =
900 ms, FOV = 256 mm, matrix = 256 × 256, 176 axial 1 mm slices,
1NEX, resolution= 1mm isotropic); a hippocampal oriented, high res-
olution coronal T2 described previously (TR = 8290, TE = 64, FOV =
200 mm, matrix 512 × 512, in-plane resolution = 0.4 × 0.4 mm,
2NEX, coronal 3 mm slices, no gap); (Gold et al., 2010) a T2 FLAIR
(TR = 11,760, TE = 88, TI = 2500, FOV = 256 mm, matrix =
256 × 256, axial 3 mm slices, no gap) and a DTI sequence (30 noncollin-
ear directions, 2 averages, a single high b-value of 1000 mm/s2, TR =
10,200 ms, TE = 84 ms, FOV = 256 mm, matrix = 128 × 128, 75
axial 2 mm slices, resolution = 2 mm3).
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2.4. Image processing

Images were processed using FMRIB Software Library (FSL: http://
www.fmrib.ox.ac.uk/fsl) (Jenkinson et al., 2012) and Diffusion Toolkit
and Trackvis (trackvis.org) (Wang, 2007).

T1 images were used to calculate brain parenchymal volumes using
FSL3s FAST. FSL3s FIRST was used to segment the thalami bilaterally and
calculate combined thalamic volume. FLAIR images were used to
Fig. 2. Tractography of the upper and lower cingulum (A), the fornix (B), and the uncinate (C)w
protocols {Concha, 2005; Wakana, 2007}. Cingulum (D), fornix (E) and uncinate (F) tractograp
from only the centermost voxels of each tract in native space.
manually identify WM hyperintensities and calculate total lesion load.
Hi-resolutionhippocampal-oriented T2 images were used to manually
segment the hippocampi as described previously (Sicotte et al., 2008).
While we previously described segmenting hippocampal subregions,
here we use only mean total left and right hippocampal volumes with-
out the entorhinal cortex.

DTI data were corrected for eddy current distortion and head mo-
tion, a diffusion tensor was calculated at each voxel, and eigenvalues
as achieved usingmultiple regions of interest (white) according to published tractography
hy (Red) is overlaid on the TBSS white matter skeleton (blue) to acquire diffusion metrics

http://www.fmrib.ox.ac.uk/fsl
http://www.fmrib.ox.ac.uk/fsl
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were used to calculate fractional anisotropy (FA), radial diffusivity (RD)
and axial diffusivity maps (AD). FA images were skeletonized using
FSL3s Tract-Based Spatial Statistics (TBSS), which identifies the
centermost voxels withmaximal FA values of eachwhitematter bundle
for each subject. Tractography results were overlaid on these FA TBSS
skeletons to derive statistics from the most robust voxels at the center
of each tract. By using only TBSS skeleton voxels in statistical analyses,
we minimize the direct effect of very low FA values within lesions and
limit the effects of differences in trackability or anatomic variation by
comparing an anatomically equivalent region of each tract across indi-
viduals. FA skeleton projectionswere transformed to RD and AD images
to calculate tract statistics for these measures as well.

2.5. Tractography

Trackvis3s Diffusion Toolkit uses deterministic fiber-tracking to iden-
tify allWMpathways in the brain, and individual pathways aremanual-
ly selected using multiple regions of interest (ROIs). The 3 pathways
were identified bilaterally on blinded FA images using a priori anatom-
ical knowledge and established tractography protocols (Concha et al.,
2005; Wakana et al., 2007). The cingulum was identified in two parts:
the superior and the hippocampal portions, each selected with an ante-
rior and posterior coronal ROI (see Fig. 2A). For the fornix, the first ROI
selected the body of the fornix coronallywhile the secondROI axially se-
lected a unilateral hippocampal tail. Anteriorly, the columns of the for-
nix were terminated at the level of the anterior commissure (see
Fig. 2B).We identified theUFwith 2 coronal ROIs in the anterior tempo-
ral and frontal lobes (see Fig. 2C).We assessed reproducibility by track-
ing 10 subjects twice and calculating a Kappa score of voxel-wise
overlap. Mean FA was derived from each tract, and bilateral tracts
were averaged for each subject.

2.6. Statistical analyses

T-tests compared groups for the clinical variables of age, BDI-II, and
years of education while a chi-squared test compared gender distribu-
tion. To assess cognitive impairment we used ANOVA to compare the
raw scores for the PASAT, SDMT, BSRT learning, 7/24 learning, and the
standardized composite score. Group differences in cognitive domain
Z-scores were also assessed using ANOVA. Similarly, structural mea-
sures including mean FA of each pathway and GM volumes were com-
pared across groups using ANOVA. Effect sizes were calculated using
Cohen3s d. Associations between structural or clinicalmeasures and cog-
nitive scores were tested first with univariate correlations. Predictors
considered were: mean FA of each pathway, thalamic volume,
Table 1
Clinical characteristics.

