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Abstract

Proprioception—the sense of the body’s position in space—plays an important role in natural 

movement planning and execution and will likewise be necessary for successful motor prostheses 

and Brain–Machine Interfaces (BMIs). Here, we demonstrated that monkeys could learn to use an 

initially unfamiliar multi–channel intracortical microstimulation (ICMS) signal, which provided 

continuous information about hand position relative to an unseen target, to complete accurate 

reaches. Furthermore, monkeys combined this artificial signal with vision to form an optimal, 

minimum–variance estimate of relative hand position. These results demonstrate that a learning–

based approach can be used to provide a rich artificial sensory feedback signal, suggesting a new 

strategy for restoring proprioception to patients using BMIs as well as a powerful new tool for 

studying the adaptive mechanisms of sensory integration.

Humans plan and execute movements under the guidance of both vision and 

proprioception1,2. In particular, maximally precise movements are achieved by combining 

estimates of limb or target position from multiple sensory modalities, weighing each by its 

relative reliability3–6. Furthermore, in the absence of proprioception, even simple multi–

joint movements become uncoordinated7,8. Therefore, we should not expect current brain–

machine interfaces (BMIs), which rely on visual feedback alone, to achieve the fluidity and 

precision of natural movement. It follows that a critical next step for neural prosthetics is the 

development of artificial proprioception. As a demonstration of the potential value of 

somatosensory feedback, it has been shown that including natural kinesthetic feedback 

improves BMI control in intact monkeys to near–natural levels9. The ideal artificial 

proprioceptive signal would be able to fill the same roles that proprioception plays in natural 

motor control: providing sufficient information to allow competent performance in the 

absence of other sensory inputs, and permitting multisensory integration with vision to 

reduce movement variability when both signals are available. Here we present a proof–of–
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concept study showing that both of these goals can be achieved using multichannel 

intracortical microstimulation (ICMS).

Most efforts to develop artificial sensory signals have taken a biomimetic approach: trying 

to recreate the patterns of neural activity that underlie natural somatosensation10–14. We 

propose a complementary approach, which focuses not on reproducing natural patterns of 

activity, but instead on taking advantage of the natural mechanisms of sensorimotor learning 

and plasticity. In particular, the process of multisensory integration, where multiple sensory 

signals are combined to improve the precision of sensory estimates, is learned from cross–

modal experience during development15,16 and relies on a continuous process of adaptive 

recalibration even in adult humans and monkeys17–19. Recent theoretical work from our lab 

suggests that multisensory integration can be learned with experience through a simple 

Hebbian–like learning rule20. In this model, successful integration of two sensory signals 

depends not so much on choosing the right patterns of neural activity to encode spatial 

information, but rather on the presence of spatiotemporal correlations between input signals, 

which allow downstream neurons to learn the common underlying cause, e.g. hand position.

Following these theoretical principles, we hypothesized that spatiotemporal correlations 

between a visual signal and novel artificial signal in a behavioral context would be sufficient 

for a monkey to learn to integrate the new modality. We tested this hypothesis by delivering 

real–time, artificial sensory feedback to monkeys via non–biomimetic patterns of ICMS 

across multiple electrodes in primary somatosensory cortex (S1). The monkeys ultimately 

learned to extract the task–relevant information from this signal and to integrate this 

information with natural sensory feedback.

RESULTS

Behavioral task and feedback signals

Two rhesus macaques were trained to make instructed–delay center–out reaches to invisible 

targets (Fig. 1a) in a virtual reality environment (Supplementary Fig. 1) guided by feedback 

that represented the vector (distance and direction) from the middle fingertip to the reach 

target (Fig. 1b). This “movement vector” was not explicitly shown; instead, it was encoded 

by one of three feedback types: a visual signal (VIS), a signal delivered through patterned 

multi–channel ICMS pulse trains (ICMS), or a combination of these two signals (VIS

+ICMS).

This task was chosen to best test whether the ICMS signal could provide position 

information that could both be integrated with vision and could replace it. By using natural 

movement, we obtained the most direct and precise estimates of how well the ICMS signal 

encoded sensory information about the limb (e.g., not confounded by additional 

performance noise due to imperfect BMI control). However, natural movement leaves 

natural proprioception intact, which would have made an ICMS signal encoding absolute 

limb position redundant. By encoding the relative positions of the limb and target, the VIS 

and ICMS signals provided a feedback variable that was both required to complete the task 

and that was not available from natural sensory signals.
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Visual feedback—The VIS signal was a random moving–dot flow–field (“dot–field”), 

where the direction and speed of the flow indicated the direction and distance to the target, 

respectively (Fig. 1b and Supplementary Video 1). The reliability, or precision, of the dot–

field was manipulated by changing its coherence—the percentage of dots moving in the 

same direction.

