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Abstract: The Internet of Things (IoT) is now experiencing its first phase of industrialization.
Industrial companies are completing proofs of concept and many of them plan to invest in automation,
flexibility and quality of production in their plants. Their use of a wireless network is conditioned
upon its ability to meet three Key Performance Indicators (KPIs), namely a maximum acceptable
end-to-end latency L, a targeted end-to-end reliability R and a minimum network lifetime T. The IoT
network has to guarantee that at least R% of messages generated by sensor nodes are delivered
to the sink with a latency ≤L, whereas the network lifetime is at least equal to T. In this paper,
we show how to provide the targeted end-to-end reliability R by means of retransmissions to cope
with the unreliability of wireless links. We present two methods to compute the maximum number of
transmissions per message required to achieve R. MFair is very easy to compute, whereas MOpt
minimizes the total number of transmissions necessary for a message to reach the sink. MFair and
MOpt are then integrated into a TSCH network with a load-based scheduler to evaluate the three
KPIs on a generic data-gathering application. We first consider a toy example with eight nodes where
the maximum number of transmissions MaxTrans is tuned per link and per flow. Finally, a network
of 50 nodes, representative of real network deployments, is evaluated assuming MaxTrans is fixed.
For both TSCH networks, we show that MOpt provides a better reliability and a longer lifetime
than MFair, which provides a shorter average end-to-end latency. MOpt provides more predictable
end-to-end performances than Kausa, a KPI-aware, state-of-the-art scheduler.

Keywords: IoT; industrial IoT; reliability; TSCH; latency; scheduling; network lifetime; IEEE802.15.4e;
PDR; ETX; retransmission; probabilistic guarantee

1. Introduction

The Internet of Things (IoT) is transforming our daily life at home [1], at work, in our cities [2],
in transportation [3], in sport training and healthcare, in process control and automation, in smart
farming and beyond.

1.1. Context

At home or in the office, the IoT allows us to save time and energy by controlling lights and
appliances and knowing our resource consumption habits. In business and industry, it increases
productivity and efficiency by streamlining processes. In transportation, it helps people to enjoy
services of better quality. IoT devices are electronic devices able to communicate with a network and
perform a task. We can draw a distinction between consumer devices, smart home devices, enterprise
and industrial IoT devices. In this paper, we do not focus on IoT devices themselves, but rather on
applications using these devices. More precisely, we will consider IoT applications that are responsible
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for data gathering and are the most demanding in terms of quality of service provided by the networks
supporting them [4,5]. We will consider three types of requirements:

• end-to-end reliability, denoted R: the data generated by any sensor node must be delivered to the
sink with a probability greater than or equal to R. A value of 0.99 is frequent. In industry, a value
of 0.99999 is targeted.

• end-to-end latency, denoted L: since, on the one hand, the role of the network is to collect data
generated by wireless sensor nodes that are deployed in the area covered by this network and,
on the other hand, only up-to-date information can be used to take accurate decisions, the time
elapsed between data generation and data delivery to the sink is defined as the end-to-end latency.
A value less than one second is usual.

• network lifetime, denoted T: since most IoT devices are battery operated, the goal of the network
is to maximize its lifetime defined as the time when the first device has exhausted its battery.
The importance of this requirement increases with the difficulty or the cost of replacing a battery
in the environment concerned. A lifetime of several years (e.g., 3 years) is usual.

Since most wireless sensor networks deployed up to now are based on the IEEE 802.15.4
technology [6] and, given that the TSCH (Time Slotted Channel Hopping) technology [7] has been
designed to enhance the IEEE 802.15.4 technology to better meet the three types of requirements
previously defined, we focus our study on TSCH networks. Is a TSCH network able to meet the
usual requirements of IoT applications? The goal of this paper is to answer this question, which can
be refined into: is a TSCH network capable of ensuring that at least R percent of messages will be
delivered to the sink with a delay less than or equal to L, and a network lifetime greater than or equal
to T, while taking into account the unreliability of wireless links.

1.2. Contributions

Before going further, we define the concept of flow. A f low is defined as a set of messages having
the same attributes such as the source address, the destination address and the QoS (Quality of Service)
parameters (e.g., end-to-end reliability, end-to-end latency).

In contrast to many network performance evaluations, we take into account the unreliability
of wireless links. The first contribution of this paper is to show how to reach the targeted
end-to-end reliability R with two methods MFair and MOpt able to estimate the maximum number
of transmissions per message and per flow over each link visited, taking into account both the
heterogeneity of link quality and the dynamicity of link quality observed on real traces. Whereas MFair
is very simple, MOpt minimizes the total number of transmissions per message, for each flow
considered. The second contribution consists of providing a fully-integrated approach for a TSCH
network by integrating these methods and a Load-based scheduler in the 6TiSCH stack. As a third
contribution, we evaluate the performances (i.e., the end-to-end reliability and the end-to-end latency)
obtained by this approach on two TSCH networks, one of eight nodes and the other of 50 nodes.
Finally, we show that, on a generic data-gathering application, this approach provides more predictable
end-to-end performances than Kausa [8], a KPI-aware state-of-the-art scheduler.

This paper is organized as follows. In Section 2, we present the advantages and drawbacks of
well-known link quality estimators and show how they are used to enhance network performances.
Since the approach proposed in this paper shares the same goals as Kausa [8], Kausa is briefly described.
A more detailed description is given in Section 7. Section 3 describes the two methods we propose
to estimate the maximum number of transmissions per message and per flow over each link visited.
Section 4 shows how to integrate these methods in a TSCH network with a centralized scheduling
function. Section 5 gives performance results with regard to end-to-end reliability and end-to-end
latency for a targeted end-to-end reliability ranging from 0.9 to 0.99999 for a toy example. In Section 6,
a TSCH network of 50 nodes is considered with a generic data-gathering application. End-to-end
latency and reliability are evaluated. The solution proposed is compared to Kausa in Section 7. Finally,
we conclude in Section 8.
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2. Related Work

Different ways to estimate the quality of a wireless link exist. They all rely on link measurements
obtained by an active, passive or hybrid link monitoring. A usual classification distinguishes between
hardware and software-based link quality estimators [9,10]. Hardware estimators have the advantage
of being directly provided by hardware without the need for any additional processing overhead.
However, their accuracy is not very good for two reasons. First, they are measured only on successfully
received packets, and they do not take into account the number of packet losses. Second, they are
not evaluated on the whole packet received but only on eight symbols of this packet. The main
hardware-based quality estimators are RSSI (Received Signal Strength Indicator), LQI (Link Quality
Indicator), and SNR (Signal-to-Noise Ratio). In addition, LQI depends on the manufacturer of the
radio transceiver used. For the software-based quality estimators, we distinguish those based on
PRR (Packet Reception Rate), from those based on RNP (Required Number of Packet retransmissions)
and finally those using a score. For instance, ETX (Expected Transmission Count) [11] is classified
as an RNP-based estimator, whereas F-LQE (Fuzzy Link Quality Estimator) [12] is a score-based one
assessing link quality in terms of four properties: Smoothed Packet reception Ratio, Stability factor,
ASymmetry Level and channel Average Signal-to-Noise Ratio. In [13], the authors introduce Bmax,
the maximum count of consecutive transmissions needed for a frame to be transmitted on a link.
This metric evaluates the link burstiness, where a burst is defined as a period of continuous packet
loss. It is obtained empirically for each link based on previous transmissions and can be seen as an
observed worst case. Then, they build a schedule that allocates Bmax cells for every frame that a link
is supposed to carry. The problem with such a method is that it may require a long delay (more than
140 hours according to the authors) before a representative Bmax is known for all the links.