Controls mean
± std dev

Patients mean
± std dev

Effect
size d

p-Value

N 20 27
Age 34.1 ± 9.4 37.9 ± 8.2 −0.43 0.15
Female/male 18/2 23/4 0.63
Years of education 16.3 ± .4 16.2 ± .5 0.21 0.92
EDSS N/A 2.5 ± 1.1
Lesion volume (cm3) N/A 7.1 ± 2.0
Beck depression-II 3.5 ± 7.4 9.4 ± 8.9 −0.66 0.02
PASAT raw score 45 ± 12 46 ± 12 −0.08 0.41
SDMT raw score 61 ± 10 53 ± 11 0.71 0.02
BSRT learning raw score 46 ± 11 46 ± 11 −0.02 0.94
7/24 learning raw score 32 ± 3 30 ± 5 0.33 0.23
Composite cognitive score 0 ± 0.77 −0.34 ± 0.78 0.43 0.14
Attention/executive Z-score 0 ± 0.62 −0.28 ± 0.44 0.48 0.11
Processing Speed Z-score 0 ± 0.90 −0.34 ± 0.86 0.39 0.20
Verbal memory Z-score 0 ± 0.91 −0.18 ± 0.44 0.19 0.52
Spatial memory Z-score 0 ± 0.77 −0.50 ± 1.1 0.52 0.16

Bold values indicate significance at p b 0.05.
hippocampal volume, and BDI-II score. Structural associations with
each domain Z-score found to have Pearson3s R N 0.30 were considered
as predictors in a step-wise linear regression model to identify only sig-
nificant, independent predictors of cognitive performance.

For significant associations, we went on to compare left vs right
structures as well as axial (AD) vs radial diffusivities (RD) as predictors
of cognitive function for descriptive purposes. For each significant asso-
ciation, we calculated bivariate correlations with the cognitive domain
Z-score and the four diffusion metrics (left RD, left AD, right RD, right
AD) or two volumes (left, right).

3. Results

There were no significant differences between the 27 RRMS and 20
controls in age, years of education, or gender distribution (see Table 1).
RRMShad significantly highermean BDI-II. 4 RRMShadBDI-II scores con-
sistent withmoderate to severe depressive symptoms (BDI-II N 19)while
2 controls met this cutoff. 3 additional RRMS had BDI-II scores between
14 and 19, consistent with mild depressive symptoms.

RRMS patients performedworse on the SDMT, (mean RRMS: 53.4±
10.3 vs mean control: 61.2 ± 10.3; effect size = 0.71; p = 0.014) but
differenceswere not significant for the PASAT,BSRT learning, 7/24 learn-
ing, or the composite score for these 4 tests. In RRMS patients, T2 lesion
volumes were significantly associated with performance on the BSRT
learning (R = –0.54; p = 0.004), but not with the PASAT, SDMT, or 7/
24 learning scores. EDSS was associated with the performance on the
PASAT, (R = –0.42; p = 0.03) the SDMT, (R = –0.51; p = 0.001) the
7/24 learning (R = –0.43; p = 0.02) and the composite score (R = –
0.58; p=0.001). Therewere no group differences in the 4 cognitive do-
main Z-scores, though patients tended to perform worse. Cognitive do-
main scores were not associated with T2 lesion volumes, although they
were each associated with EDSS (Attention/Executive R = –0.57, p =
0.002; Processing Speed R = –0.54, p = 0.003; Verbal Memory R = –
0.46, p = 0.016; Spatial Memory R = –0.39, p = 0.04).

DTI trackingwas reproducible as determined by a highKappa. Tracks
were reliably reconstructed in all participants and there were no differ-
ences in tractography image volumes between groups. Patients had re-
duced FA in each of the 3 WM pathways (see Table 2; ANOVA p =
0.003). Mean FA ± standard deviation for the cingulum was 0.484 ±
.030 in controls and 0.450 ± .052 in RRMS (p = 0.008). Mean FA for
the UF was 0.411 ± 0.012 for controls and 0.386 ± 0.012 for RRMS
(p = 0.005). Mean FA for the fornix was 0.318 ± 0.036 in controls
and 0.263 ± 0.061 in RRMS (p = 0.0004).

