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The Signature Features of COVID-19 Pandemic in a Hybrid
Mathematical Model—Implications for Optimal
Work–School Lockdown Policy
Teddy Lazebnik* and Svetlana Bunimovich-Mendrazitsky

The new COVID-19 pandemic has challenged policymakers on key issues.
Most countries have adopted “lockdown” policies to reduce the spatial spread
of COVID-19, but they have damaged the economic and moral fabric of
society. Mathematical modeling in non-pharmaceutical intervention policy
management has proven to be a major weapon in this fight due to the lack of
an effective COVID-19 vaccine. A new hybrid model for COVID-19 dynamics
using both an age-structured mathematical model based on the SIRD model
and spatio-temporal model in silico is presented, analyzing the data of
COVID-19 in Israel. Using the hybrid model, a method for estimating the
reproduction number of an epidemic in real-time from the data of daily
notification of cases is introduced. The results of the proposed model are
confirmed by the Israeli Lockdown experience with a mean square error of
0.205 over 2 weeks. The use of mathematical models promises to reduce the
uncertainty in the choice of “Lockdown” policies. The unique use of contact
details from 2 classes (children and adults), the interaction of populations
depending on the time of day, and several physical locations, allow a new look
at the differential dynamics of the spread and control of infection.

1. Introduction and Related Work

At the beginning of 2020, the novel severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), also known as COVID-19,
reached Europe and the western world from China.[1] Similar to
other diseases from the coronavirus family, COVID-19 is trans-
mitted human-to-human, but it turned out that COVID-19 is
more infectious and transmissible than previous coronavirus.[2]

The World Health Organization (WHO) has declared COVID-
2019 a public health emergency of international concern.[3,4]

Currently, due to a lack of an efficient vaccine or clinical
treatment to COVID-19, policy-makers are forced to rely on
non-pharmaceutical intervention (NPI) policies to reduce the
infection rate and control the epidemic. A few examples of NPI
policies are masks, social distancing, work capsules, and partial
to a full lockdown of central locations (restaurants, malls, offices,

T. Lazebnik, Dr. S. Bunimovich-Mendrazitsky
Ariel University
Ariel 4077625, Israel
E-mail: lazebnik.teddy@gmail.com

DOI: 10.1002/adts.202000298

etc.). These policies reduce the infection
rate but have an influence on the economy,
healthcare system, and social life.
Multiple studies have been conducted to

study epidemics in general and the COVID-
19 epidemic in particular from both bi-
ological and epidemiological perspective
providing the information about the epi-
demics behavior with relevant data for
later modeling.[1,5–9] In addition, these stud-
ies examine the clinical characteristics of
COVID-19, enabling a deeper understand-
ing of the disease spreads in the population.
Mathematical models are shown

to be a useful tool for policy-makers
to make data-driven decisions based
on investigation of different scenar-
ios and their outcomes in a controlled
manner.[5,10,11] These mathematical models
can be divided into two main groups.
First, models aim to predict the differ-

ent parameters such as the total COVID-
19 related death and peak in hospitalized
individuals, given the historical data up

to some point. For example, Nesteruk[12] used the data from Jan-
uary 16 to February 9 (2020), from mainland China with the
continuous SIR (S-susceptible, I-infected, R-recovered) model.
Nesteruk[12] fitted the SIR model using the least mean square
method, which resulted in poor fitting to later officially confirmed
infected cases.[4] This can be explained by the fact that the SIR
model with no modification is too simplistic to correctly repre-
sent the dynamics of the COVID-19 epidemic. In ref. [12], a sim-
ple calculation method was proposed that allows quick results
which can predict the COVID-19 spread with a fine accuracy if
calculated using a very accurate data of infections and recoveries.
Model proposed by Tuite et al.[11] which used data from January

25 toMarch 1 (2020) Ontario, Canada, is SEIR (E-exposed)model,
the extension of the SIRmodel. Authors of ref. [11] took into con-
sideration four levels of infection severity, social isolation in the
exposed and infected states, hospitalization dynamics, and death
state.[11] Estimated that 56% of the Ontario population would be
infected over the course of the epidemic with a peak of 55 500
cases in intensive care units (ICU) and 107 000 total cases. At the
same time, in all of Canada there are only half of this number
of infections.[4] This error in their prediction is associated with
incomplete information due to lower frequency of tests and inac-
curate ICU records. Nevertheless, Tuite et al.’s[11] model presents
amore detailed dynamic between the infected population and the
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healthcare response which policy-makers can take into consider-
ation.
Ivorra et al.[13] proposed nine states model divides individuals

into isolated, hospitalized, or dead. In addition, authors of ref. [13]
take into consideration the fact that the recorded confirmed data
is under-sampled.
Furthermore, a machine learning-based model was proposed

by Allam et al.[14] using several machine learning algorithms
(Knn, Random Forest, Support Vector Machine) on data of 53
clinical cases. This model was used to predict infection severity
and spread. However, this approach suffers from an imbalanced
sample of the distribution of severity in the population, as simple
or asymptomatic cases are not reported, leading to poor represen-
tation of the real dynamic.
Second, models aim to analyze and optimize NPI policies. A

model proposed by Zhao et al.[15] is an extension to the SEIR
model where the susceptible population is separated into two
groups: individuals not taking infection-prevention actions and
people taking infection-prevention actions as an NPI policy. In
addition, authors of ref. [15] included a probability of willingness
to take infection-prevention actions with changes over time. They
predicted 148.5 thousand infections by the end of May 2020 in
Wuhan alone, while in all of China there were 84.5 thousand in-
fections at the same time.[4] The authors introduces a stochas-
tic element to the SEIR model making it more robust for social
changes happened during the epidemic.
Di Domenico et al.[16] used data from March 17 to May

11 (2020) Île-de-France with a stochastic age-structured trans-
mission extension of the SEIR model integrating data on age
profile and social contacts of four age-based classes. In this
model, hospitalization dynamics with ICU cases are taken into
consideration in the model. Model shows that during full lock-
down the reproductive number is estimated to be 0.68, due to an
81% reduction of the average number of contacts. These results
show that dividing the population into several age-based classes
better represent the spread of COVID-19 from an epidemiologi-
cal perspective.[18,19]

In this paper, we provide and study a more accurate spatio-
temporal model for the COVID-19 transmission by using in-
dividual two age classes SIRD named hybrid model (D-death)
model. We study two important factors concerning the diffu-
sion of COVID-19: schooling/working hours and physical loca-
tion of infected population has provided new insights into the
epidemic dynamics. Based on the different impact of COVID-
19 to the immune response, severity of infection, and trans-
mission of disease in different age groups (mainly children
and adults),[18,20] we proposed a two classes age-structured
SIRD epidemic model dividing the population into children and
adults. Moreover, we developed a numerical, stochastic simu-
lator based on this hybrid model (https://teddylazebnik.info/
coronavirus-sir-simulation/index.html) for COVID-19 popula-
tion spread in addition to the analytical examination of the epi-
demic dynamics.
This paper is organized as follows: First, we introduce our

mathematical hybrid model based on the SIRD model with dual
age-structured. Second, we present the model’s equilibria, sta-
bility analysis, and asymptotic form. Third, we present the spa-
tial model extending the SIRD model by introducing a day–
night circle and three locations of disease transmission (home,

work, school). Fourth, an analysis of NPI policies including op-
timal lockdown and optimal work-school duration is presented,
and a comparison to the Israeli historical data from August and
September. Finally, we discuss the main epidemiological results
arising from the model.