Whatever the link quality estimator used, authors usually agree on the following conclusions:

• The quality of any wireless link can be classified as good, intermediate or bad. The challenge lies in an
accurate estimation of the intermediate link quality.

• An ideal link quality estimator should be [10] energy efficient (i.e., requiring low processing,
communication and memory overhead), accurate (i.e., reflecting the real link behavior),
reactive (i.e., able to promptly react to persistent link state changes) and stable (i.e., able to tolerate
transient link state changes).

• To better reflect the real behavior of a link, several link properties should be taken into account. That is
why link quality estimators tend to combine several simple estimators [14] and use sophisticated
techniques (e.g., simple average, filtering, machine learning [15,16], regression, and fuzzy
logic [17,18]) to produce a metric from link measurements.

Link quality estimators have been used to improve the quality of service provided to
end-users [19]. By using links of better quality, the network throughput is maximized, the delivery
times are minimized, routes are more stable [18], etc. These improvements can be increased by link
quality prediction using online machine learning techniques as in [20]. In such a case, packets are then
able to avoid links before their quality degrades below an acceptable threshold, and routing reactivity
is improved. Furthermore, if both the link quality estimator and the routing protocol take energy into
account, network lifetime is maximized, as in [21].

Closer to our work, Gaillard et al. propose a greedy algorithm that optimizes the distribution of
links used by flows network-wide [22]. These authors extend TASA [23], a well-known centralized
scheduling algorithm for FTDMA networks, to take into account retransmissions and fragmented
packets. They build a schedule that complies with reliability expectation by adding extra cells
that are used in the case of consecutive retransmissions. They take into account link quality and
packet fragmentation. The same authors further extend their research in [8] by proposing Kausa,
a centralized scheduling algorithm that builds resource paths that guarantee QoS per flow, when
multiple applications are using the same network, and each application has its own requirements and
traffic flows.
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In this paper, we propose to use a simple link quality estimator: PDR (Packet Delivery Rate) that is
easily computed by the sender as the ratio of the number of acknowledged frames to the number of sent frames.
Even if this estimator is not ideal, as previously defined, it provides an accurate estimation of link
behavior because, unlike hardware-based link estimators, it takes into account packet losses. We use
the PDR link quality estimator to compute the maximum number of transmissions per message and
per flow over any link visited by the flow considered.

We share the same goal as Kausa [8]: namely, to build a centralized schedule ensuring that
flows meet their required end-to-end latency and delivery rate, by means of message retransmissions.
Like [8], we adopt a per flow approach, allowing us to differentiate QoS per flow. However, unlike [8],
we consider the optimal solution for any flow to be the one that minimizes the total number of
transmissions per message of this flow, while achieving the desired end-to-end reliability. Furthermore,
traces obtained from real IoT networks like [24,25] allow us to better understand the challenges of
wireless networking and make realistic assumptions. That is why, in this paper, the performance
evaluation is based on PDR values computed from a realistic model, as explained in Section 6.1.

3. Optimal Retransmission Estimation

To cope with the unreliability of network links, unacknowledged messages are retransmitted up
to a maximum number of retransmissions. We have to determine this maximum number that of course
depends on the unreliability of the link considered as well as the targeted end-to-end reliability R.

Since each flow may request its own QoS, we adopt a per-flow approach. Without loss of generality,
we assume that each message is labeled with its flow tag, which includes the origin node of the flow.

3.1. Assumptions and Basic Properties

Let us consider the flow f originating from any sensor node Nh with h ∈ [1, n]. Let h denote the
path length (i.e., the number of hops) from Nh to the sink N0. To simplify the notation, we assume that
the path is defined by Nh → Nh−1 → Nh−2 · · · → N0.

For any link j ∈ [1, h] of f ’s path, we denote by Mj the maximum number of transmissions
of any message of f transmitted by node Nj to its parent in the routing tree, and Pj the probability
of successful acknowledgment receipt after a single transmission, whereas Rj is the probability of
successful acknowledgment receipt on link j after a maximum number Mj ≥ 1 of transmissions. Table 1
gives the notations used in this paper.

Table 1. Main notations.

Name Meaning

R the targeted end-to-end reliability
L the targeted end-to-end latency
T the targeted network lifetime

j the link from node Nj to its parent in the routing tree
Mj the maximum number of transmissions of any message transmitted on link j

Pj
the probability of successful acknowledgment receipt after a single message
transmission on link j

Rj
the probability of successful acknowledgment receipt on link j after a maximum number
Mj of transmissions

For the sake of simplicity, we adopt the following assumptions:

Assumption 1. Network links fail independently.

Assumption 2. The transmissions of any message fail independently.
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Assumption 3. Each node has enough Transmission opportunities to prevent message drops due to
Transmission queue overflow.

In a TSCH network, this assumption means that the scheduling algorithm has assigned enough
transmission cells to each node. As a consequence, the unreliability of a transmission is only due to the
unreliability of the wireless link considered. If this assumption were not true, then the computation of
the transmission reliability should include not only the message loss due to the unreliability of the
wireless link considered but also the message loss due to Transmission queue overflow.

We first recall some basic properties:

Property 1. The end-to-end reliability on a path is equal to the product of the reliability of each link composing
that path.

Property 2. The probability of successful acknowledgment receipt over any link j increases with the maximum
number of message transmissions Mj according to the following equation:

Rj = 1− (1− Pj)
Mj . (1)

Proof. After Mj transmissions, the acknowledgment of a message is not received successfully with a
probability equal to (1− Pj)

Mj . Hence, the probability of successful acknowledgment receipt after Mj

transmissions is equal to 1− (1− Pj)
Mj .

3.2. A Fair Method

The question is: knowing the end-to-end reliability that must be met on a given path, how to
distribute this targeted end-to-end reliability into the targeted reliability of each link on that path?
The maximum number of transmissions on each link is then deduced from the targeted reliability on
the link and the probability of successful transmission on that link. In this paper, we propose two
methods that can be applied to any network meeting Assumptions 1–3.

Since we adopt a per-flow approach, we consider any flow f , originating from a node h hops
away from the sink. In other words, the path of f consists of h links, h ≥ 1. Since the end-to-end
reliability on the path is equal to the product of the reliability of each of its links, which should be ≥ R,
a simple solution consists of fairly and uniformly sharing the end-to-end reliability over each link of
the path. Hence, each link j has to meet a reliability equal to Rj = R1/h. The maximum number of

transmissions on any link j is then equal to Mj = d
Log(1−R1/h)

Log(1−Pj)
e. This principle is applied by the MFair

Algorithm given hereafter (see Algorithm 1).

Algorithm 1: MFair: compute the number of transmissions on each link j to reach a reliability
R1/h over this link per message of flow f visiting h links.

Require: R the targeted end-to-end reliability, Pj = the success probability of receiving the
acknowledgment after a single message transmission over link j with 1 ≤ j ≤ h

Ensure: Mj is the minimum number of transmissions on link j to achieve R1/h

for each link j do
if Pj = 1 then

Mj ← 1
else

Mj ← d
Log(1−R1/h)

Log(1−Pj)
e

end if
end for

Property 3. The processing complexity of the MFair Algorithm is in O(1).
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Proof. The complexity of the Fair Algorithm is equal to the complexity of computing d Log(1−R1/h)
Log(1−Pj)

e for

each link, times h the number of links, hence the property.