ICMS feedback—Each monkey was chronically implanted with a high–density 96–

electrode array in a region of primary somatosensory cortex that projects to higher cortical 

areas involved in visuomotor behavior such as reaching21,22 (Fig. 1c and Supplementary 

Fig. 2). For each array, we first selected a set of electrodes for which the monkey could 

detect ICMS pulse trains, assessed using a different task (see Online Methods). The ICMS 

signal, which was entirely novel to the animal, encoded the movement vector through the 

spatiotemporal patterns of biphasic current pulses across eight electrodes (Online Methods, 

Eqns. 1 and 2; Fig. 1d,e and Supplementary Video 2). Movement vector direction was 

encoded by the relative rates of ICMS pulses across the set of electrodes: the pulse rate 

delivered on each electrode varied with the cosine of the angle between the instantaneous 

movement vector and the electrode’s “preferred direction” (Online Methods, Eqn. 1), with 

the eight preferred directions spaced at 45° intervals around the circle and assigned 

independently of the response properties of the local neurons (Fig. 1c). Movement vector 

distance was encoded by a linear scaling of the pulse rates on all electrodes (Online 

Methods, Eqn. 2; Fig. 1d,e).

Learning ICMS

Monkeys first learned to perform the task with VIS feedback alone. We quantified 

performance with three behavioral metrics designed to capture how well the animals made 

use of a sensory signal during reach planning and execution. Performance on VIS–only trials 

increased monotonically with increasing dot–field coherence for all behavioral metrics (Fig. 

2), demonstrating that differences in performance reflect the precision of the sensory cue.

After the monkeys could perform the reaching task using visual feedback, we tested our 

hypothesis that spatiotemporal correlations between vision and ICMS could drive 

integration of the new sensory modality. We did so by exposing the monkeys to paired, 

correlated VIS+ICMS feedback signals both during the instructed delay period (as static 

information) and throughout the reach (dynamically updated feedback). The visual signal 

was first set to 100% coherence, but was gradually reduced across training blocks to 

increase the relative value of the ICMS signal (ultimately settling at 20% for Monkey F and 

25% for Monkey D). Under this training regime, the animals learned to integrate the two 

sensory signals, i.e. the addition of ICMS improved behavioral performance (see below). 

Animals needed more explicit instruction to learn to initiate movement on ICMS–only trials 

(see Methods). Once that was accomplished, the training regime changed to include ICMS–

only trials (33%), a pragmatic choice intended to speed learning. A summary of the 

behavioral training regime can be found in Supplementary Tables 1 and 2.

We periodically assessed learning (approximately every 500–1000 training trials) by 

including testing blocks: trials of VIS–only, VIS+ICMS, and ICMS–only trials where the 
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visual dot–field coherence could take a range of values ([0,10,15,25,50] for Monkey F; 

[0,15,25,50,100] for Monkey D).

Substitution and augmentation of vision by ICMS

We analyzed the data from testing blocks to determine how well the animals could interpret 

the ICMS signal, using it in place of vision to perform accurate reaches. Once the monkeys 

began making reaches on ICMS–only trials, they became increasingly proficient across 

training sessions (Fig. 3 and Supplementary Fig. 3), and performance on ICMS trials was 

ultimately comparable to performance with low–to–mid visual coherences (15–25% for 

Monkey D, 15% for Monkey F; Fig. 2 and Supplementary Tables 3 and 4). A more 

qualitative impression of the performance comparisons can be obtained from sample 

movement paths for various feedback conditions (Supplementary Fig. 4).

We next quantified how well the monkeys made use of the distance and direction 

information encoded in the ICMS signal. To do this, we analyzed the distance and direction 

of the initial movement segment of the reach, which reflected the animals’ estimates of the 

required movement vectors derived from sensory feedback during the instructed delay 

period (Fig. 4). Although demonstrating some idiosyncratic biases (see below), monkey D 

was also able to derive good estimates of target direction from ICMS (ICMS, R2 = 0.900; 

Fig. 4a; 100% VIS, R2 = 0.957; Fig. 4a). Monkey F was highly adept at estimating target 

angle (ICMS, regression R2 = 0.948; Fig. 4b), performing as well with ICMS as with the 

highest visual coherences (50% VIS, R2 = 0.945; Fig. 4b). Both monkeys were somewhat 

worse at estimating distance than direction from ICMS. Due to differences in performance 

across the workspace, we analyze distance estimation separately for the two half–planes: the 

more proximal workspace, with target angles [−π, 0], and the more distal workspace, with 

target angles [0, π]. Monkey D could accurately estimate distance in the distal half of the 

workspace ([0, π], R2 = 0.494; Fig. 4c), but was less able to do so in the proximal half ([−π, 

0], R2 = 0.108; Fig. 4c). Still, these values are comparable to those the animal achieved with 

the highest–coherence VIS feedback ([0, π], R2 = 0.365; [−π, 0], R2 = 0.176; Fig. 4c). For 

monkey F, distance estimates were equally good across the workspace (gray symbols: [−π, 

0], R2 = 0.432; vermillion symbols: [0, π], R2 = 0.473; Fig. 4d) and largely fall within one 

target radius of correct distance (but not necessarily in the target on each trial, due to 

directional error), although these values are lower than those the animal achieved with high–

coherence VIS feedback ([−π, 0], R2 = 0.716; [0, π], R2 = 0.751; Fig. 4d). In summary, the 

task performance observed in the ICMS–only condition is driven by the animals’ ability to 

decode both distance and direction information from the ICMS signal.