2. Hybrid Model

As shown in refs. [21] and [22], the spatial model plays an impor-
tant role in describing the spreading of communicable diseases,
because individualsmove around inside a zone or habitat in time.
In this section, we present a hybrid model (Figure 1) that is

based on an SIRD model for two age classes using eight pop-
ulations (dynamics are shown in Figure 2) and a spatial model
where these populations are distributed in space and time be-
tween work, school, and home (Figure 5). We will define these
sub-models in the following sections.

2.1. Two Class Age-Structured Epidemic Model

The SIR model is proven to be a meaningful mathematical tool
for epidemic analysis.[23] This model with the needed modifica-
tions has already been shown to predict the epidemics such as
COVID-19,[24] influenza,[25] Ebola,[10] and others.
Data from several epidemiological studies show that children

and adults transmit the disease at different rates.[18,20] In addi-
tion, adults, on average, have a much longer recovery duration
compared to children .[6,8] Therefore, an SIR model which takes
into consideration the different age groups better represents the
epidemiological population dynamics. An extension of the SIR
model to two age-classes has been investigated for explanation of
Polio outbreak by Bunimovich-Mendrazitsky and Stone.[26]

2.1.1. Model Definition

The model considers a constant population with a fixed num-
ber of individuals N. Each individual belongs to one of the three
groups: susceptible (S), infected (I), and recovered (R) such that
N = S + I + R. When an individual in the susceptible group

(S) is exposed to the infection, it is transferred to the infected
group (I). The individual stays in this group on average dI→R days,
after which it is transferred to the recovered group (R).
In addition to these groups, we define a death group (D) which

is associated with individuals that are not able to fully recover
from the disease or succumb to death. Individuals from the in-
fected group (I) recover from the disease in some chance and
move to (R), while the others do not and move to (D). Therefore,
in each time unit, some rate of infected individuals recover while
others die or remain seriously ill.
We divide the population into two classes based on their age:

children and adults because these groups experience the dis-
ease in varying degrees of severity and have different infection
rates. In addition, adults and children are present in various
discrete locations throughout many hours of the day which af-
fects the spread dynamics. Individuals below age A are associ-
ated with the “children” age-class while individuals in the com-
plementary group are associated with the “adult” age-class. The
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Figure 1. Schematic view of the hybrid model’s components and relationship between the ODE and the spatial models.

Figure 2. The Hybrid model’s schematic view as a transition between dis-
ease stages, divided by age-class.

specific threshold age (A) may differ in different locations but the
main goal is to divide the population into two representative age-
classes. Since it takes A years from birth to move from a child to
an adult age group, the conversion rate is set as 𝛼 := 1

A
.

By expanding the designation to two age-classes, we let
Sc, Ic, Rc, Dc and Sa, Ia, Ra, Da represent susceptible, infected, re-
covered, and death groups for children and adults, respectively
such that

Nc = Sc + Ic + Rc +Dc, Na = Sa + Ia + Ra + Da,

and N = Nc + Na. (1)

The model does not take into consideration death dur-
ing the epidemic unrelated to the disease itself because in
the United States in 2018, the birth rate was 11.6 for every
1000 individuals[27] while the mortality rate in 2017 was 8.6
for every 1000 individuals,[28] resulting in around 0.3% incre-
ment of the population size which is assumed to be small
enough to be neglected. In addition, we introduce two death
states for children and adults, respectively, that died from the
epidemic.
In addition, Kelvin and Halperin[31] conclude that children

may be asymptomatic but still act as transmission vectors for
the virus. Thus, Ic refers to children with asymptomatic infection
who have minimal clinical symptoms, but are still able to infect
others. As a result, it is assumed that the infant mortality rate is
0, as shown in the Table 1.
Equations (2)–(12) describes the epidemic’s dynamics.

dSc(t)
dt

= −
𝛽ccIc(t) + 𝛽caIa(t)

Nc
Sc(t) − 𝛼Sc(t) (2)
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Table 1. The Hybrid model’s parameter description, values, and sources.

Parameter definition Symbol Value Source

Children COVID-19 threshold age in days [t] A 4745 (13 years) [6]

Children to adult each day transition rate [t−1] 𝛼 := 1
A

2.1 ⋅10−4 [6]

Infected to recover average duration for children in days [t−1] 𝛾c 0.5 [17]

Infected to recover average duration for adults in days [t−1] 𝛾a 0.0714 [8]

Susceptible contacts in children which become infected due to direct disease transmission from an adult in a day [t−1] 𝛽ca 0.266 [18]

Susceptible contacts in adults which become infected due to direct disease transmission from children in a day [t−1] 𝛽ac ∼ 0 [20]

Susceptible contacts in children which become infected due to direct disease transmission from children in a day [t−1] 𝛽cc 0.308 [19]

Susceptible contacts in adults which become infected due to direct disease transmission from an adult in a day [t−1] 𝛽aa 0.308 [19]

The probability an infected adult will recover from the disease [1] 𝜌a 0.942, 0.98 [29, 30]

The probability an infected child will recover from the disease [1] 𝜌c ∼ 1 [31]

The probability an infected adult will not recover from the disease [1] 𝜓a 0.05, 0.02 [20, 30]

The probability an infected child will not recover from the disease [1] 𝜓c ∼ 0 [31]

In Equation (2), dSc (t)

dt
is the dynamical amount of susceptible

individual children over time. It is affected by the following three
terms: First, with rate 𝛽cc, each infected child infects susceptible
children. Second, with rate 𝛽ca, each infected adult infects the sus-
ceptible children. Finally, children grow and pass from the chil-
dren’s age-class to the adult’s age-class with transition rate 𝛼, re-
duced from the children’s age-class. Nc is the size of the children
population and used to take all variables as fixed proportions of
the population N.