Mean total left and right subcortical GM volumes were compared
across groups after correcting for head size. RRMS had decreased
mean total hippocampal volume as reported previously (Gold et al.,
2010). RRMS also had decreasedmean total thalamic volume compared
to healthy controls (see Table 2).

To identify the most likely predictors of cognitive performance in
RRMS patients, we assessed univariate associations with cognitive do-
main Z-score and the following structural and clinical variables: cingu-
lum FA, fornix FA,UFFA, thalamic volume, hippocampal volume and
BDI-II. See Supplemental Table 1 for univariate correlation matrix in
RRMS. Associations with R N 0.30 were considered in multivariate re-
gression models for each cognitive domain.
Table 2
Group differences in WM FA and GM volume.

Mean controls
± std dev

Mean RRMS
± std dev

Effect
size d

p-Value

Cingulum FA 0.48 ± .03 0.45 ± .05 0.72 0.008
Fornix FA 0.32 ± .036 0.26 ± .06 0.94 0.0004
Uncinate FA 0.41 ± .03 0.39 ± .03 0.79 0.005
Thalamic volume (mm3) 20,945 ± 1286 18,872 ± 2049 1.02 0.0001
Hippocampal volume (mm3)a 8819 ± 1090 8304 ± 689 0.57 0.01

a Hippocampal volumes reported previously (Gold et al., 2010).
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As predictors of attention/executive function Z-score, the regression
model considered thalamic volume (R=0.56), cingulumFA (R=0.41),
BDI-II (R = –0.40), uncinate FA (R = 0.40) and fornix FA (R = 0.39).
Significant independent predictors included thalamic volume and BDI-
II (std B1 = 0.539, std B2 = −0.350, adj R2 = 0.360, p = 0.002; see
Fig. 3A). The association with thalamic volumewasmarginally stronger
on the left, although significance was bilateral (Supplemental Table 2).

For the processing speed domain, uncinate FA (R = 0.40), thalamic
volume (R = 0.37) and cingulum FA (R = 0.32) were considered in
the regression model. The only significant independent predictor was
UF FA (std B = 0.40, adj R2 = 0.129, p = 0.037; see Fig. 3B). The
strength of the association was similar bilaterally but driven by RD
(Supplemental Table 2).

For verbal memory performance, thalamic volume (R = 0.41) and
fornix FA (R = 0.39) were considered as predictors in the regression
model. Thalamic volume remained the only significant independent
predictor (B = 0.387, adj R2 = 0.116, p = 0.046; see Fig. 3C). The uni-
variate correlation only reached threshold on the left.

The model for spatial memory Z-score considered uncinate FA (R=
0.42) and BDI-II (R= –0.34) as predictors, and bothwere independent-
ly associated (std B1 = 0.513, std B2 = −0.393, adj R2 = 0.382, p =
0.001; see Fig. 3D). The UF association was driven by right RD (Supple-
mental Table 2).

4. Discussion

4.1. Interpretation

This study evaluated MS-related pathology in a limbic circuit in vivo
and its role in cognition in a group of RRMS patients with mild to min-
imal cognitive impairment, as indicated by reduced SDMT performance
only. We hypothesized that damage to a thalamic–hippocampal–pre-
frontal circuit contributes to cognitive changes in RRMS. We demon-
strated both reduced WM FA and subcortical GM atrophy in this
circuit. Using linear regressionwedetermined the relative contributions
of each component to 4 cognitive domains within the MS group: atten-
tion/executive function, processing speed, verbal memory, and spatial
memory. Attention/executive function was most closely associated
with thalamic volume and depressive symptoms, processing speed
was associatedwithUFFA, verbalmemorywas associatedwith thalamic
volume and spatial memory was associated with UF FA and depressive
symptoms.

Our cohort of early RRMS patients had mild to minimal cognitive
impairment despite significant structural changes in each of the bio-
markerswe studied.While patients had no significant group differences
in cognitive domains, they had lower SDMT scores, a test which has
been shown to reflect cerebral dysfunction early on and is themost sen-
sitive to MS pathology (Parmenter et al., 2007; Strober et al., 2009). The
strong associations found between imaging structural biomarkers and
cognitive performance, despite only mild impairment should prompt
future longitudinal studies to assess their utility in predicting disease
progression and monitoring treatment efficacy.