In addition to serving as the training condition, VIS+ICMS trials provided a test of the 

animals’ ability to improve performance by combining information from the two sensory 

cues. This ability emerged during training, with performance on VIS+ICMS trials becoming 

progressively better than for VIS trials, even before the animals could complete reaches with 

ICMS alone (Fig. 3 and Supplementary Fig. 3), supporting the idea that multisensory 

integration drives ICMS learning20. Moreover, the hallmarks of multisensory integration 

were observed in the asymptotic performance on VIS+ICMS trials, after learning was 

complete (Fig. 2). At intermediate dot–field coherences (10–25%), where performance 

Dadarlat et al. Page 4

Nat Neurosci. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between the two unimodal cues was similar, VIS+ICMS reaches were significantly better, 

i.e., faster and straighter (Supplementary Table 3). In contrast, at high (50–100%) and low 

(0%) dot–field coherences, behavior in the bimodal condition approximated that observed 

with the more reliable of the unimodal cues (Supplementary Table 3).

Minimum–variance integration of vision and ICMS

We next asked whether the visual and ICMS cues were integrated in an optimal, i.e. 

minimum variance manner, as is the case for natural visual and somatosensory signals3,4. 

The answer came from an analysis of the statistics of the initial reach directions, which gave 

the most direct readout of the animals’ estimate of target direction following the instructed 

delay period. The minimum variance model makes specific predictions about both the 

variance and bias of this estimate, and we consider each in turn.

We first considered how the variance of the initial reach angle depends on feedback 

condition (Fig. 5a). For VIS trials, the initial angle variance increased dramatically with 

decreases in coherence, as expected if the variance reflects the residual uncertainty about 

cue direction after the instructed delay. Variability in the ICMS trial was comparable to VIS 

trials at 15–25% visual coherence, consistent with the other movement metrics above. From 

these unimodal variances, we determined what the initial angle variance should be for the 

VIS+ICMS condition, under the model of minimum variance integration4. We computed 

this prediction under two limiting conditions: assuming that the initial angle variance arises 

only from variability in the sensory estimates of target direction (Fig. 5a), or assuming that 

the measurements also include the maximal consistent level of downstream (e.g., motor) 

variability (see Online Methods; Fig. 5a). The empirical variances observed in the VIS

+ICMS condition followed the predicted trend closely, and lay between the two limiting 

predictions in the region where the animal received most of the multisensory training (20–

25% coherence; see Online Methods). This comparison suggested that after training, the 

animals optimally combined the ICMS signal with vision. We next tested this conclusion 

further by analyzing the pattern of mean initial angles.

The animals exhibited idiosyncratic patterns of mean initial reach angle as a function of 

target angle. For Monkey D, these patterns were clearly distinct between the VIS and ICMS 

trials (Fig. 5b; also see Supplementary Fig. 5 for Monkey F, where the patterns were less 

well defined). Since the required movements were the same across cue conditions, these 

patterns likely arise from biased estimation of the target direction. Therefore, they offered 

another opportunity to test whether the VIS and ICMS signals were combined optimally23. 

Minimum variance integration predicts that in the VIS+ICMS condition, as the visual 

coherence increases from 0% to 100%, the animals should transition from relying primarily 

on the ICMS cue to primarily on the visual cue. This trend could be seen qualitatively in the 

pattern of mean initial angles for Monkey D (Fig. 5b): at 15% coherence, the VIS+ICMS 

mean was close to that observed with ICMS alone; at 100% it was close to that observed 

with VIS. The relative weighting of the two modalities were estimated quantitatively by 

modeling the VIS+ICMS mean as an affine combination of the unimodal biases (Online 

Methods, Eqn. 4a). As expected, the weighting of the visual cue smoothly transitioned from 

zero to unity as the visual coherence increased (Fig. 5c). Under the model of minimum 
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variance integration, each sensory cue should be weighted inversely proportional to its 

variance (Online Methods, Eqn. 4b). Using the unimodal variance data from Figure 5a, we 

obtained quantitative predictions for the cue weighting in the VIS+ICMS trials (Fig. 5c; 

Online Methods, Eqns. 5a,b); these were in good agreement with the empirical data.

DISCUSSION

We have shown that multi–channel patterned ICMS of primary somatosensory cortex can be 

used to provide monkeys with continuous information about hand position that enables 

goal–directed reaching. In particular, the monkeys were able to use ICMS to estimate the 

distance and direction between their current hand location and the reach target. Furthermore, 

when both visual and ICMS feedback was available, the monkeys combined these signals to 

achieve increased levels of task performance, and they did so at—or near—theoretical 

optimal levels, as is observed for natural sensory signals3,4.

What does the ICMS signal convey?

An important finding of this study is that animals can learn to use ICMS as a temporally 

continuous feedback signal. However, it is possible that the animals only used the ICMS 

signal to estimate the target location during the instructed delay period, with subsequent 

corrective sub–movements guided either by the remembered target location or simply by a 

random search. An analysis of corrective sub–movements, Figure 6, shows that this is not 

the case. Sub–movement direction correlated well with the direction of the online movement 

vector (target – current hand position) at the end of the previous sub–movement. In fact, the 

precision of the corrective movements in the ICMS–only condition was comparable to that 

seen with high visual coherences, and was considerably lower than that observed with 0% 

VIS, where no directional information is available, or that which would be expected by 

chance. These results suggest that the VIS and ICMS cues were being used as online 

feedback signals. Furthermore, if the animals had simply memorized the location of the 

target during the instructed delay period, we would expect a decline in precision across 

sequential corrective movements. Instead, the correlation between cued and executed sub–

movements was largely consistent across corrective sub–movement number, with no clear 

increase in error variance for later sub–movements. These results strongly indicate that the 

animals are using the online feedback to execute corrective sub–movements.