dSa(t)
dt

= 𝛼Sc(t) −
𝛽acIc(t) + 𝛽aaIa(t)

Na
Sa(t) (3)

In Equation (3), dSa(t)

dt
is the dynamical amount of susceptible

adult individuals over time. It is affected by the following three
terms: First, children grow and pass from the children’s age-class
to the adult’s age-class with transition rate 𝛼, added to the adult
age-class. Second, with rate 𝛽ac, each infected child infects the
susceptible adult. Finally, with rate 𝛽aa, each infected adult infects
a susceptible adult.Na is the size of the adult population and used
to take all variables as fixed proportions of the population N.

dIc(t)
dt

=
𝛽ccIc(t) + 𝛽caIa(t)

Nc
Sc(t) − 𝛾cIc(t) − 𝛼Ic(t) (4)

In Equation (4), dIc (t)

dt
is the dynamical amount of infected in-

dividual children over time. It is affected by the following four
terms. First, with rate 𝛽ca, each infected child infects the suscep-
tible adult. Second, with rate 𝛽cc, each infected child infects a sus-
ceptible child. Third, individuals recover or die from the disease
after a period 𝛾c. Finally, children grow and pass from the chil-
dren’s age-class to the adult’s age-class with transition rate 𝛼, re-
duced from the adult’s age-class. While the last process has a mi-
nor impact relative to the first three processes, we do not neglect
it in order to count edge-cases.

dIa(t)
dt

=
𝛽acIc(t) + 𝛽aaIa(t)

Na
Sa(t) − 𝛾aIa(t) + 𝛼Ic(t) (5)

In Equation (5), dIa(t)
dt

is the dynamical amount of infected adult
individuals over time. It is affected by the following four terms.
First, with rate 𝛽ac, each infected child infects the susceptible
adult. Second, with rate 𝛽aa, each infected adult infects a suscep-
tible adult. Third, individuals recover or die from the disease af-
ter period 𝛾a. Finally, children grow and pass from the children’s
age-class to the adult’s age-class with transition rate 𝛼, added to
the adult’s age-class. While the last process has a minor impact
relative to the first three processes, we do not neglect it to count
edge-cases.

dRc(t)
dt

= 𝛾c𝜌cIc(t) − 𝛼Rc(t) (6)

In Equation (6), dRc (t)

dt
is the dynamical amount of recovered

individual children over time. It is affected by the following
two terms: First, in each point, a portion of the infected chil-
dren recover after period 𝛾c, which is multiplied by the rate of
children that do recover from the disease 𝜌c. Second, children
grow from birth and pass from the children’s age-class to the
adult age-class with transition rate 𝛼, reduced from the children’s
age-class.

dRa(t)
dt

= 𝛾a𝜌aIa(t) + 𝛼Rc(t) (7)

In Equation (7), dRa(t)

dt
is the dynamical amount of recovered

adult individuals over time. It is affected by the following two
terms. First, in each point, a portion of the infected adults recover
after period 𝛾a which is multiplied by the rate of adults that do
recover from the disease 𝜌a. Second, children grow from birth
and pass from the children’s age-class to the adult age-class with
transition rate 𝛼, added to the adult age-class.

dDc(t)
dt

= 𝛾c𝜓cIc(t), (8)

In Equation (8), dDc (t)

dt
is the dynamical amount of dead in-

dividual children over time. It is affected by the portion of the
infected children that do not recover after period 𝛾c which is

Adv. Theory Simul. 2021, 4, 2000298 © 2021 Wiley-VCH GmbH2000298 (4 of 15)

http://www.advancedsciencenews.com
http://www.advtheorysimul.com


www.advancedsciencenews.com www.advtheorysimul.com

multiplied by the rate of children that do not recover from the
disease 𝜓c.

dDa(t)
dt

= 𝛾a𝜓aIa(t) (9)

In Equation (9), dDa(t)

dt
is the dynamical amount of dead adult

individuals over time. It is affected by a portion of the in-
fected adult that do not recover after period 𝛾a which is multi-
plied by the rate of adults that do not recover from the disease
𝜓a.
It should be noted that both Equations (8) and (9) can be pre-

sented as one equation

dD(t)
dt

= 𝛾c𝜓cIc(t) + 𝛾a𝜓aIa(t) (10)

as Da and Dc are accumulative populations which do not infect
the dynamics separately. Nevertheless, to provide a better repre-
sentation of the age-based death in the epidemic, we chose to
divide the dead individuals into the same age-groups which al-
lows later analysis of the death of children and adults separately.
In summary, the interactions between disease stages presented
in Figure 1 are modeled by the following system of eight coupled
ordinary differential equations (ODE), Equation (11) with initial
conditions at t = 0, Equation (12) as:

dSc(t)
dt

= −
𝛽ccIc(t) + 𝛽caIa(t)

Nc
Sc(t) − 𝛼Sc(t)

dSa(t)
dt

= 𝛼Sc(t) −
𝛽acIc(t) + 𝛽aaIa(t)

Na
Sa(t)

dIc(t)
dt

=
𝛽ccIc(t) + 𝛽caIa(t)

Nc
Sc(t) − 𝛾cIc(t) − 𝛼Ic(t)

dIa(t)
dt

=
𝛽acIc(t) + 𝛽aaIa(t)

Na
Sa(t) − 𝛾aIa(t) + 𝛼Ic(t)

dRc(t)
dt

= 𝛾c𝜌cIc(t) − 𝛼Rc(t)

dRa(t)
dt

= 𝛾a𝜌aIa(t) + 𝛼Rc(t)

dDc(t)
dt

= 𝛾c𝜓cIc(t)

dDa(t)
dt

= 𝛾a𝜓aIa(t) (11)

Sc(0) = Nc, Ic(0) = 0, Rc(0) = 0, Dc(0) = 0

Sa(0) = Na − 1, Ia(0) = 1, Ra(0) = 0, Da(0) = 0
(12)

The parameters used in the calculation of the model through-
out the paper are presented in Table 1. The values are cited from
the sources themselves except A and 𝛽ca calculated from the data
of the correlated source.[6,18] The threshold of the children’s age
to become adults in parameter A is set to 13 years as the mean
value of the group of ages in which the percentage of critical cases

Table 2. The four equilibria solutions for Equations (11) and (12).