4.2. Thalamus

While each structure investigated is affected inMS, thalamic volume
is a strong predictor of cognitive performance, particularly attention/ex-
ecutive function and verbal memory. Thalamic volume has previously
been linked tomultiple tests including the ControlledWord Association
Test, JudgmentOf LineOrientation, CVLT, the Brief VisuospatialMemory
Test, PASAT, and the SDMT(Batista et al., 2012; Benedict et al., 2009;
Houtchens et al., 2007). Althoughwedid notfind thalamic volume to in-
dependently predict processing speed (PASAT and SDMT)when includ-
ed in the full regression, there was amoderate association (R=0.37) in
univariate analysis. This reflects the strong association between thalam-
ic volume and brain white matter integrity (UF FA vs Thalamic Volume
R=0.47) due to itswidespread connections, but also suggests thatwith
a larger N this association may have reached significance. The thalamus
communicates widely and reciprocally with both cortical and subcorti-
cal areas, thus thalamic atrophy contributes tomultiple realms of cogni-
tive deficits. Thalamic atrophy has been attributed to neuronal loss
(Cifelli et al., 2002), however, whether this neuronal loss is due to direct
immunological insult or secondary to axonal transection is unclear
(Minagar et al., 2013).

4.3. Uncinate fasciculus

FA in the UF predicted both spatial memory Z-score and processing
speed Z-score in RRMS. The UF communicates between medial tempo-
ral memory encoding structures and the frontal cortex. Mesaros et al.
(2012) also showed spatial memory deficits linked to lesions in the UF
using a random forest approach classifying cognitively impairedMS pa-
tients. They also demonstrated a role for the UF in visual processing
speed, sustained attention, and verbal memory. Prior to this study, the
UF has been identified as important for episodic verbalmemory function
on the CVLT across a cohort of MS patients and controls (Fink et al.,
2010). Diehl et al. (2008) identified laterality in UF function in temporal
lobe epilepsy, demonstrating left UF DTI metrics associated with verbal
memory function and rightUFDTImetrics associatedwith spatialmem-
ory function. In investigating laterality, we also found spatialmemory to
be more associated with the right UF.

4.4. Cingulum

Cingulum FA was associated with attention/executive function, but
this relationshipwas not independent of thalamic volume or depressive
symptoms. The indirect association may be due to its widespread corti-
cal connections in distributed attentional networks. It has also been im-
plicated in several other realms of cognitive performance inMS. Dineen
et al. (2009) showed associations between cingulum FA and the PASAT,
Benton Visual Retention Test (BVRT) and the California Verbal Learning
Test II (CVLT-II). Yu et al. (2012) found reduced FA in the cingulum as-
sociated with the Rey Auditory Verbal Learning Test (RAVLT) and the
SDMT. Mesaros et al. (2012) used a random forest analysis to demon-
strate that cingulumDTI metrics were the best classifiers across numer-
ous tests: PASAT, SDMT, 10/36 Spatial-Recall Test, BSRT, and Word List
Generation. In contrast, we did not find cingulum FA to be an indepen-
dent predictor of verbal or spatial memory, as these domains were bet-
ter explained by thalamic volume, fornix FA,UFFA, and BDI-II score. We
included the PASAT and SDMT in the processing speed domain in our
study since these tests are both sensitive to cognitive changes in MS,
and although cingulumFA showed amoderate correlationwith the pro-
cessing speed Z-score (R = 0.32), it was not independently predictive.

4.5. Fornix

The fornix is the primary hippocampal efferent and we previously
found fornix insult to be associated with poor performance on an unre-
latedword-pairs task and adaptive increases in fMRI BOLD signal during
the task in RRMS patients (Kern et al., 2012). In other studies the fornix
has also been associated with MS differences on verbal memory tests
including the CVLT-II(Dineen et al., 2009; Fink et al., 2010), the
BVRT(Dineen et al., 2012) and the RAVLT(Yu et al., 2011). In this study
we identified a link between fornix FA and verbalmemory performance,
but this relationship was not independent of thalamic volume.
Interestingly, thalamic volume and fornix FA were strongly associated
(R = 0.72), as has been shown previously (Dineen et al., 2012), likely
due to both direct and indirect hippocampal–anterior thalamic connec-
tions via the fornix, as well as their proximity within the 3rd ventricle.
Third ventricular width has been previously identified as a marker for
cognition and is associated with neocortical volume (Benedict et al.,
2004).
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4.6. Hippocampus