Another key result of the paper is that with only eight electrodes, we were able to deliver 

continuous spatial information with a reliability comparable to that achieved with the visual 

cue. Initial angle estimation with the ICMS signal had the same variance as that observed 

with 15–20% visual coherence and was only about three times greater than that observed 

with the highest coherence for both animals. Furthermore, when the signals were used 

online, ICMS performance is even closer to that achieved with visual feedback (Fig. 6b). 

The better performance (relative to vision) of ICMS during corrective movements could be 

due to either the inherent delays in visual feedback, the relative importance of 

somatosensory feedback for online movement controls, the shorter integration times 

available for online corrections, or a greater contribution of motor noise.
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Learning to integrate a novel sensory signal

The ability to use the ICMS signal was necessarily learned during the training process, 

since, by design, the patterns of ICMS did not mimic naturally occurring signals in the brain. 

This learning could have been driven by several possible mechanisms of learning. Consider 

that, in this experiment, the visual and ICMS signals changed in a correlated fashion. 

Previous modeling work from our lab showed that in a network with unsupervised, 

Hebbian–like learning, such correlations are sufficient to learn optimal integration20; 

however, other learning mechanisms may also have contributed, including error–corrective 

or reinforcement learning24,25 of a sensory–to–motor mapping from ICMS to the 

appropriate movement. Our experimental design cannot definitively distinguish between 

these possibilities, but the emergence of multisensory integration before animals could 

perform with ICMS alone (Fig. 3 and Supplementary Fig. 3) suggests that unsupervised, 

multisensory learning played a large, if not dominant, role.

While there is evidence of multisensory integration at all visual coherences (Fig. 2), optimal 

performance in the VIS+ICMS condition was only observed at mid–level visual coherences; 

performance at the lowest and highest coherence levels only approached optimality (Fig. 5). 

A likely explanation is that monkeys learned to integrate vision and ICMS optimally when 

vision matched or was close to the training coherence (20% for monkey F; 25% for monkey 

D). In fact, a similar effect was observed in the network model of unsupervised sensory 

integration20: small but apparent departures from optimal integration were seen when the 

unimodal variances deviated too far from the regime in which the network was trained. 

Those observations are qualitatively consistent with the experimental results we presented 

here.

ICMS feedback as a tool for studying multisensory circuits

Our result, that animals could integrate and use an ICMS signal to direct movement, offers a 

novel and potentially powerful tool for studying information processing in sensorimotor 

circuits. For example, the posterior parietal cortex uses sensory feedback for a variety of 

multisensory computations, including estimation of the position of the limb and the location 

of targets26–30. Computational models have been developed to demonstrate how neural 

circuits could perform these operations20,31,32, but testing these models has proven difficult. 

The challenge stems, in large part, from the fact that brain areas within the PPC exhibit 

complex, heterogeneous and partially redundant spatial representations33–35 and interact in a 

complex network22,36–39, often with overlapping function40,41. It may not be possible to 

discover how information is processed within this complex circuit only by manipulating the 

distal sensory inputs. ICMS feedback, on the other hand, affords the experimenter proximal 

control of the afferent signal. This has two pertinent advantages. First, the anatomical origin 

of the signal can be controlled. In this particular study, we stimulated areas of 

somatosensory cortex that we know project directly to multisensory areas as such area 5 and 

VIP42,43; however, stimulation could be performed in other brain areas that participate more 

strongly in other cortical circuits, e.g., in area 7 to study spatial representations in the 

circuits for saccadic eye movements. Second, because the ICMS signal bypasses peripheral 

receptors and subcortical processing, it gives the experimenter finer control over the 

statistics of the signal. Signal statistics play a big role in current models of multisensory 
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neuronal processing20,32, but the signal manipulations that would be most diagnostic for 

these models would be challenging or impossible to achieve with natural stimulation. With 

ICMS feedback, the manipulations become tractable: for example, changing the 

correlational structure between neurons in a given area or between neurons representing two 

sensory signals, and gaining full control over the timing and context of subjects’ exposure to 

the signal.

Furthermore, we think the learning observed in the present study taps into the same 

mechanisms of plasticity that drives other forms of multisensory learning, such as 

intersensory calibration—the ability of two sensory modalities to come back into alignment 

following a perturbation17,19,39,44. ICMS feedback offers an ideal tool for studying these 

mechanisms, e.g., for testing models of learning20 in real neural circuits, for the reasons 

described above – local access and control of statistics—and because we can observe 

changes in the behavioral and electrophysiological state of the animal from the very first 

exposure to the novel signal.