EQ1 EQ2 EQ3 EQ4

Sc 0
(𝛾c − 𝛼)Nc

𝛽cc

𝛽caN
2
a(𝛼 − 𝛾a)
𝛽aaNc

(𝛼 + 𝛾c)I∗c
𝛽ccIc + 𝛽caIa

Sa N
𝛽caN

2
c (𝛾c − 𝛼)
Na𝛽cc

(𝛼 − 𝛾a)Na

𝛽aa

(𝛾a − 𝛼)I∗c
𝛽acI∗c + 𝛽aaI∗a

Ic 0
𝛼Nc

𝛽cc

𝛼Nc

𝛽ca
I∗c

Ia 0 0
𝛾a𝜌aNc

𝛽ca
I∗a

Rc 0
𝛾c𝜌cNc

𝛽cc
0

𝛾c𝜌cI
∗
c

𝛼

Ra 0 0
𝛼Nc

𝛽ca

−𝛾a𝜌aI∗a
𝛼

Dc 0
𝛼Nc

𝛽cc
−

−𝛾c𝜌cNc

𝛽cc
0 I∗c −

𝛾c𝜌cI
∗
c

𝛼

Da 0 0
𝛼Nc

𝛽ca
−
𝛾a𝜌aNc

𝛽ca
I∗a +

𝛾a𝜌aI
∗
a

𝛼

relative to all cases is the highest as reported by Dong et al.[6]

(Table 2). The susceptible contacts in children who become in-
fected due to direct disease transmission from an adult 𝛽ca are
calculated based on data of 10 children. Eight children out of the
10 have been exposed to 30 adults in total and later found to be
infected, as reported by Cai et al.[18] Therefore, the infected rate
is set to 8

30
= 0.266.

2.1.2. Numerical Solution

To obtain a better understanding of how different parameter
values influence the system dynamics, we illustrate the behav-
ior of the system using numerical analysis. Equations (2)–(9)
are ODEs, first-order, nonlinear, from ℝ to ℝ8, where ℝ is
time (marked by t) and ℝ8 is the population distribution of all
eight populations (marked by Sc(t), Sa(t), Ic(t), Ia(t), Rc(t), Ra(t),
Dc(t), and Da(t)). We processed eight-order Runge–Kutta inte-
gration on the differential system to enable numerical simu-
lations. Runge–Kutta integration of the equations was imple-
mented by Octave programming (version 5.2.0), using stan-
dard program lsode, for a set of initial conditions described
in Eq (12).
The solutions of the system (11–12) are shown in Figure 3. In

addition, the population size, adults, and children are set to be
N = 8 000 000, Nc = 2 240 000, Na = 5 760 000 to present the dis-
tribution of the Israeli population in 2017 as published by the
Israeli central bureau of statistics. Figure 3 shows the population
group sizes of Sc(t), Sa(t), Ic(t), Ia(t), Rc(t), Ra(t), Dc(t), and Da(t)
where the x-axis in all eight graphs represents the time (in days)
that has passed from the beginning of the dynamics and the y-
axis is the size of each population, respectively. A maximum in
the percent of infected children and adults (39%, 89%) is reached
in the 8th and 11th days as shown in Figure 3. Therefore, the
maximum infected population was 89% of the whole population.
Besides, all children infected and recovered after 17 days while
all adults recovered after 82 days.
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Figure 3. Numerical simulation of trajectories of Equations (11) and (12)
and the parameter values from Table 1. The graphs show the evolution in
time (days) of Sc(t), Sa(t), Ic(t), Ia(t), Rc(t), Ra(t), Dc(t), and Da(t). Adult
and children graphs are presented with a dotted and solid lines, respec-
tively. Susceptible, infected, recovered, and dead are shown in green, red,
blue, and black, respectively.

2.1.3. Stability Analysis

In epidemiology, it is essential to quantify the severity of out-
breaks of infectious diseases. The standard parameter indicates
the severity called the basic reproduction number R0. In the stan-
dard SIR model,[23] R0 is defined to be the ratio between indi-
vidual infection rate and recovery rate, where almost everyone is
susceptible (namely, Sc + Sa ∼ N).
In order to find the asymptotic form g for given initial con-

ditions and parameters, it is possible to use the next generation
matrix approach.[33] Let V+

i be the rate of transfer of individuals
by all means except of appearance of new infections in compart-
ment i, and V−

i be the rate of transfer of individuals out of com-
partment i. Let Fi be the rate of appearance of new infections in
compartment i. Equations (2)–(9) take the form:

dui
dt

= V+
i (u) − V−

i (u) + Fi(u) (13)

where

F = [0, 0,
(
𝛽ccIc + 𝛽caIa

Nc

)
Sc,

(
𝛽acIc + 𝛽aaIa

Na

)
Sa, 0, 0, 0, 0] (14)

V := V+ − V− = [
(
−𝛼 +

𝛽ccIc + 𝛽caIa
Nc

)
Sc,

(
𝛽acIc + 𝛽aaIa

Na

)
Sa

+ 𝛼Sc,−𝛾cIc − 𝛼Ic (15)

−𝛾aIa + 𝛼Ic,−𝛼Rc + 𝛾c𝜌(rc)Ic,+𝛼Rc + 𝛾a𝜌(ra)Ia, 𝛾c(1 − 𝜌(rc))Ic,

𝛾a(1 − 𝜌(ra))Ia] (16)

In equilibrium, Ic and Ia are both equal to zero so the deriva-
tives at equilibrium, focusing on Ic and Ia from Equations (4) and

(5), are mapped to the third and forth elements in vectors F and
V giving the matrices F and V.

F =

[
𝛽cc 𝛽ca

𝛽ac 𝛽aa

]
,V =

[
𝛾c 0

0 𝛾a

]
(17)

The next generation matrix is defined as FV−1.[33]

G := FV−1 =

[ 𝛽cc

𝛾c

𝛽ca

𝛾a
𝛽ac

𝛾c

𝛽aa

𝛾a

]
(18)

Assume an initial condition

Sc(0) = Nc − v1, Ic(0) = v1, Sa(0) = Na − v2, Ia(0) = v2, (19)

marked as v = [v1, v2]. After one time unit, the amount of infected
individuals can be calculated using v′ = Gv. Therefore, for any
start condition and model parameters one can find the asymp-
totic form g by calculating

g(ℙ) =
C∑
i=0

G(ℙ)iv (20)

where C ∈ ℕ is the first index that satisfies Ic(C) + Ia(C) = 0.
It is possible to retrieve R0 from the next generation matrix

𝔾 as it is the dominant eigenvalue of the matrix,[26] as this ma-
trix describes the total amount of infections caused by each class
over the lifetime of the infection. The epidemic is assumed to
be stable if R0 ≤ 1. This means that for each infected individual
there is less than one infected individual in any of the groups
in the next time unit. The dominant eigenvalue of G can be
calculated using the characteristic equation which is a second-
order polynomial of R0. The zero points of this polynomial
are