Figure 1 depicts the maximum number of transmissions over a link whose probability of successful
acknowledgment receipt ranges from 0.5 to 0.9 for a 4-hop flow when the targeted end-to-end reliability
ranges from 0.9 to 0.9999.

Figure 1. Maximum number of transmissions over a link visited by a 4-hop flow, computed by MFair.

3.3. An Optimal Method

For any sensor node Ni, let us denote f the flow originating from Ni. The problem consists of
minimizing the total number of transmissions needed to deliver any message of f to the sink, under
the constraint that the end-to-end latency is greater than or equal to R.

The optimization problem can be defined as follows:
Goal: Find the values of Mj for each link j visited by f , j = 1 · · · h that minimize ∑h

j=1 Mj
under the constraints:

h

∏
j=1

(1− (1− Pj)
Mj) ≥ R, (2)

Mj integer ≥ 1. (3)

If several solutions exist for the same total number of transmissions, choose the solution
maximizing ∏h

j=1(1− (1− Pj)
Mj).

Lemma 1. Each link j = 1 · · · h should provide a reliability Rj at least equal to the requested end-to-end

reliability R, Rj ≥ R. Hence, Mj ≥ d
Log(1−R)
Log(1−Pj)

e.

Proof. If there is a link j that provides a reliability Rj < R, then the product of the reliability of all other
links should be greater than 1 to obtain an end-to-end reliability of R, which is impossible. Therefore,
each link has to provide a reliability at least equal to R by means of retransmissions. Since the reliability
of a link j increases with the maximum number of transmissions according to Equation (1), to obtain
an end-to-end reliability of R, the number of transmissions Mj should be greater than or equal to that

needed to obtain a link reliability of R, leading to Mj ≥ d
Log(1−R)
Log(1−Pj)

e.
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Lemma 2. There is no solution ensuring an end-to-end reliability ≥ R, with a total number of transmissions
< ∑h

j=1d
Log(1−R)
Log(1−Pj)

e.

Proof. It is deduced from Lemma 1.

Lemma 3. If there is no solution ensuring an end-to-end reliability greater than or equal to R, with a total
number of transmissions ≤ M = ∑h

j=1d
Log(1−R)
Log(1−Pj)

e and, if increasing Mj to Mj + 1 for the link j maximizing

the value of Pj(1/Rj − 1) does not achieve R, then there is no solution ensuring an end-to-end reliability R in
M + 1 transmissions.

Proof. Assuming that there is no solution ensuring an end-to-end reliability ≥ R, with a total
number of transmissions ≤ M = ∑h

j=1d
Log(1−R)
Log(1−Pj)

e, we compute, for any link k, the benefit on the

end-to-end reliability brought by increasing Mk to Mk + 1. The new end-to-end reliability can be
written newR = (∏h

j=1,j 6=k Rj)(1− (1− Pk)
Mk+1). Since 1− (1− Pk)

Mk+1 = 1− (1− Pk)(1− Pk)
Mk =

Rk + Pk(1− Rk), we get newR = (∏h
j=1,j 6=k Rj)(Rk + Pk(1− Rk)). Denoting ∏h

j=1 Rj as oldR, we get
newR = oldR(1− Pk + Pk/Rk). Hence, maximizing newR means selecting the link k that maximizes
Pk(1/Rk − 1). Hence, if with that link k, the end-to-end reliability newR is not greater than or equal to
R, then no other link can meet the end-to-end reliability R with a total number of transmissions equal
to M + 1.

Property 4. The MOpt algorithm given in Algorithm 2 finds the optimal solution.

Proof. The algorithm starts with the smallest possible number of transmissions M, according to
Lemma 2. If the requested end-to-end reliability is met, then the solution is found. Otherwise,
the algorithm increases the total number of transmissions by one and checks again whether the
requested end-to-end reliability is met by increasing the number of transmissions of one on the link
providing the highest reliability gain. If yes, the solution is found, otherwise there is no solution for
M + 1 transmissions.

Algorithm 2: MOpt: Compute the number of transmissions Mj on link j to achieve an end-to
end reliability ≥ R and minimize the total number of transmissions per message of flow f
visiting h links

Require: R the targeted end-to-end reliability 0 < R < 1, Pj = the probability of successful
acknowledgment receipt after a single transmission over link j with 1 ≤ j ≤ h

Ensure: Mj is the minimum number of transmissions to achieve R
for each link j do

if Pj = 1 then
Mj ← 1

else
Mj ← d

Log(1−R)
Log(1−Pj)

e
Rj ← 1− (1− Pj)

Mj

Gainj ← Pj(1/Rj − 1)
end if

end for
while ∏h

j=1 Rj < R do
Select the link j maximizing Gainj
If several links provide the same Gain, take the farthest link j from the sink
Mj ← Mj + 1
Rj ← 1− (1− Pj)

Mj

Gainj ← Pj(1/Rj − 1)
end while
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We now evaluate the complexity of this algorithm and more particularly we upper bound the
number of iterations needed to find the maximum number of transmissions over each link such that
the total number of transmissions per message of the flow considered is minimized.

Property 5. The MOpt Algorithm, given in Algorithm 2, finds the optimal solution in a number of iterations
less than or equal to ∑h

j=1b
Log(h)

Log(1−Pj)
c.

Proof. Let us consider any link j visited by the flow considered. Since R → 1,
we have R1/h < 1 − 1−R

h . Hence, Log(1 − R1/h) > Log(1 − R) − Log(h), leading

to: Log(1−R1/h)
Log(1−Pj)

< Log(1−R)−Log(h)
Log(1−Pj)

. We then obtain d Log(1−R1/h)
Log(1−Pj)

e ≤ d Log(1−R)−Log(h)
Log(1−Pj)

e.

Since da − be ≤ dae − bbc, we get: Mj, f air − Mj,init ≤ b Log(h)
Log(1−Pj)

c, where Mj, f air denotes the

maximum number of transmissions over link j, whereas Mj,init denotes the first value tried by the
optimal algorithm. Since ∑h

j=1 Mj, f air is the maximum number of transmissions of a message to
reach the sink provided by the Fair algorithm and this number is never exceeded by the Optimal
algorithm, the maximum number of iterations of the Optimal algorithm is upper bounded by

∑h
j=1 Mj, f air −∑h

j=1 Mj,init ≤ b
Log(h)

Log(1−Pj)
c, hence the property.

3.4. Expected vs. Maximum Number of Transmissions

For any flow considered and whatever the method adopted to compute the maximum number
of transmissions over each link visited by the flow considered, the real number of transmissions
used is much smaller than the maximum one, which occurs with a very low probability. In this
section, we want to evaluate the energy saving obtained with a variable number of transmissions
instead of always considering the worst case that has a very low occurrence probability. With the
Assumptions 1–3, we can evaluate E(Mj) the expected number of transmissions on any link j, knowing
that Mj, the maximum number of transmissions, is computed either by MFair or by MOpt. We then
have:
E(Mj) = ∑

Mj−1
k=1 kPj(1− Pj)

k−1 + Mj(1− Pj)
Mj−1.

Property 6. The expected number of transmissions on any link j is equal to

E(Mj) =
1− (1− Pj)

Mj

Pj
,

where Mj denotes the maximum number of transmissions used for link j.

Proof. Let us consider Sn(x) = ∑n
k=1(1 + x)k and let S′n(x) be its derivative. We have S′n(x) =

∑n
k=1 k(1 + x)k−1. Since Sn(x) is the sum of a geometric progression, we have:

Sn(x) = − 1+x−(1+x)n+1

x = (1+x)((1+x)n−1)
x .