Neuroprosthetic applications

In this study, we show that ICMS can be used to deliver a task–relevant feedback signal that 

guides online, multi–dimensional movement control. We chose to encode the position of the 

hand relative to the reach target, as opposed to an absolute proprioceptive signal, because 

this allowed us to study artificial sensation in a simple, natural task, without having to 

suppress natural proprioception. Because the reach target was never visible, estimation of 

the relative hand position was required in order to perform the task. To use this approach to 

provide proprioceptive feedback from a prosthetic device, the ICMS signal would instead 

encode the state of the device with respect to the body, for example joint or endpoint 

position or velocity. Because these variables are also available via visual feedback, the same 

learning mechanisms should apply.

We expect that ICMS feedback could play the same role for BMI control that proprioceptive 

feedback does for normal movement control. During natural movement, vision and 

proprioception make comparable contributions to limb state estimation1–3,45. While 

proprioceptive loss does not have a substantial effect on the simplest reaches when visual 

feedback is available46, it does impair performance of movements that require inter–joint 

coordination, which include most activities of daily life7. We have shown that the eight–

channel ICMS signal used here can provide online feedback with reliability that is also 

comparable to vision. We expect that increasing the number of electrodes and optimizing the 

encoding scheme will further improve the quality and information capacity of this signal.

Our learning–based approach can be contrasted with a biomimetic approach—the attempt to 

reproduce natural patterns of sensory–evoked neural activity. In practice, a truly biomimetic 

stimulation scheme is not attainable, due to a range of technical and scientific 

considerations, such as the lack of access to the full neuronal population, inability to 

translate electrical stimulation into naturalistic neural activity patterns, an incomplete 

understanding of neural encoding mechanisms, and difficulty in characterizing those 

patterns in patients with sensory loss. Our approach circumvents these issues by taking 

advantage of the inherent plasticity of the brain. On the other hand, completely disregarding 
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prior knowledge about natural neural signals, such as somatotopic organization, will impair 

initial performance and may limit the rate or extent of learning. In fact, learning–based and 

biomimetic approaches10–14 are highly complementary, and systems optimized for clinical 

applications would likely benefit from taking a combined approach.

ONLINE METHODS

Subjects and Implants

All animal procedures were performed in accordance with the National Research Council’s 

Guide for the Care and Use of Laboratory Animals and were approved by the UCSF 

Institutional Animal Care and Use Committee. Two adult male rhesus macaque monkeys 

(Macaca mulatta) participated in this study. No statistical methods were used to pre-

determine this sample size. Rather, we chose to use two animals because the goal of this 

study was to demonstrate a novel form of learning, and we were able to show statistical 

significant effects of both learning and sensory integration independently in each animal. 

Clear demonstration of such learning effects in two macaque monkeys meets the generally 

employed standard in the field.

Each animal was chronically implanted with a 96–channel silicon microelectrode array 

coated with Iridium Oxide (Blackrock Microsystems, Salt Lake City, UT) over their left 

primary somatosensory cortices (Brodmann Areas 1, 2; S1). The cells on monkey F’s array 

had receptive fields spanning the shoulder, back, side of the head, ear and occiput 

(Supplementary Fig. 2) whereas for monkey D most receptive fields spanned the arm and 

shoulder (Supplementary Fig. 2).

Behavioral Task

The animals were trained to perform reaches in the horizontal plane to an unseen target in a 

two–dimensional virtual reality environment, where a mirror and an opaque barrier 

prevented direct vision of the arm (Supplementary Fig. 1). The mirror reflected visual input 

from a projector, so that the visual cues appeared in the horizontal plane of the reaching 

hand. Fingertip position was monitored with an electromagnetic position sensor (Polhemus 

Liberty, Colchester, VT) at 240 Hz.

Each trial consisted of four epochs (Fig. 1a). i) The monkeys moved the middle fingertip of 

their right hand to a fixed start position, located in the center of the screen and indicated by a 

circular visual target (10 mm radius). ii) After a brief delay (0.25 and 0.5 s for Monkeys D 

and F, respectively), the target cue was initiated, indicating the movement vector between 

the monkey’s current finger position and the center of the unseen reach target (12 mm 

radius). Targets were selected uniformly from an annulus centered on the start target with an 

inner radius of 40 mm and an outer radius of 115 mm (80 mm for Monkey D). The 

movement vector cue was provided in the form of a dot–field (VIS), multichannel ICMS 

(ICMS), or both (VIS+ICMS). The monkeys were required to hold their position during this 

instructed–delay interval (0.2–0.7 s and 1–1.5 s, monkeys D and F, respectively). iii) After a 

go cue (750 Hz tone, 0.5 s) the monkeys made a reach under the guidance of continuously 

updating VIS, ICMS or VIS+ICMS feedback. iv) After acquiring the target and holding for 

400 ms (monkey D) or 500 ms (monkey F), the monkeys received a liquid reward. Trials 
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were terminated without reward if the monkeys moved too early during any of the delay 

intervals or if they failed to reach the target before a timeout (10 s). Different task 

parameters were selected for each animal to minimize the number of failed trials (e.g., 

aborted hold at start or target), and therefore reflect the animals’ idiosyncratic behavioral 

tendencies.