R0 = 0.5

(
𝛽cc

𝛾c
+
𝛽aa

𝛾a
+

√
(
𝛽cc

𝛾c
+
𝛽aa

𝛾a
)2 + 4

𝛽ca

𝛾a

𝛽ac

𝛾c

)
(21)

Both 𝛾c and 𝛾a are biological properties of the disease; on
the other hand, 𝛽aa, 𝛽ac, 𝛽ca, and 𝛽cc can be managed using
social distance, quarantine, masks, and other methods. Fig-
ure 4a–e presents five projections of stability from the param-
eter space {𝛽aa, 𝛽ac, 𝛽ca, 𝛽cc} calculated using Equation (21). Fig-
ure 4a shows the 𝛽aa − 𝛽ac projection where 𝛽cc = 0.308, 𝛽ca =
0.266. There are no values such that R0 < 1 and from the color
gradient, it is possible to see that 𝛽ac has slightly more influ-
ence on R0 relatively to 𝛽aa. Figure 4b shows the 𝛽aa − 𝛽ca pro-
jection where 𝛽cc = 0.308, 𝛽ac = 0. There are no values such that
R0 < 1 and from the color gradient, it is possible to see that
𝛽aa has a minor to no influence on R0 relatively to 𝛽ca. Fig-
ure 4c shows the 𝛽cc − 𝛽ca projection where 𝛽aa = 0.308, 𝛽ca =
0.266. R0 < 1 for any combination of 𝛽cc, 𝛽ac such that 𝛽ac <
0.08 − 1.6𝛽cc. Figure 4d shows the 𝛽cc − 𝛽ac projectionwhere 𝛽aa =
0.308, 𝛽ac = 0. R0 < 1 for any combination of 𝛽cc, 𝛽ac such that
𝛽cc ≤ 0.3. Figure 4e shows the 𝛽aa − 𝛽cc projection where 𝛽ca =
0.266, 𝛽ac = 0. R0 < 1 for any combination of 𝛽aa, 𝛽cc such that
𝛽cc < 0.9 − 0.155𝛽aa.
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Figure 4. 2D projections of the {𝛽aa, 𝛽ac, 𝛽ca, 𝛽cc} space and their influence on R0, as obtained from Equation (21). The green section is where R0 ≤ 1.
The color gradient is from blue (lower R0) to red (higher R0). The model parameters used are 𝛼 = 8.78 × 10−6, 𝛾c = 0.5, 𝛾a = 0.0714.
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In order to obtain the equilibria points of the model and their
stability properties, the Jacobian (J) is obtained by linearizing
Equations (4) and (5) in the system (Equations (2)–(9)). The cal-
culations show that

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝛼 −
𝛽caIa + 𝛽ccIc

Nc
0 −

𝛽ccSc
Nc

𝛽caSc
Nc

0 0 0 0

𝛼 −
𝛽aaIa + 𝛽acIc

Nc
−
𝛽acSa
Na

−
𝛽acSa
Na

0 0 0 0

𝛽caIa + 𝛽ccIc
Nc

0 −𝛾c − 𝛼 −
𝛽ccSc
Nc

𝛽caSc
Nc

0 0 0 0

0
𝛽aaIa + 𝛽caIc

Na
𝛼 +

𝛽caSa
Na

−𝛾a +
𝛽aaSa
Na

0 0 0 0

0 0 𝛾c𝜌c 0 −𝛼 0 0 0

0 0 0 𝛾a𝜌a 0 −𝛼 0 0

0 0 0 −𝛾c𝜓c 0 0 0 0

0 0 0 0 −𝛾a𝜓a 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(22)

The system (Equations (11) and (12)) has four non-trivial equi-
libria which may be found by setting all rates in Equation (11)
to zero; marked by EQ1, EQ2, EQ3, and EQ4. Thus, equilibria are
provided as the state vector of the eight population states in Equa-
tion (11), where

I∗a =
𝛼(𝛽acNc − 𝛽ccNa)
𝛽cc𝛽aa − 𝛽ac𝛽ca

, I∗c =
𝛼Nc − 𝛽caI∗c

𝛽cc
(23)

There are other equilibria for trivial cases such as Sa(0) = 0 or
Sc(0) = 0 which are unrealistic for real-world dynamics. Below,
we investigate the stability of four nontrivial equilibria.
EQ1: is the case for Ic(t) = Ia(t) = 0 for every t ∈ ℕ (see Table 2).

This is a trivial equilibrium where there is no epidemic at all.
Because the model does not take into consideration the birth of
new children, after A days all children become adults and EQ1
is derived. By settings J(EQ1), all eigenvalues are negative for all
parameter values except 𝜆 = −𝛾a + 𝛽aa

Na+Nc
Na

. Therefore, this equi-

librium is stable if 𝛽aa
Na+Nc
Na

< 𝛾a.
EQ2: is the case for Ia(t) = 0 for every t ∈ ℕ (see Table 2). This

equilibrium can be achieved if 𝛽ac = 0 because in any other case
(assuming Sa(0) > 0) exists time t such that dIa(t)

dt
> 0 and there-

fore Ia(t + 1) ≠ 0. This equilibrium corresponding to the case
where adults do not infect children at all which is improbable
as a real world scenario.
EQ3: is the case for Ic(t) = 0 for every t ∈ ℕ (see Table 2). This

equilibrium can be achieved if 𝛽ca = 0 because in any other case
(assuming Sc(0) > 0) exists time t such that dIc (t)

dt
> 0 and there-

fore Ic(t + 1) ≠ 0. This equilibrium corresponding to the case
where children do not infect adults at all which is similarly to
EQ2, improbable as a real world scenario.
EQ4: is the case for ∃t such that Ic(t) ≠ 0 and Ia(t) ≠ 0 (see Ta-

ble 2). This equilibrium is the generic case for the model. This
equilibrium does not have a unique epidemiological properties.
The equilibria EQ2, EQ3, and EQ4 are not stable because in

each of the cases, either Ia > 0 or Ic > 0. Assuming, the equilibria
is kept until some time t∗ such that t∗ is defined as the first time t

such that Sc = 0 if Ic > 0 or Sa = 0 if Ia > 0. At time t∗, dSa
dt

= 0 or
dSc
dt=0

which is different then the values of Sc and Sa for equilibria
EQ2, EQ3, and EQ4.