Hence, the derivative is:
S′n(x) = (1+x)n(nx−1)+1

x2 . By replacing x by −Pj and n by Mj − 1, we get

E(Mj) = ∑
Mj−1
k=1 kPj(1 − Pj)

k−1 + Mj(1 − Pj)
Mj−1 =

1−(1−Pj)
Mj−1

(−1−(Mj−1)Pj)+1
Pj

=
1−(1−Pj)

Mj

Pj
,

hence the property.

Figure 2 depicts the maximum and the expected numbers of transmissions per message of a
4-hop flow, for a targeted end-to-end reliability of 0.9999, over a link whose success probability per
transmission ranges from 0.5 to 0.9. We observed that, in all the cases studied, although the value
of E(Mj) decreases when Pj, the success probability per transmission increases, dE(Mj)e remains
constant and equal to 2. By stopping its retransmissions as soon it receives an acknowledgment,
the sender saves its energy. For instance, let us consider that for any link j for which Pj = 0.5 is
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visited by a 4-hop flow, the sender saves Mj − dE(Mj)e transmissions for this link that is 16− 2 = 14
transmissions for MFair. Since the flow visits four hops and assuming that its four links have the same
success probability, each of the four transmitting nodes saves 14 transmissions. Assuming that the
schedule is periodic with a period of 101 time slots (the default value in the TSCH network), and this
flow generates a message per schedule period, these four nodes save 140 ms each schedule period
of 101× 7.25 = 732.25 ms, for a slot duration of 7.25 ms. This corresponds to an increase of 19% in
sleeping time per schedule period for each node.

Figure 2. Expected number of transmissions versus MFair Maximum number of transmissions over
a link.

It is useful to compare this value with the value of ETX on link j, denoted by ETXj. Let Dj be
the delivery rate from node j to its parent, whereas Dr(j) is the delivery rate in the reverse direction.
Since Pj is defined as the probability for j to receive the acknowledgment of its message, we have to
take into account the delivery rates of both directions, which gives:

Pj = Dj ∗ Dr(j) (4)

ETXj is defined as:

ETXj =
1

Dj ∗ Dr(j)
. (5)

As a consequence, ETXj does not depend on the targeted end-to-end reliability R but only on the
reliability of both directions of the link considered. This explains the main difference between ETXj
and Mj.

In addition, ETXj is not equal to E(j). Indeed, E(j) assumes a maximum number of transmissions
equal to Mj, whereas ETXj assumes a number of transmissions that may be infinite.

4. Framework for a TSCH Network

The MOpt and MFair methods are now applied to compute the maximum number of
transmissions per link and per flow. Flows are generated by a low-power network based on the
TSCH technology [7].
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We focus on data gathering applications with end-to-end requirements in terms of reliability
and latency, as well as requirements with regard to network lifetime. The network supporting these
applications is a TSCH network [7].

4.1. TSCH Network

In a TSCH network, the medium access is time-slotted and several transmissions are done on
different channels in the same time slot. More precisely, transmissions are scheduled in cells, where a
cell is defined by its channel offset and its time slot offset. There are two types of cells: shared cells
where any node having a message to transmit is allowed to do so, and dedicated cells, where only the
transmitter defined in the schedule is allowed to. The choice of a wireless TSCH network helps to meet
Assumptions 1–3 because the mapping between logical channels and physical ones changes at each
time slot. Thus, even if a message is retransmitted in the next slot and on the same logical channel as
previously, it will be transmitted on a different physical channel.

The schedule of transmissions is periodic and conflicts in dedicated cells are avoided. In addition,
nodes know from the schedule in which slots they are allowed to transmit or to receive. They sleep in
any other slot in order to save energy.

4.2. Scheduling Function

The scheduling algorithm, which is assumed to be centralized in this paper, works per flow:
it allocates the cells needed to transmit a message from the flow origin to the sink. More precisely,
it proceeds hop by hop, starting from the flow origin and allocating to each visited node the number
of cells needed to receive the message from its child and then the number of cells needed to transmit
this message to its parent. Since the scheduler does not know a priori which message transmission
will be successful, it has to take into account the worst case where a message is received by the next
hop after the maximum number of transmissions for this link and this flow. Hence, for each message,
the scheduler allocates to each visited link a number of cells corresponding to the maximum number
of transmissions on that link for the flow in question.

However, this does not mean that each message is transmitted a maximum number of times.
In fact, as soon as the sender has received the acknowledgment of any message msg, it stops
retransmitting msg and may use the slot foreseen for a retransmission of msg for the transmission of
another message, if it has one in its Transmit queue.

Any sensor node first transmits the message in its Transmit queue that has the highest flow
priority, as the primary criterion and the smallest timestamp within a same flow, as the secondary
criterion. This assumes that messages are timestamped when they are generated by their origin node.

The Load-based scheduler is selected because of its simplicity combined with its very good
performances [26]. This scheduler schedules first the flow originating from the most loaded node.
The load of a node is computed as the number of cells needed to transmit its own flows, plus the
number of cells needed to receive and transmit the flows originating from its descendants.

4.3. Computation of Key Performance Indicators

In this paper, we consider three Key Performance Indicators (KPIs) that matter for Industry 4.0
and the IoT. We now show how to compute them for a TSCH network and a scheduling function
defined in Sections 4.1 and 4.2, respectively. These three KPIs are:

• The maximum end-to-end latency L is the maximum time elapsed between data generation by a
sensor node and its delivery to the sink. To compute this value within the framework defined in
Section 4.2, we make an additional assumption:

Assumption 4. The maximum number of message transmissions on a link, denoted as MaxTrans, a
parameter of the MAC TSCH protocol, is dynamically tuned according to the value computed by MFair
or MOpt.
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With Assumption 4, the maximum end-to-end latency [27] is obtained when the last slot assigned
to the node considered has just elapsed and then only the last transmission of the message is
successful. This gives:

(Slot f rameSize− 1 + UsedSlots)× SlotDuration, (6)

where UsedSlots is the number of slots used by the schedule for data gathering. Hence,
the smallest maximum end-to-end latency that can be achieved is obtained by an optimal schedule,
which uses MinSize the minimum number of slots for data gathering and for a slotframe duration
equal to this number of slots. This smallest maximum latency is equal to

(2 ∗MinSize− 1)× SlotDuration. (7)

• The end-to-end reliability R provided by the network. It is evaluated by the ratio of the total number
of user-data messages sent by the sensor nodes over the total number of user-data messages
delivered to the sink.

• Network lifetime T is defined as the time the first node runs out of battery. Network lifetime can be
expressed as:

Min
N∈Nodes

Initial_Energy(N)× SFDuration
Average_Energy_Consumption(N)

, (8)

where Initial_Energy(N) denotes the initial energy of node N, Average_Energy_Consumption(N)

is the average energy consumption of N per slotframe, and SFDuration is the slotframe duration.

To evaluate the network lifetime, defined as the time up to first battery depletion of the busiest
node, we use the parameters whose values are given in Table 2.

Table 2. Parameters used for network lifetime computation.

Parameter Value

Initial energy of node powered by 2 Energizers L-91 AA batteries 2821.5 mAh
Transmit a data frame & receive its acknowledgment 54.5 µC
Receive a data frame & transmit its acknowledgment 32.6 µC

IdleListen 6.4 µC
Sleep 0 µC

To summarize, the IoT network has to guarantee that at least R percent of the messages generated
by sensor nodes are delivered to the sink with a latency ≤ L, whereas the network lifetime is at least
equal to T.