Visual feedback

For vision, the movement vector was encoded using a random moving–dot flow–field (“dot–

field”) consisting of approximately 600 dots over the visual display (roughly 53 cm x 33 cm, 

in the reaching plane). Each dot was initialized to a random location on screen, and had a 

lifetime of 4 seconds (phases randomized), after which it reappeared at a new random 

location. Each dot in the dot–field moved at the same angle as the movement vector and at a 

speed proportional to the length of the movement vector, but could not exceed a maximum 

of 50 cm/s for Monkey D and 40 cm/s for Monkey F. A percentage of the dots moved 

coherently together in the direction of the continuously updating movement vector. The 

remaining dots moved in random directions, selected independently and uniformly from the 

circle. The percentage of dots moving coherently—the dot field coherence—was 

parametrically varied in order to manipulate the precision of the visual feedback.

ICMS

Intracortical microstimulation consisted of biphasic, charge–balanced pulse trains delivered 

asynchronously to each of eight electrodes in the array. The pulse trains were cathode–

leading and symmetric, with 200 μs/phase and a 250 μs phase separation. The pulse 

amplitudes varied across electrodes, depending on perceptual threshold (see below) and 

ranged between 34–60 μA for Monkey D, and 30–80 μA for Monkey F.

ICMS Detection—A preliminary two–alternative forced choice task was used to determine 

the threshold pulse amplitudes at which the animals could detect ICMS on a given electrode. 

The monkeys first moved to a fixed start position near the midline (as in main task above) 

and maintained that position for 0.5 s. Next, there was a 0.5 s instructed delay period during 

which two reach targets were displayed, to the right and left of midline. The presence of an 

ICMS pulse train (100 Hz, 0.5 s) cued the animal to reach left; its absence cued the 

rightward reach. Animals were initially trained on this task using multi–electrode 

stimulation, and the task was then used to identify electrodes on which ICMS was 

detectable. Eight such electrodes were identified for Monkey F. For Monkey D, seven such 

electrodes were identified; the final electrode could not be detected when stimulated alone 

with amplitudes of less than 60 μA.

Movement Vector Encoding—For ICMS, the movement vector was encoded in the 

spatial and temporal patterns of stimulation across the array (Fig. 1). Movement vector 

direction was encoded by the relative stimulation pulse rates across the electrodes. First, 

each of the eight electrodes was arbitrarily assigned one of eight preferred directions (PD), 

equally spaced around the circle. Then, the stimulation pulse rate fi of electrode i was 

calculated as a function of angle between the direction movement vector, θ, and the 

electrode’s assigned PD,
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(1)

The frequency scaling factor, f0, linearly encoded the movement vector distance, d, within 

the range of 100–300 Hz:

(2)

where dmax was 10 cm for Monkey F and 13.6 cm for Monkey D. The values of d and θ 

were continuously updated during the reach to provide online feedback (Fig. 1d,e). The 

range of f0 was restricted to the range [100, 300] to ensure that the monkeys could always 

detect the ICMS signal.

Experimental Design

Behavioral sessions were divided into training blocks and testing blocks. The details of 

those blocks changed during the course of training, as described here and in Supplementary 

Tables 1 and 2.

Behavioral Training—Monkeys first learned to perform the behavioral task using vision 

alone, with 100% coherence. Next, we began training with only VIS+ICMS trials. A dot–

field coherence of 100% was used initially, and that value was slowly decreased across 

sessions to encourage the animals to use to the ICMS signal. Coherence values were lowered 

to 25% for Monkey D and 20% for Monkey F, depending on the animal’s performance level 

in the VIS conditions. This training regime was employed for approximately 20,000 training 

trials with Monkey D and 40,000 training trials with Monkey F, at which point the animals 

showed clear evidence of sensory integration of the VIS and ICMS signals—improved 

performance on VIS+ICMS trials compared to VIS trials, as evaluated on testing blocks (see 

below). We then altered the training regime to include 33% ICMS–only trials and 67% VIS

+ICMS trials (see Supplementary Tables 1 and 2) once the animals were able to perform 

ICMS–only trials in the testing blocks (see below).

Behavioral Testing—In between blocks of training, approximately every ~500–1000 

training trials, the animals performed a testing block to quantify performance across all 

feedback conditions. By the end of the experiment, a total of 11 feedback conditions were 

used: VIS, VIS+ICMS, and ICMS, with dot–field coherences of [0, 15, 25, 50, 100]% for 

monkey D and [0, 10, 15, 25, 50]% for monkey F, with the difference between animals 

reflecting individual performance levels in the VIS condition. At the beginning of the 

experiment, animals had not been exposed to lower visual coherences and could not perform 

the task at those coherences. Lower visual coherences for testing were introduced gradually 

during the course of the experiment as performance improved (see Fig. 3 and Supplementary 

Fig. 3). For all testing blocks, all conditions were randomized across trials.

As noted above, testing sessions revealed evidence of sensory integration of the VIS and 

ICMS signals prior to the animals performing the ICMS–only task. Yet at this stage, the 
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animals still failed to initiate movement on ICMS–only trials, suggesting that they did not 

generalize the task instructions to trials with no visual cues. We therefore temporarily 

modified the ICMS–only testing protocol to help them generalize (Supplementary Tables 1 

and 2). First, we paired ICMS with a visible target circle during ICMS–only testing trials. 

The brightness of the target circle was gradually decreased, until it was finally removed 

entirely, and the monkeys were reaching with ICMS alone (Fig. 3 and Supplementary Fig. 