2.2. Spatial Model

Figure 5 shows the spatial model schema presenting the pop-
ulations distribution and locations (work/school, and home) at
some time of the day. In addition to the ODE model’s parame-
ters (shown in Table 1), the following parameters are added to
the hybrid model as part of the spatial model:

1) 𝜙ac, the average number of meeting events between adults
and children per hour.

2) 𝜙aa, the average number of meeting events between adults
and adults per hour.

3) 𝜙cc, the average number of meeting events between children
and children per hour.

4) tdc , hours of the day that children are at home and tnc = 24 − tdc
hours of the day that children are at school.

5) tda, hours of the day that adults are at home and tna = 24 − tda
hours of the day that adults are at work.

We assume the transition from home to either work or school
and back is immediate and that everybody is following the same
clock. Each simulation step simulates 1 h. The population size is
constant during the simulation and initialized in the beginning
of each iteration by setting children population size Nc and adult
population size Na. In each simulation step, the following three
actions take place:

1) If amember is in the susceptible group andmeets othermem-
bers of the infected group, there is a change of 𝛽aa, 𝛽ac, 𝛽ca, or
𝛽cc according to the age-class of the twomembers that the first
will be infected.

2) Each infected child or adult that was infected for 1
𝛾c
, 1
𝛾a
simula-

tion steps becomes either recovered or deceased, respectively.
3) According to the hour of the day, the adults transition to home

or work and the children to home or school.

The spatial model adds day–night circle and three main locations
to the dynamics of the hybrid model. A description of the whole

Adv. Theory Simul. 2021, 4, 2000298 © 2021 Wiley-VCH GmbH2000298 (8 of 15)

http://www.advancedsciencenews.com
http://www.advtheorysimul.com


www.advancedsciencenews.com www.advtheorysimul.com

Figure 5. The panel of the spatialmodel. From top to bottom: the time from the beginning of the simulation. Distribution of the population to susceptible,
infected, recovered, and dead groups. The distribution of the population to susceptible, infected, recovered, and dead groups with separation to children
and adults and their current location (home, work, school). The R0 at a certain time and the average R0 from the beginning of the simulation.

Figure 6. Average of ten iterations of numerical simulation of the hybrid
model where the parameter values are taken from Table 1. Children and
adult graphs are presented with a dotted and solid lines, respectively. Sus-
ceptible, infected, recovered, and dead are shown in green, red, blue, and
black, respectively.

spatio-temporal dynamics of the Hybrid model as a system of
ODEs can be found in Equations (S1)– (S16), Supporting Infor-
mation.
Figure 6 shows the population group sizes of Sc(t), Sa(t), Ic(t),

Ia(t), Rc(t), Ra(t), Dc(t), and Da(t) as an average of ten iterations

of the hybrid model. The x-axis is the time (in days) that has
passed from the beginning of the epidemic and the y-axis is the
normalized size of each population, respectively. The parameters
used in the simulations are tdc = tda = 12,𝜙ac = 𝜙aa = 𝜙cc = 1, N =
1000, Nc = 280, Na = 720.
A maximum in the percent of infected children and adults

(38.5%, 100%) is reached on the 9th and 12th day, as shown in
Figure 6. In addition, all children were infected and recovered
after 12 days while all adults recovered after 28 days. The simu-
lation shows similar results to the results derived by solving the
model (Equations (11) and (12)) as presented in Figure 3. The
main difference between the two is that the simulation predicts
4.43 times shorter duration from the time of maximum infected
adults to the time that all adults are either dead or recovered, as
the infected adult population equals zero on the 82nd and 28th
days. In addition, the maximum of infected adults is reached on
the 11th and 12th days resulting in 71 and 16 days for full recovery.

3. Results

3.1. Outbreak Analysis

The proposed hybrid model provide an in silico environment al-
lowing relatively fast, cheap, and accurate analysis of different
policies on the COVID-19 spread dynamics.
One of the major hopes of politicians is for an NPI policy in

which the epidemic does not reach an outbreak at any time after
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Figure 7. Analysis of the epidemic spread as a function of working (dW) and schooling (dS) duration in hours each day.

they initialized a given decision. We define this condition math-
ematically as follows:
Definition 2. For given initial condition andmodel’s parameter

(ℙ). A solution of Equations (11) and (12) is defined as outbreak
dynamics if ∃t ∈ ℕ : R0(t) > 1.
We will examine two policies, based on this condition, to de-

termine if each one is possible to fulfill the condition. If so, the
optimal NPI policy is based on the parameter-space criteria:

1) The influence of the duration of the work/school day.
2) Lockdown in homes with partial to full separation between

individuals.

3.2. Duration of Working and Schooling Day

We will assume that children meet only children in school and
adults meet only adults at work and at home adults and children
meet each other. This is a good approximation of the real dynam-
ics as a relatively small percent of adults work with children dur-
ing the day which keeps the interactions between children and

adults at this time relatively small to the extent of interaction
when both adults and children are at home and therefore can
be neglected.
Based on the proposed spatial model, we change the number

of hours children and adults spend in school and work each day,
respectively. Figure 7a shows the average R0 as a function of the
duration in hours of the working (dW ) and schooling (dS) day. The
dots are the calculated values from the simulator and the surface
is a fitting function R0(dW, dS). The fitting function is calculated
using the least mean square (LMS) method.[34] In order to use
the LMSmethod, one needs to define the family function approx-
imating a function. The family function

f (a, c) = p1 + p2a + p3c + p4ac + p5a
2 + p6c

2 (24)

has been chosen to balance between the accuracy of the sampled
data on the one hand and simplicity of usage on the other,[35]

R0(dW, dS) = 1.267 − 0.018dW − 0.030dS + 0.001d2W + 0.001d2S

(25)
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and was obtained with a coefficient of determination R2 = 0.815.
Similarly, Figure 7c shows the averagemaxt(Ic(t) + Ia(t)) as a func-
tion of the duration in hours of the working (dW ) and schooling
(dS) day. The dots in Figure 7c are the calculated values from the
spatial model and the surface is the fitting function

Imax(dW, dS) = 82.419 + 0.005dW − 0.505dS − 0.023dWdS

+ 0.001d2W + 0.019d2S (26)

obtained with a coefficient of determination R2 = 0.748.
The duration of either working or schooling day has a local

minimum at (dW, dS) = (18, 14) with R0 = 0.808, as shown in
Figure 7a. The optimal point from Equation (25) is (dW, dS) =
(9, 17.5) with R0 = 0.967 obtained by setting the gradient of
R0(dW, dS) to zero. The inconsistency in the values is resulted by
the error in the fitting function but both show the same behavior
in which longer working hours reduce significantly the infection
rate but too many hours increase the infection rate back as the
lack of circulation of contagious adults and children during the
day helps to reduce the infection rate. Furthermore, Figure 7b
presents a binary classification where red cells are cases with an
outbreak and green cells are cases without outbreak during the
simulation as a function of the working (dW ) and schooling (dS)
duration in hours each day.
On the other hand, the duration of either working or school-

ing day has an effect of 10% (as the maximal value is 82.5 while
theminimal is 72.5) on themaximal infected percent of individu-
als from the population as shown in Figure 7c and by setting the
limits dW = {0, 24}, dS = {0, 24} in Equation (26). There is a sharp
decline between a shorter working–schooling duration of 10 h or
less and longer than that. This is associated with the fact that with
more than 12 h (half-day) the dynamics that have a higher inci-
dence are the ones with 𝛽ca = 𝛽ac = 0 which reduces the number
of infected individuals in total.