Similar to thalamic atrophy, hippocampal atrophy inMS is driven by
neuronal loss, but demyelination is also evident (Papadopoulos et al.,
2009). We previously found that subregional hippocampal volume cor-
relates with verbal memory using an unrelated word-pairs task in a
group of patients with verbal memory impairment (Sicotte et al.,
2008), while others have found lateralized hippocampal associations
with verbal memory on the left (Koenig et al., 2014; Pardini et al.,
2014), and spatial memory on the right in MS(Pardini et al., 2014).
But in this study we did not find an association independent of fornix
FA or thalamic volume. However, in this study no patient had impaired
verbal memory function. Thalamic atrophy and disruption of the fornix,
a hippocampal–thalamic connection, may be earlier manifestations of
verbal memory alterations in patients who are not yet impaired. Previ-
ous studies have shown a strong association between fornix DTImetrics
and hippocampal volume (Koenig et al., 2014). Furthermore, altered
hippocampal function may precede volume loss, also contributing to
verbal memory deficits. We previously showed altered hippocampal
fMRI activity during a verbal learning task that was associated with ver-
bal memory performance and fornix FA, but independent of hippocam-
pal volume (Kern et al., 2012), while Roosendaal et al. showed reduced
interhemispheric hippocampal connectivity (Roosendaal et al., 2010).
4.7. Depression

We considered BDI-II score in our analysis as a confounder since de-
pressive symptoms are common in MS and affect cognition (Heesen
et al., 2010). This is evident in our sample since BDI-II scores were
higher in RRMS patients. As reported previously from this sample,
Fig. 3. Structure–cognition scatterplots. Attention–executive function Z-score in RRMS patients
nate FA (B). Verbal memory Z-score is associated thalamic volume (C). Spatial memory Z-scor
depressive symptoms did not correlate with total hippocampal volume
but were significantly associated with smaller volumes in the hippo-
campal subregions CA2, CA3 and dentate gyrus (Gold et al., 2010). We
recently replicated the association between depressive symptoms and
hippocampal subregions in a larger sample (Gold et al., 2014). Depres-
sive symptoms were not associated with other structural measures in
this study, but were independently associated with lower scores in spa-
tial memory and attention/executive function. These results highlight
the importance of including measures of depressive symptoms when
assessing cognitive performance. Associations between depressive
symptoms and limbic circuit structural biomarkers may be more evi-
dent in patients diagnosed with major depressive disorder (MDD), as
has been shown previously in patients without MS but with MDD
who have reduced gray matter in the subgenual anterior cingulate cor-
tex (Drevets et al., 2008). Future studies should include MS patients
with and without MDD to better distinguish MS limbic pathology
from MDD limbic pathology.
4.8. White matter lesions

RRMS patients had a relatively low average T2 lesion volume in this
study, andweminimized thedirect effects ofWM lesions by deriving dif-
fusionmetrics from aWMskeleton of only the centermost voxels of each
pathway. Lesion volumewas associatedwith BSRT learning performance
confirming the sensitivity of this test toMSpathology. However the glob-
al effect of lesionswas not predictive of performance in specific cognitive
domains, whichmay bemore sensitive to localized insult to circuits such
as a thalamic–hippocampal–prefrontal circuit. Identifying tract-specific
insult in eloquent areas may better predict domain-specific cognitive
changes than global measures such as T2 lesion volume.
is associated with thalamic volume (A). Processing speed Z-score is associated with unci-
e is associated with uncinate FA (D).
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4.9. Limitations

Our study has several limitations but also prompts future investiga-
tions. Unlike other DTI studies using non-hypothesis driven approaches
or assessing brain-wideWM pathways, we limited our study to a tha-
lamic–hippocampal–prefrontal circuit to investigate the relative contri-
butions of each component in a group of early RRMS with mild to
minimal cognitive impairment. In doing sowe likely omitted important
contributions from other affected structures in MS that also relate to
cognitive dysfunction such as the corpus callosum (Yu et al., 2012),
basal ganglia (Batista et al., 2012), and neocortex (Benedict et al.,
2002). Another limitation is that we did not include a measure of fa-
tigue, which is common in MS and known to affect cognition (Heesen
et al., 2010).

Furthermore, while we identified components predictive of cogni-
tive function, a better understanding of the temporal dynamics is need-
ed. Thalamic atrophy is strongly linked to cognition, but perhaps FA
changes can be detected earlier. We predict that thalamic atrophy
occurs early in the disease but cannot saywhether atrophy is due to pri-
mary GM insult or secondary toWM insult andWallerian degeneration.
Hippocampal atrophy may also occur secondary to thalamic insult or
secondary to loss of hippocampal–thalamic connections. Longitudinal
studies could distinguish these hypotheses.

4.10. Conclusions

Hippocampal–thalamic–prefrontal disruption affects cognitive func-
tion in RRMS before significant functional impairment is evident,
confirming both white and graymatter involvement in MS and demon-
strating utility in assessing functional networks to monitor cognition.
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