3). Next, the radius of the reach target for ICMS–only trials was temporarily increased from 

12 mm to 36 mm—for both testing and training trials—to avoid discouraging the animal 

from performing these trials. The radius of the target was then decreased across training 

sessions until the monkey was completing reaches to a standard 12 mm radius target (Fig. 3 

and Supplementary Fig. 3).

Data Analysis

Behavioral Performance Measures—We quantified the animals’ ability to use the 

various sensory cues with the following performance measures (details of each are given 

below): i) percent correct trials, ii) number of movement sub–segments, iii) normalized 

movement time, iv) normalized path length, v) mean and variance of initial angle of the 

movement. The first four metrics assessed animals’ use of the sensory cues throughout the 

trial, including movement planning during the instructed delay period and online movement 

control. The statistics of the initial angle assess only movement planning. The performance 

summaries in Figure 2 were computed from the last seven testing sessions available for each 

monkey.

i. Percent correct trials: This is the number of trials in which a monkey acquired a 

target and received a reward, compared to the total number trials in which a reach 

movement was initiated. We exclude in this analysis errors due to reaches 

beginning before the go cue, not initiating a trial, and etc.

ii. Number of movement sub–segments: This metric quantifies the number of discrete 

sub–movements in a trial. Starting with the model assumption that sub–movements 

have bell–shaped velocity profiles47 we identified sub–movements by threshold 

crossings of the radial velocity plot of a trajectory, with a threshold of 20% of the 

maximum velocity on a given trial.

iii. Normalized movement time: Since maximum movement velocity was largely 

independent of movement distance (data not shown), targets that were farther away 

took longer to reach. Therefore, we normalized the movement time by the distance 

from the starting point to the target.

iv. Normalized path length: Similarly, we normalized the integrated path length by the 

distance from the starting point to the target.

v. Mean and variance of the initial angle. For each monkey and feedback condition, 

we first computed a smoothed estimate of the mean initial angle as a function of 

target angle (robust locally weighted scatterplot smoothing, using the MATLAB 

smooth function, with a window of 40 data points). The initial angle variance was 

computed about this mean. Standard errors for the mean variance were estimated 

via bootstrapping48.
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Quantifying use of direction and distance from the ICMS signal—A typical reach 

consisted of a long initial movement segment followed by one or more shorter, corrective 

sub–movements. The distance and direction of this initial reach can be taken to reflect the 

monkey’s estimate of target distance and direction, as decoded from the sensory information 

available during the instructed delay period.

i. Direction estimation: We assessed the monkeys’ ability to estimate target direction 

from ICMS by regressing initial movement angle against target angle for ICMS–

only trials. The initial movement angle was measured using the first movement 

sub–segment, as described above. This assay ignores target–dependent biases in 

initial direction (see above), and is therefore a conservative estimate of the animal’s 

ability to decide target direction.

ii. Distance estimation: We assessed the monkeys’ ability to estimate target distance 

from ICMS by regressing initial movement distance against target distance for 

ICMS–only trials. On a subset of trials, however, the initial movement deviated 

from the norm: animals sometimes made a small initial reach that was followed by 

several larger corrections. On these trials the distance of the initial reach segment 

was uncorrelated with movement distance. Therefore, for this analysis we exclude 

trials for which the first movement segment was not the longest segment. This 

occurred in 30.2% of the trials for Monkey D and 12.2% of the trials for Monkey F.

Model prediction for initial angle variance—Under the model of minimum variance 

sensory integration8, we could predict the sensory variability in the bimodal condition from 

the variability for each unimodal condition. We focused on variability in the animals’ 

estimate of the target angle based on the sensory cues during the instructed delay period. 

Unimodal variances were computed from the variability in initial movement direction, 

and , calculated as described for performance measure (v) above. Next, for each 

coherence level, we predicted the bimodal variance under two limiting assumptions. First, 

we used the raw initial angle variance directly, which implicitly assumes that all movement 

variability derives from sensory variability:

(3a)

Second, we assumed that the movement variability was the largest possible value that would 

still be consistent with the data—this is the smallest initial angle variance across conditions, 

which we denote with . Under this model, the bimodal initial angle variance is:

(3b)

Model predictions for mean initial angle—The plots of mean initial angle for monkey 

D show a clear dependence on the feedback type (Fig. 5b). If we suppose that these 
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differences reflect biases in the sensory estimates of target direction, then the minimum 

variance model can be used to predict, for each coherence value, the mean initial angle in 

the VIS+ICMS trials from those measured in the unimodal trials:

(4a)

Equation 4 can be summarized by the predicted visual cue weighting for each coherence,

(4b)

which depends only on the unimodal initial angle variances.