3.3. Lockdown Policy

Partial or full lockdown of several locations or entire countries
were broadly used at the beginning of the COVID-19 outbreak as
a policy to reduce the number of infected individuals and con-
trol the spread dynamics. The lockdown policy yields social dis-
tance which reduces the ratio of infection. On the other hand, this
policy negatively affects the economy and mental health, and in-
creases the presence of other diseases (both physical andmental)
in the population. Therefore, the optimization task of finding the
minimal portion of the population to be locked down such that
the epidemic will be constrained is important.
The lockdown policy is similar to the schooling-working hours

policy in the manner that both modify the spatial dynamics of
the population. Nevertheless, the schooling-working hours pol-
icy defined the number of hours all the children and working
adults populations go to school and work, respectively, while the
lockdown policy keeps part (or all) the population at home all day
long alongside the remain part of the population keeps the regu-
lar working and schooling hours. In addition, the lockdown pol-
icy isolates individuals at home, which is expressed by the fact
that individuals can contact with them but they can not initial an

contact with other individuals while this constraint does not take
place in the working-schooling hours policy.
The optimization problem can be written formally as

min
La,Lc

(
R0 < 1

)
(27)

where La and Lc are the portion of adults and children in lock-
down. We ran the spatial model multiple times where each time
a combination of (La, Lc) = {(0.1i, 0.1i)}10i=0 of the population is as-
sumed to be in lockdown. Figure 8a shows the results of this cal-
culation. Each dot representsR0 of each case La, Lc. The black grid
shows the threshold R0 = 1.
The behavior of R0 as a function of La, Lc has been retrieved

using the LMS method and takes the form

R0(La, Lc)

= 1.426 − 0.450La − 0.476Lc − 1.015LaLc

−0.028L2a + 0.558L2c (28)

obtained with a coefficient of determination R2 = 0.971. There-
fore, it is safe to claim that function R0(La, Lc) is well fitting the
data despite the stochastic noise of the simulation and presents
a fair approximation for the R0 behavior as a function of La, Lc.
Using Equation (28), it is possible to find the constraints of La, Lc
such that R0 ≤ 1, by solving R0(La, Lc) ≤ 1.
Closing only schools without any reduction in adults going

to work does not prevent an epidemic outbreak, while locking
down half of the adult population will prevent an outbreak. Lock-
down of children (Lc) have a minor effect relatively to lockdown
adults (La) as shown in both Equation (28) and Figure 8b. In ad-
dition, the same phenomena repeat in the max infected individu-
als, as shown in Figure 8c. The surface calculated using the LMS
method:

max
t
(Ic(t) + Ia(t))

(
La, Lc

)
= 80.620 + 16.223La − 1.425Lc − 5.280LaLc

−21.703L2a + 3.406L2c (29)

and obtained with a coefficient of determination R2 = 0.840.
In addition, we repeat the analysis by numerically solving the

system (Equations (11) and (12)). The lockdown is reflected in
the model as the infection rate between every two individuals.
La affects the interactions between adults and either other adults
or children 𝛽aa, 𝛽ac, and Lc affect the interactions between chil-
dren and either other children or adults 𝛽cc, 𝛽ca. Mark the origi-
nal values of 𝛽aa, 𝛽ac, 𝛽ca, 𝛽cc from Table 1 as 𝛽∗aa, 𝛽

∗
ac, 𝛽

∗
ca, 𝛽

∗
cc. Each

time, the system solved where (La, Lc) = {(0.1i, 0.1i)}10i=0 such that
𝛽aa = 𝛽∗aa ⋅ La, 𝛽ac = 𝛽∗ac ⋅ La, 𝛽ca = 𝛽∗ca ⋅ Lc, and 𝛽cc = 𝛽∗cc ⋅ Lc.
Figure 9a shows the results of this calculation based on Equa-

tion (21). Each dot represents R0 of each case La, Lc. The black
grid shows the thresholdR0 = 1. Figure 9b presents a binary clas-
sification of the cases with outbreak dynamics (red) or without
(green). Figure 9b is similar to Figure 8b such that adult lock-
down has a higher influence on the outbreak and predicts that a
much higher percentage of the population will be in lockdown.
Again, the difference in the percent of adult’s lockdown (La) such
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Figure 8. Analysis of the epidemic spread as a function of adult lockdown (La) and children lockdown (Lc) using the computer simulation of the hybrid
model.

that R0 < 1 can be associated with the slower infection rate in tda
24

hours of each day because part of the adults change their loca-
tion which in it turns influence the infection rate. In addition,
the recovery process is faster in the spatial model (as shown in
Figures 3 and 6).
The behavior of R0 as a function of La, Lc has been derived us-

ing the LMS method and takes the form

R0(La, Lc) = −5.192 − 0.541La + 5.615Lc (30)

obtained with a coefficient of determination R2 = 0.952.
In addition, Figure 9c presents the max infected individuals as

a function of adult and children lockdown. The surface has been
calculated using the LMS method and takes the form:

max
t
(Ic(t) + Ia(t))

(
La, Lc

)
= 64.603 + 23.397La − 1.696Lc − 8.016LaLc

−32.063L2a + 4.655L2c (31)

obtained with a coefficient of determination R2 = 0.702. Fig-
ures 8c and 9c are presenting the same behavior while Figure 8c
predicts 5% more infected individuals on average. The influence
of the adult lockdown is one order of magnitude more signifi-
cant than that of the children’s lockdown in a first and second
order approximation as shown in Equations (29) and (31). That
is, where there is no lockdown for children (Lc = 0), there is a lo-
cal maximum in infected individuals regardless of the lockdown
of adults (La).