4.4. Generalization of the Theoretical Bound on the Maximum Latency

We now compute a theoretical bound on the maximum latency when TXCell f (Ni) < MaxTrans,
where TXCell f (Ni) denotes the number of TX cells assigned to flow f on node Ni.

Let f be the flow whose message m has the maximum end-to-end latency. Let Nk be the source
node of f which is k hops away from the sink. Flow f visits successively Nk, Nk−1, · · ·N1 and then
the sink. We adopt an additional assumption: on any visited node, m is never delayed by another
flow. The worst case occurs when on Nk message m is generated just after the last slot assigned to Nk.
Hence, Nk has to wait for the next slotframe to transmit m. In addition, on any node, only the last
transmission (i.e., the MaxTransth transmission) is received in the worst case; the previous ones are
lost. According to the framework defined in Section 4.2, when any node Ni receives a message of flow
f in a slotframe, it has TXCell f (Ni) cells to transmit it to its parent in the current slotframe. In each



Sensors 2019, 19, 3970 12 of 30

slotframe, any node Ni has ∑g TXCellg(Ni) opportunities to transmit a message to its parent, where g
is a flow visiting Ni. Hence, we get the following formula:

MaxLatency( f ) ≤
((
d MaxTrans

TXCell f (Nk)
e+ ∑k−1

h=1b
MaxTrans−TXCell f (Nh)

∑g TXCellg(Nh)
c
)
∗ Slot f rameSize + SlotUsed

)
∗ SlotDuration. (9)

If only Depth, the routing tree depth, and MinTXCell, the minimum number of TX cells per
pair (sensor node, flow), are known, the bound becomes, taking into account that each sensor node
generates its own flow:

MaxLatency ≤
((
d MaxTrans

MinTXCell e+ ∑k−1
h=1b

MaxTrans−MinTXCell
MinTXCell∗(Depth−h+1) c

)
∗ Slot f rameSize + SlotUsed

)
∗ SlotDuration. (10)

Notice that Equations (9) and (10) generalize Equation (6), which is valid only when
MinTXCell ≥ MaxTrans.

5. Performance Results for a Toy Example

We first consider a toy example of a wireless TSCH network comprising a sink and seven sensor
nodes. Each sensor node generates an application message of 27 bytes every 10 s. The slot duration
is assumed to be 7.25 ms. The routing tree is depicted in Figure 3, where node A denotes the
sink. The value associated with each link j gives Pj the probability of successful receipt of a single
transmission over that link. We notice that links have heterogeneous qualities, ranging from 0.5 to
0.9. For each of the seven flows generated by a sensor node, we compute the maximum number
of transmissions per link for any message of this flow. All the flows, except that generated by B,
are multi-hop, which is six flows. In this example, we assume that Assumption 4 is met: MaxTrans is
dynamically tuned according to the value computed by MFair or Mopt.

Figure 3. A routing tree with the PDR of each link used by flows.

5.1. Number of Transmissions and End-To-End Reliability

Figure 4 depicts the total maximum number of transmissions for a message of a flow, depending
on the hop number, when the targeted end-to-end reliability ranges from 0.9 to 0.9999. In this figure,
the one-hop flow corresponds to the flow originating from B, whereas the two-hop flows correspond
to the flows originating from C and E, the three-hop flows are those generated by D and F and the
four-hop flows are those originating from G and H.
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Figure 4. Total number of transmissions for a flow message.

Tables 3–7 compare the values obtained with MFair and MOpt, when the targeted end-to-end
reliability ranges from 0.9 to 0.99999. These tables show that, whatever the targeted reliability, and as
expected:

• The maximum number of transmissions per message over a link increases, when the link quality
decreases.

• Both methods provide the same maximum number of transmissions for all single-hop flows.
• The total number of transmissions per message of any given multi-hop flow obtained by MOpt

is always less than or equal to that obtained by MFair. For instance, for R = 0.9 (see Table 3),
we observe a gain on the total number of transmissions per message and per flow, which is equal
to 1 for the 2-hop flows (i.e., flows originating from C and E), and for the 3-hop flow originating
from D. This gain becomes 2 for the 4-hop flow originating from G and 3 for the 4-hop flow
originating from H. To summarize the results obtained for the six multi-hop flows considered, we
observe five improvements for R = 0.9, four improvements for R = 0.99, two improvements for
R = 0.999, four improvements for R = 0.9999 and five improvements for R = 0.99999, leading to
a total of 20 improvements over the 30 cases tested.

• Even if the total number of transmissions is the same for both methods, the distribution over the
links may differ as exemplified in Table 7 by the flow originating from D, where MOpt gets an
end-to-end reliability of 0.99922, whereas MFair gets a slightly less value 0.99921. Hence, MOpt
provides the smallest total number of transmissions per flow and, if equal with MFair, MOpt
provides the highest end-to-end reliability.

• With MFair, two links having the same link quality always have the same maximum number of
transmissions for the same flow, as exemplified in all tables by the flow originating from H, where
the links HD and CB have the same quality. However, this is not always the case with MOpt;
see, for instance, this flow in Table 4, where the maximum transmission number for link HD is 9,
whereas it is 8 for link CB. Since the nodes close to the sink usually have a larger load, decreasing
their load improves the network performances. Notice, however, that the maximum number
of transmissions on a given link depends on the flow. For instance, the maximum number of
transmissions on Link B→ A is equal to 11 for all flows, except the flow originating at B, where
it is 10, for a targeted R = 0.99999.

• The number of iterations of MOpt never exceeds h + 1 in all the cases evaluated.
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Table 3. Comparison of MFair and MOpt for a targeted end-to-end reliability R = 0.9 on seven flows.

Maximum Number of Transmissions for Targeted R = 0.9 Total Number of Transmissions per msg End-To-End Reliability
Flow Hop P = 0.7 P = 0.5 P = 0.8 P = 0.6 P = 0.9

Fair Opt. Fair Opt. Fair Opt. Fair Opt. Fair Opt. Fair Opt. Fair Opt.

B 1 2 2 2 2 0.91 0.91

C 2 3 3 5 4 8 7 0.9425 0.91218
E 2 3 3 4 3 7 6 0.9480 0.9107

D 3 3 3 5 5 3 2 11 10 0.9350 0.90489
F 3 3 3 4 4 10 10 0.92249 0.92249

G 4 4 3 6 5 3 3 2 2 15 13 0.95890 0.92570
H 4 4 3 6 5 3 3 19 16 0.95345 0.90583

Table 4. Comparison of MFair and MOpt for a targeted end-to-end reliability R = 0.99 on seven flows.

Maximum Number of Transmissions for Targeted R = 0.99 Total Number of Transmissions per msg End-To-End Reliability
Flow Hop P = 0.7 P = 0.5 P = 0.8 P = 0.6 P = 0.9

Fair Opt. Fair Opt. Fair Opt. Fair Opt. Fair Opt. Fair Opt. Fair Opt.

B 1 4 4 4 4 0.9919 0.9919

C 2 5 5 8 8 13 13 0.993673 0.993673
E 2 5 5 6 6 11 11 0.99348 0.99348

D 3 5 5 9 8 4 4 18 17 0.99402 0.99208
F 3 5 5 5 7 6 17 16 0.9935 0.99106

G 4 5 5 9 8 4 4 3 3 21 20 0.99303 0.99109
H 4 5 5 9 9 8 3 3 27 26 0.99208 0.99014
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Table 5. Comparison of MFair and MOpt for a targeted end-to-end reliability R = 0.999 on seven flows.