We compared these model predictions to empirical values of the visual cue weighting, 

estimated from the mean initial angles. First, we divided the workspace into octants, and for 

each octant and feedback condition, we computed the mean difference between the initial 

angle and the target angle, we which denote here as δ̄
i,x δ̄i,x for octant i and condition x. For 

each octant and coherence level, we then estimated the visual cue weighting as:

(5a)

The standard error, si,VIS si,VISof each wi,VIS wi,VIS was estimated from the standard errors of 

the component means, δ̄i,x δ̄
i,x, by propagation of errors. Finally, for each coherence level we 

computed the mean visual cue weighting across octants, with each octant weighted by its 

standard error:

(5b)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Behavioral task and sensory feedback. (a) Timeline of a behavioral trial (see Online 

Methods for details). (b) Visual feedback of the instantaneous movement vector (black 

arrow) takes the form of a random moving–dot flow–field (“dot–field”). The coherence of 

the dot–field—the percentage of dots moving in the same direction—determines its 

reliability. (c) Implantation site of stimulating electrode arrays for monkeys D (black) and F 

(blue). CS–central sulcus; IPS–inferior parietal sulcus. Right: the assigned PD of each 

stimulating electrode is overlaid on its location within the array. (d) An example ICMS trial 

showing the movement vector at the beginning of the reach (black arrow) and the monkey’s 

subsequent movement path (blue). At right: ICMS patterns delivered during the trial; each 

row represents the time–varying stimulation pattern of the electrode with the preferred 

direction (PD) indicated at left (black arrow). Vermillion tick marks denote biphasic 

stimulation pulses, which are shown subsampled for clarity. (e) Inset: the instantaneous 

movement vectors encoded at two time–points during the reach are shown as solid and 

dashed black arrows. Below, the pattern of stimulation encoding each movement vector is 

shown across electrodes; arrowheads indicate the PD of each electrode.
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Figure 2. 
Comparison of task performance across sensory feedback conditions. Behavioral 

performance measures are averaged across the last seven testing sessions for each monkey, 

shown for each sensory feedback type and as a function of visual coherence (for VIS and 

VIS+ICMS trials). Error bars denote bootstrapped standard error of the mean. The ICMS 

data points, which are independent of visual coherences, are extended across the plot to aid 

visual comparison. (a) number of movement sub–segments; (b) movement path length, 

normalized by the initial distance to the reach target; (c) movement time, normalized as in b. 

See online methods for a detailed description of task performance measures.
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Figure 3. 
Evolution of performance over training (Monkey F). Behavioral performance measures are 

shown as a function of the cumulative number of VIS+ICMS trials performed (training and 

testing). The data, collected during testing sessions, were smoothed for clarity (Gaussian 

window with standard deviation of 2.8 training sessions, translating to approximately 2,800 

training trials for Monkey F). The visual coherence on training trials was decreased across 

training sessions (indicated by gray bars at the bottom of the figure and vertical gray lines at 

the transitions). The left, thin green line denotes the onset of ICMS–only trials, where target 

sizes were temporarily larger than in the other trial conditions; the right, thick green line 

denotes the beginning of ICMS–trials with targets of standard size. (a) percent correct trials; 

(b) number of movement segments measured online error corrections; (c) movement time 

for the trial is normalized by the initial distance to the reach target; (d) path length, 

normalized as in c. See Supplementary Table 2 for additional details on the training and 

testing schedule.
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Figure 4. 
Monkeys estimate both target distance and direction from sensory feedback. Vermillion 

points reflect performance with ICMS and purple points reflect feedback with VIS. Black 

solid lines are unity and the thick colored lines represent linear fits between the movement 

and target variable. Fits were performed separately for the distal (target angle [0:π]) and 

proximal (target angle [−π:0]) halves of the workspace. (a,b) Initial movement angle versus 

target angle for monkey D and F, respectively. (c,d) Initial movement distance versus target 

distance for monkey D and F, respectively. Region within the dashed black lines falls within 

the diameter of the target.
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Figure 5. 
Integration of vision and ICMS minimizes reach variance. (a) Standard deviation of initial 

angle relative to target angle as a function of visual coherence for different feedback 

conditions for each monkey. Standard deviation was calculated after subtracting a smoothed 

estimate of mean initial angle (panel b); results were qualitative unchanged with only the 

target angle subtracted (i.e., angle computed with respect to straight–line reach; 

Supplementary Fig. 5). Error bars represent standard error of the mean. Dashed black lines 

indicate model predictions with no motor noise (Online Methods, Eqn. 3a); dotted black 

lines indicate model predictions with maximal motor noise (Online Methods, Eqn. 3b). (b) 

Mean initial angle, with respect to a straight–line reach. Smoothed values are shown on a 

polar plot as a function of target direction. Data is from Monkey D; for Monkey F, see 

Supplementary Fig. 5b. (c) Visual cue weighting (see Online Methods) for combined VIS

+ICMS conditions were closer to zero (ICMS) for low coherence trials and closer to one 

(VIS) for high coherence trials. Blue filled circles: visual cue weighting estimated from data 
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(Online Methods, Eqn. 6); black unfilled circles: minimum variance model prediction 

(Online Methods, Eqn. 5). Data is from Monkey D; for Monkey F, see Supplementary 

Figure 5c.
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Figure 6. 
Directed error correction. (a) Angle of the second sub–movement as a function of 

instantaneous movement vector angle in trials that required error correction. Top: ICMS–

only trials; Bottom: VIS–only trials at high visual coherence (100% for Monkey D, 50% for 

Monkey F). Black line: unity. (b) Error variance (rad2) in sub–movement angle estimation 

for ICMS and VIS. Dashed vermillion line denotes chance (random, undirected movement). 

Error bars represent standard error of the mean.
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