3.4. Validation of the Hybrid Model on the Dynamics of the
COVID-19 Pandemic in Israel

In Israel, in February 21, the first COVID-19 infected individual
was detected. On March 25, a national quarantine was imple-
mented that continued for 2 months with local relief and restric-
tion on several occasions and in several cities. Figure 10 presents
the daily new confirmed cases from August 15 to September 28,
respectively. Where the blue (solid) line marks the date when the
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Figure 9. Analysis of the epidemic spread as a function of adult lockdown (La) and children lockdown (Lc) by the hybrid model.

schools returned to almost full capacity, the green (solid-dotted)
lines are linear regression for before and after school opening, re-
spectively. It is easy to see a significant increment in the number
of new daily cases.
From ref. [4], there were 90 232 infected at August 15. Given

that the average recovery rate of children is 2 days and adults
is 14 days (see Table 1) and that children is 28% of the popu-
lation, we obtain that there was approximately 18 899 infected
adults and 868 infected children. We assume that the amount
of recovered individuals is heterogeneous in the population
and that only adults die from the epidemic until this point.
Equation (32) shows the initial conditions for August 15 (t0),
Israel.

Sc(t0) = 2219418, Ic(t0) = 868, Rc(t0) = 19, 714, Dc(t0) = 0

Sa(t0) = 5686182, Ia(t0) = 18899, Ra(t0) = 54196, Da(t0) = 723

(32)

To test the hybrid model, we calculated the R0 on average per
day for the period from August 15 to September 1 and from
September 1 to September 15, dividing the number of new cases
by the total number of cases on that day (obtained from ref. [4]).
We solve numerically the hybrid model and calculate R0 for the
case in which schools are open versus the case in which schools
are closed. If schools are open, children go to school three times
a week (every other day, except weekends) for 5 h each day. If
schools are closed, children stay at home all the time. In both
cases, we assume that adults work 8 h each day, except on week-
ends when they stay home. The obtained values of R0 for both
cases are shown in Figure 11, with a mean square error (MSE) of
0.205.
Considering that, longer school day is reducing the infection

rate (Figure 7a), we solve numerically the hybrid model and cal-
culateR0 for the case when the schools are open (fromSeptember
1). We assume that children go to school every day (except week-
ends) for 9 h while the adults go to work for the same period.
We obtain that the difference in the average R0 of the case with
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Figure 10. Daily confirmed cases in Israel between August 15 and Septem-
ber 29 (2020).[4] The blue (solid) line is the full opening of schools. The
green (solid-dotted) lines are a linear regression for before and after school
opening, respectively.

Figure 11. R0 between August 15 and September 15 (2020) comparison
between the historical data and the hybrid model predictions.

the optimal NPI (R0 = 1.45) and the historical NPI (R0 = 2.28) is
ΔR0 = 0.83 (see Figure 11).

4. Discussion

This study presents a model showing the effects of population
age, time of day, and gathering location on the spread of the epi-
demic. Based on the proposed model Equations (11) and (12),
the non-trivial equilibria of the system is presented in Table 2.
Although the proposed model is a simplification of the total
complexity of the COVID-19 epidemic, the asymptotic solution
without any intervention will result in a high percentage 39%
children, 89% adults and 38.5% children, 100% adults of infected
individuals as shown in Figures 3 and 6, respectively.
In addition, the asymptotic solutions of themodel are insignif-

icant for themselves as in practice these results occur afterA days
(13 years). The main epidemic dynamics as obtained from both
the SIRDmodel Equations (11) and (12) and the hybridmodel is a
fewmonth long, as shown in Figures 3 and 6. Besides, the asymp-

totic solution can be used to easily obtainDa andDc as they accu-
mulative sums of infected infected adults and childrenmultiplied
by a factor𝜓a and𝜓c and do not change after the epidemic is over.
As a result, 𝛼 = 2.1 × 10−4 is not used as for 82 days (as shown in
Figure 3) only 0.017% of the children will become adults which
effectually has only a minor affect on the epidemic results.
Furthermore, two policies for controlling the epidemic and

preventing outbreak have been investigated using the hybrid
model. First, the duration of working and schooling day has an
influence (up to 10%) on the maximum of infected individuals
but can prevent outbreaks under the assumption that during this
time adults do not contact children at all as shown in Figure 7.
These resultsmatch the conclusions reported by Keskinocak et al.
(2020) for Georgia state.[36] In addition, these results match the
results reported by Di Domenico[16] that school closure has a
minor influence on the epidemic peak, just delays it. Second, a
partial lockdown of adults and children shows that adults’ and
children’s lockdowns have a similar first-order effect (linear coef-
ficients of La and Lc) but the combination between the two (LaLc)
has a bigger weight on the average infection rate as shown in
Equations (28) and (30). These results match the conclusions re-
ported by Aglar et al. (2020) for the state of Georgia regarding the
voluntary lockdown with school closure.[37] By the same token, a
lockdown of approximately half of the adult population prevents
an outbreak where children lockdown has a less significant in-
fluence as shown in Figures 8 and 9. These results are based on
values from Table 1, which can vary significantly between coun-
tries and depend on other hyperparameters such as population
density, age distribution of the population and others.
The model explains the dynamics that took place between Au-

gust 15 and September 15 (2020) in Israel as presented in Fig-
ure 11, with MSE of 0.205. The opening of the schools is equal to
reducing the lockdown for childrenwith some relaxation (smaller
La) of the lockdown for adults (because if the children are in
school they can go to work) with less than half (50%) of the adult
population voluntarily in lockdown. Also, the schooling hours
were reduced to less than 6 h each day. From Figures 7a and 8c,
it is easy to see that this policy predicts high increase in the infec-
tion rate, as indeed happened. Keeping the schools open while
keeping the increase in the infection rate from increasing sig-
nificantly is possible if the schooling hours are longer (8–9 h) as
shown in Figure 7a. The influence of this policy in Israel dur-
ing the school opening which take place in September 1 shows
that the R0 can be reduced by 0.83 in comparison to a policy in
which children go to school every other day for 5 h, as shown in
Figure 11. Also, if at least half of the adult population will be in
lockdown, the influence of the schools on the infection rate will
be relatively small as shown in Figure 8b.
In the case of a future pandemic virus, researchers will be

able to use our approach to predict the exact consequences of
choosing “Lockdown” strategies, especially those needed for pan-
demics with a lack of immunity in the world’s population. Un-
derstanding the age-based dynamics in COVID-19 spread in the
population will be crucial for the development of an optimal NPI
policy, as well as for optimizing current polices and analyzing
clinical data. The further extensions of the model will be used to
learn how to manage international travel between countries with
a range of healthcare system abilities in both the context of the
COVID-19 epidemic and for other epidemics scenarios.
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