Maximum Number of Transmissions for Targeted R = 0.99 Total Number of Transmissions per msg End-To-End Reliability
Flow Hop P = 0.7 P = 0.5 P = 0.8 P = 0.6 P = 0.9

Fair Opt. Fair Opt. Fair Opt. Fair Opt. Fair Opt. Fair Opt. Fair Opt.

B 1 6 6 6 6 0.99927 0.99927

C 2 7 7 11 11 18 18 0.99929 0.99929
E 2 7 7 9 8 16 15 0.99951 0.99912

D 3 7 7 12 11 5 6 24 24 0.99921 0.999229
F 3 7 7 9 9 23 23 0.99930 0.99930

G 4 7 8 12 11 6 6 4 4 29 28 0.99937 0.99922
H 4 7 7 12 12 6 6 37 37 0.999229 0.999229

Table 6. Comparison of MFair and MOpt for a targeted end-to-end reliability R = 0.9999 on seven flows.

Maximum Number of Transmissions for Targeted R = 0.99 Total Number of Transmissions per msg End-To-End Reliability
Flow Hop P = 0.7 P = 0.5 P = 0.8 P = 0.6 P = 0.9

Fair Opt. Fair Opt. Fair Opt. Fair Opt. Fair Opt. Fair Opt. Fair Opt.

B 1 8 8 8 8 0.999934 0.999934

C 2 9 9 15 15 24 24 0.9999498 0.9999498
E 2 9 9 11 11 20 20 0.99993837 0.99993837

D 3 9 9 15 14 7 7 31 30 0.999937 0.999918
F 3 9 9 12 11 30 29 0.99994386 0.999906

G 4 9 9 16 15 7 7 5 5 37 36 0.999942 0.999927

H 4 9 9 16 15 7 7 48 46 0.999937 0.999906
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Table 7. Comparison of MFair and MOpt for a targeted end-to-end reliability R = 0.99999 on seven flows.

Maximum Number of Transmissions for Targeted R = 0.99 Total Number of Transmissions per msg End-To-End Reliability
Flow Hop P = 0.7 P = 0.5 P = 0.8 P = 0.6 P = 0.9

Fair Opt. Fair Opt. Fair Opt. Fair Opt. Fair Opt. Fair Opt. Fair Opt.

B 1 10 10 10 10 0.9999941 0.9999941

C 2 11 11 18 17 29 28 0.99999441 0.9999906
E 2 11 11 14 13 25 24 0.99999554 0.99999152

D 3 11 11 19 18 8 8 38 37 0.99999376 0.99999185
F 3 11 11 14 14 36 36 0.99999377 0.99999377

G 4 11 11 19 18 9 9 6 6 45 44 0.9999948 0.9999929
H 4 11 11 19 18 9 9 58 56 0.9999939 0.9999909
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5.2. Load-Based Scheduling

Let us see how these transmissions are scheduled, assuming a per-flow approach and more
precisely the selection of the Load-based scheduler, which schedules first the flow originating from the
most loaded node. We recall that the load of a node is computed as the number of cells needed to
transmit its own flows, plus the number of cells needed to receive and transmit the flows originating
from its descendants. Figures 5 and 6 depict the Load-based schedule of the seven flows generated
by sensor nodes with MFair and MOpt, respectively, assuming a targeted end-to-end reliability of
0.9. In both cases, the Load-based scheduler schedules the flows in the same order, starting with the
most loaded node B, the scheduling order is B, C, D, E, H, F, G, although Load(B) = 52 cells with
MFair and only 46 with MOpt. The two resulting schedules are optimal in terms of slots needed
because node B, the most loaded node, is kept busy in all slots of both schedules. However, MFair
requires exactly 52 slots to schedule the 72 transmissions, (see Figure 5), whereas MOpt requires only
46 slots to schedule the 64 transmissions, (see Figure 6). In this simple configuration with seven flows,
MOpt allows for saving eight transmissions, which represents an improvement of 11% in the number
of transmissions to schedule. In addition, MOpt allows for saving six slots, which reduces by 11.5%
the number of slots used.

Figure 5. Load-based schedule with MFair.

Figure 6. Load-based schedule with MOpt.

In the Load-based schedule obtained with MFair and depicted in Figure 5, we have
MinSize = 52 slots. Hence, for a slot duration of 7.25 ms, the smallest maximum latency
that can be achieved with MFair is equal to (52 + 51) ∗ 7.25 = 0.7465 s. The average energy
consumption per slotframe of node B, the greatest loaded node, is equal to: (22× TXCharge + 30×
RXCharge)/SFDuration, where SFDuration denotes the slotframe duration. With an initial energy of
2821.5 mAh, the default slotframe size of 101 slots and a slot duration of 7.25 ms, this node will have a
lifetime of 39 days and a maximum latency of (101− 1 + 52) ∗ 7.25 ∗ 10−3 = 1.102 s. To meet a lifetime
of one year, the slotframe size should be greater than or equal to 933 slots, with a maximum latency of
(933− 1 + 52) ∗ 7.25 ∗ 10−3 = 7.0905 s.

With the Load-based schedule obtained with MOpt and depicted in Figure 6, we have
MinSize = 46 slots. Hence, for a slot duration of 7.25 ms, the smallest maximum latency that can
be achieved with MOpt is equal to (46 + 45) ∗ 7.25 = 0.65975 s, which represents an improvement of
13.67%. It becomes 1.0585 s for the default slotframe size of 101 slots. The average energy consumption
of B per slotframe becomes (20× TXCharge + 26× RXCharge)/SFDuration, leading to a network
lifetime of 44 days for the default slotframe size of 101 slots and a maximum end-to-end latency of
(101− 1 + 46) ∗ 7.25 = 1.0585 s. To meet a lifetime of one year, the slotframe size should be greater
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than or equal to 830 slots, with a maximum latency of (830− 1 + 46) ∗ 7.25 ∗ 10−3 = 6.34375 s, which
represents an improvement of 12.38% with regard to MFair. For a slotframe size of 933 slots, MOpt
would provide a maximum latency of 7.0905 s, a decrease of 11.77% with regard to MFair and a
network lifetime of 410 days instead of 365 for MFair, an increase of 12.40%.

Table 8 points out the trade-off between the maximum end-to-end latency and network lifetime
by listing the results obtained by MFair and MOpt for different slotframe sizes: 52, 101 and 933 slots.
To increase the network lifetime by increasing the slotframe size, provided that the application still
generates the same number of messages per slotframe, leads to an increase in maximum latency.
MOpt provides a shorter maximum end-to-end latency because of a smaller schedule size (i.e., smaller
number of slots used).

Table 8. The trade-off of end-to-end latency versus network lifetime for MFair and MOpt.

MFair MOpt Relative Improvement

Slot f rame(slots) Slot f rame(slots) Slot f rame(slots)

52 101 933 52 101 933 52 101 933

Max. latency (s) 0.74675 1.102 7.134 0.70325 1.0585 7.0905 5.82% 3.94% 0.61%
Lifetime (days) 20.35 39.54 365.28 22.87 44.42 410.41 10.98% 12.35% 12.35%

6. Performance Results of a TSCH Network with 50 Nodes

For the performance evaluation of a TSCH network with 50 nodes, we use the 6TiSCH
simulator [28], which has been designed for a fast prototyping. In [8], network performances are
evaluated on two specific applications running on a same network. In this particular configuration,
randomly deployed sensors are only in charge of generating messages that they forward to a close
relay, whereas relays are deployed according to a triangular grid. Since a more generic configuration is
representative of much more applications, we focus on a generic data gathering application running
on random network topologies.

6.1. Simulation Parameters

The network topology is a random topology such that any mote has at least three neighbors (i.e.,
three motes with which PDR ≥ 0.5). For each wireless link, the PDR value is computed according to
the Pister–Hack model [29]. The 6TiSCH protocol stack is used with RPL as the routing protocol with
the ETX metric and the Load-based scheduler as the scheduling function. RPL, MFair and MOpt use
the PDR values computed for the wireless links considered. For each wireless link i, RPL deduces
ETX(i) from PDR(i). The simulation parameters used to evaluate the KPIs are those given in Table 9.
The deepest routing tree observed in the simulations is 7-hop deep, the shallowest is 4-hop deep, with
a median of 5-hop.
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Table 9. Simulation parameters.

Parameter Value

Config.

Number of nodes 50
Number of Channels 16

Topology random
Link reliability computed

TSCH

Slot duration 10 ms
Slotframe size 700 slots

Secure join disabled
Keep-alive (L2) disabled

Transmit queue size 10 packets
Max of retransmissions 5 (i.e., max of 6 transmissions)

Routing RPL with ETX metric where DAO is disabled
a stable routing topology after 60 min

Scheduling Scheduling function Load-based scheduler

Application is run & measures made during the next 60 min
packet generation interval on each sensor node [57 s, 63 s]

Simulation 100 runs per pair (algorithm, targeted reliability) algorithm ∈ {MOpt, MFair}
target. reliability ∈ {0.9, 0.99, 0.999, 0.9999}

Notice that, in the simulations done with the 6TiSCH stack, MaxTrans, the maximum number of
transmissions of any message on any link is fixed, as in the standardized MAC TSCH protocol. In the
6TiSCH simulations, its value is set to 6. If after six transmissions the acknowledgment is not received,
the message is discarded. This behavior has a strong impact on the latency. Since Assumption 4 is not
met, the theoretical bound for the maximum latency given in Equation (6) is no longer valid, we use
the new theoretical bound given in Section 4.4.

A legitimate question is why a schedule provides a number of Transmission cells (TX) for any
given flow greater than MaxTrans, since a message that has not been acknowledged after MaxTrans
transmissions is discarded. The justification is provided by the decrease in the average end-to-end
latency and the maximum end-to-end latency as we will see in Section 6.3. This decrease is due to a
greater number of opportunities to transmit.

6.2. End-To-End Delivery Rate

Simulation results about the average end-to-end delivery rate are depicted in Figure 7.

Figure 7. End-to-end delivery rate obtained with MFair and MOpt.
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As expected, the end-to-end reliability is better with MOpt than with MFair because MOpt
maximizes the end-to-end reliability provided for a minimum total number of transmissions
per message.

6.3. End-To-End Latency

Simulation results about the average end-to-end latency are depicted in Figure 8.

Figure 8. Average end-to-end latency obtained with MFair and MOpt.

As MFair tends to compute a greater number of transmissions than MOpt, the schedule for MFair
includes a greater number of cells in a slotframe whose size is kept identical for MOpt and MFair.
The more cells, the more chance to send or forward. Since an application packet is generated at a
random time point in the slotframe, the more transmission (TX) cells the node has, and the more chance
to send the packet immediately. This is why the average end-to-end latency is shorter with MFair.

Figure 9 shows the percentage of messages delivered in a single slotframe. It is smaller with
MOpt than with MFair due to the greater number of TX cells granted by MFair.

Figure 9. Percentage of packets delivered in one slotframe with MFair and MOpt.
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Figure 10 depicts the cumulative distribution function of the end-to-end latency for MFair and
MOpt. With MFair, 98% of messages reach the sink in one slotframe that is with an end-to-end latency
≤7 s. The gap between MFair and MOpt is smaller than 1%.

Figure 10. Cumulative distribution function of the end-to-end latency with MFair and MOpt.

The maximum end-to-end latency obtained by simulation with MFair and MOpt is illustrated
in Figure 11. Since MFair allocates more TX cells and the slotframe size is kept identical for MFair
and MOpt, MFair provides a shorter maximum end-to-end latency. For targeted reliabilities ≥0.999,
MFair and MOpt provide very close maximum latencies.

Figure 11. Maximum end-to-end latency obtained by simulation with MFair and MOpt.

Figure 12 depicts the schedule size expressed as the number of slots used in the schedule of MFair
and MOpt. Unsurprisingly, the schedule size increases with the targeted end-to-end reliability, due to
a great number of transmissions on each link to reach the targeted end-to-end reliability. Whatever the
targeted reliability, the schedule size is always shorter with MOpt than with MFair, as expected.
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Figure 12. Maximum slot used by MFair and MOpt.

Table 10 compares the theoretical bound for the maximum end-to-end latency obtained by
Equation (10) with the simulation results, for different values of the targeted end-to-end reliability and
a given random topology. The maximum end-to-end latency obtained by simulation decreases when
the targeted end-to-end reliability increases: a greater number of TX cells assigned to nodes give them
more opportunities to transmit in a slotframe. With the theoretical bound, the decrease is obtained
when the number of TX Cells assigned to a node increases to reach the targeted end-to-end reliability.
Whatever the targeted reliability, the bound given by Equation (10) and the simulation results are not
close. The theoretical bound could be refined to take more information into account.

Table 10. Comparison of the theoretical maximum end-to-end latency and the simulation results for
MFair and MOpt, taken from particular simulations having the same routing topology.

Targeted End-To-End Reliability

0.9 0.99 0.999 0.9999

Schedule size (slots)

MFair 96 154 199 249
MOpt 84 134 190 246

relative improvement 12.5% 12.98% 4.52% 1.20%

Min TX cells per (node, flow) MFair 2 2 2 3
MOpt 2 2 2 3

Maximum end-to-end latency (s)
MFair

theory 28.96 29.54 29.99 16.49

simulation 13.79 13.93 9.64 7.70

MOpt
theory 28.84 29.34 29.90 16.46

simulation 19.93 13.94 7.43 7.69

End-to-end reliability MFair 0.997959 0.998977 0.998978 0.999659
MOpt 1 0.998294 0.999318 1

Table 10 also provides the end-to-end reliability. As expected, MOpt provides an end-to-end
reliability better than MFair. However, for a targeted end-to-end reliability ≥0.999, MFair fails to
achieve the requested reliability, when MaxTrans is left fixed to 6 instead of being dynamically tuned
according to the values computed by MFair or MOpt.
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6.4. Duty Cycle

With regard to network lifetime and energy consumption, we consider the busiest node excluding
the root (sink) node, since it is supposed to be mains-powered. This busiest node determines the
network lifetime. The duty cycle on this busiest node is computed as:

Duty_Cycle =
number_o f _slots_used_on_the_busiest_node

schedule_size_in_slots
. (11)

Note that Equation (11) is meant for the following comparison, which does not represent actual
radio duty cycle. In TSCH, a device does not turn on its radio all the time even during an active slot.

Figure 13 depicts the number of cells assigned to the busiest node in one simulation run for each
targeted end-to-end reliability.

Figure 13. Number of cells assigned by MFair and MOpt on the busiest node.

Table 11 gives the duty cycle on the busiest node with MFair and MOpt. This gives an insight on
network lifetime which is determined by the lifetime of the busiest node.

Table 11. Comparison of the duty cycle of the busiest node for MFair and MOpt.

Targeted End-To-End Reliability

0.9 0.99 0.999 0.9999

Schedule size (slots) MFair 96 154 199 249
MOpt 84 134 190 246

Cells assigned to busiest node MFair 77 103 127 159
MOpt 63 87 122 149

Duty cycle of busiest node MFair 11% 14.71% 18.14% 22.71%
MOpt 9% 12.42% 17.42% 21.28%

Relative gain 18.18% 15.53% 3.93% 6.29%

As a consequence, for high targeted reliabilities (i.e., ≥0.999), MFair and Mopt give close
end-to-end latencies at a greater energy cost for MFair.
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6.5. Impact of MaxTrans, a TSCH Parameter

We now study the impact of MaxTrans the maximum number of transmissions of a message in
TSCH, whose default value is 6. We set MaxTrans to the value of 20, which is greater than the maximum
number of transmissions on each link computed by MFair or MOpt. We run the same simulations as
previously and evaluate the impact on the end-to-end reliability and the end-to-end latency.

As expected, the end-to-end reliability depicted in Figure 14 is increased both with MOpt and
MFair, when the maximum number of transmissions per message in TSCH is set to 20. It is very close
to 100%, for all the values of the targeted reliability tested. Notice, however, that increasing MaxTrans
may lead to a network overload resulting in violations of the maximum acceptable latency L. To avoid
that, messages whose lifetime is greater than or equal to L should not be transmitted and should
be discarded.

Figure 14. End-to-end delivery rate obtained with MFair and MOpt for MaxTrans = 20 transmissions.

Figure 15. Average end-to-end latency obtained with MFair and MOpt for MaxTrans = 20 transmissions.
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The consequence of increasing MaxTrans to 20 is an increase in the average latency for both
MFair and MOpt, as shown in Figure 15. The shortest average latency is still provided by MFair.
However, the gap decreases for high targeted end-to-end reliabilities (i.e., ≥0.999). Using a value of
MaxTrans greater than the value required by MFair or MOpt on a given link may result in an increase
in end-to-end latency and energy consumption for a very strongly limited gain in end-to-end reliability.

7. Comparison with Kausa

Since Kausa [8] is a well-known centralized scheduler that takes into account the unreliability of
wireless links and adopts a per-flow approach to meet KPIs, we now compare MOpt to Kausa when
run in a 6TiSCH network.

7.1. Our Kausa Implementation in the 6TiSCH Simulator

In the 6TiSCH simulator, as in any 6TiSCH implementation compliant with the standard, routing
is done by the RPL protocol with the ETX metric. We simulated Kausa on the 6TiSCH simulator and
ran it with the generic configuration defined in Section 6.1. We recall that the value of MaxTrans is
fixed to 6. In these conditions, the main differences between Kausa and our approach are:

• Kausa selects first the flow requesting the highest end-to-end reliability, then the shortest
end-to-end latency and finally the flow originating from the farthest node of the sink.
Our approach selects the flow originating from the most loaded sensor node (i.e., the sensor node
needing the largest number of Tx+Rx cells).

• For any flow f , Kausa starts by assigning cells to the most loaded node visited by f . Then, Kausa
goes backward to the source of f . Finally, Kausa goes upward from the most loaded node to the
sink. In our approach, cells are assigned to nodes visited by f in a cascading way from the source
of f up to the sink. It follows that our approach is easier to implement.

• For any flow f , Kausa minimizes the number of retransmissions on the most loaded node, whereas
we minimize the total number of retransmissions on the path of f .

Notice that we implement an optimization of Kausa for 6TiSCH, enabling any node to use its next
Tx cell to transmit any message to its parent, as done in our approach. This is not true in the published
version of Kausa, where any node N is not allowed to use cells assigned to a flow f for another flow f ′

visiting N.

7.2. End-To-End Latency

Figure 16 depicts the average end-to-end latency obtained by MOpt and Kausa. They both provide
close values. However, MOpt provides a much smaller variance of the average end-to-end latency
than Kausa, making it more predictable, even for high targeted reliabilities.

The same conclusion applies to the maximum end-to-end latency depicted in Figure 17.
The predictability of performance is a property sought by industrial applications.



Sensors 2019, 19, 3970 26 of 30

Figure 16. Average end-to-end latency obtained with MOpt and Kausa.

Figure 17. Maximum end-to-end latency obtained with MOpt and Kausa.

7.3. End-To-End Reliability

With regard to the end-to-end PDR, we observe in Figure 18 that both MOpt and Kausa ensure
a PDR greater than the targeted one when it belongs to the interval [0.9, 0.999]. For greater values,
the PDR is not met because the value of MaxTrans = 6 is too small to reach the targeted end-to-end
reliability. In addition, MOpt tends to provide a greater median value than Kausa.
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Figure 18. End-to-end delivery rate obtained with MOpt and Kausa.

7.4. Duty Cycle

Since the energy consumption can be deduced from the duty cycle of the busiest node, we
compare the number of cells scheduled at the busiest node by Kausa and MOpt, as depicted in
Figure 19. Both provide close values for a targeted end-to-end reliability less than or equal to 0.999.
For a higher reliability, Kausa provides a smaller number of cells due to a number of transmissions
scheduled per message less than or equal to MaxTrans, whereas MOpt may schedule a larger number,
explaining this result.

Figure 19. Number of cells used at the busiest node with MOpt and Kausa.



Sensors 2019, 19, 3970 28 of 30

7.5. Schedule Size

The schedule size, illustrated in Figure 20, is a little greater with MOpt than with Kausa. As a
consequence, a node has fewer opportunities to transmit with Kausa than with MOpt, leading to a
higher and less predictable end-to-end latency.

Figure 20. Schedule size obtained with MOpt and Kausa.

8. Conclusions

TSCH is a very promising technology for the IoT. It is now necessary to evaluate the performances
it can provide to IoT applications. These performances are evaluated by means of three KPIs: maximum
end-to-end latency L, end-to-end reliability R and network lifetime T. This IoT network has to
guarantee that at least R% of messages generated by sensors are delivered to the sink with a latency less
than or equal to L, while the network lifetime is at least T. In this paper, we have proposed two methods
MFair and MOpt to achieve a targeted end-to-end reliability taking into account the unreliability of
wireless links. The trade-offs between end-to-end latency, network lifetime and end-to-end reliability
have been pointed out. In addition, we have shown that minimizing the total number of transmissions
of a message to reach the sink with MOpt saves 12% of network lifetime in a small network of eight
nodes, assuming a Load-based schedule of flows. As expected, MOpt provides a better end-to-end
reliability and a longer network lifetime than MFair. However, the average end-to-end latency
provided by MFair is smaller. These results scale up to a 50-node network representative of real
deployments, as shown by simulation results obtained with the 6TiSCH simulator. However, using a
fixed maximum number of transmissions MaxTrans equal to the default value of the TSCH protocol,
instead of using the value computed by MFair or MOpt for the link and the flow considered, may lead
to a violation of the targeted end-to-end reliability: messages that have not been acknowledged after
MaxTrans transmissions are discarded. Compared to Kausa, a KPI-aware, state-of-the-art scheduler,
our approach is simpler to implement and ensures more predictable end-to-end performances, which
is an essential property for industrial applications.
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