18815 measured reflections

5602 independent reflections

4894 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-4-Bromo-N'-(4-hydroxy-3-methoxybenzylidene)benzohydrazide monohydrate

Jirapa Horkaew,^a Suchada Chantrapromma,^b*‡Teerasak Anantapong,^c Akkharawit Kanjana-Opas^c and Hoong-Kun Fun^d§

^aDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, ^bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, CDepartment of Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and ^dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: suchada.c@psu.ac.th

Received 15 February 2012; accepted 8 March 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.025; wR factor = 0.065; data-to-parameter ratio = 28.0.

In the title compound, $C_{15}H_{13}BrN_2O_3 \cdot H_2O_3$, the dihedral angle between the two benzene rings is $13.92(6)^{\circ}$. The methoxy group of the 4-hydroxy-3-methoxyphenyl is almost coplanar with its bound benzene ring, as seen by the C_{methyl} -O-C-C torsion angle of $-0.35 (16)^{\circ}$. In the crystal, molecules are linked into a three-dimensional network by N-H···O, O- $H \cdots N$ and $O - H \cdots O$ hydrogen bonds and also weak C -H···O interactions. A short C···O contact of 3.0191 (15) Å is also present.

Related literature

For bond-length data, see: Allen et al. (1987). For related structures, see: Fun et al. (2011); Horkaew et al. (2011); Promdet et al. (2011). For background and applications of benzohydrazide derivatives, see: Loncle et al. (2004); Raj et al. (2007). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).

[‡] Thomson Reuters ResearcherID: A-5085-2009.

Experimental

Crystal data

C ₁₅ H ₁₃ BrN ₂ O ₃ ·H ₂ O	
$M_r = 367.19$	
Monoclinic, $P2_1/c$	
a = 7.9772 (7) Å	
b = 21.446 (2) Å	
c = 10.3928 (7) Å	
$\beta = 119.479 \ (5)^{\circ}$	

Data collection

Bruker APEX DUO CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.306, \ T_{\max} = 0.756$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.025$	200 parameters
$wR(F^2) = 0.065$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.54 \ {\rm e} \ {\rm \AA}^{-3}$
5602 reflections	$\Delta \rho_{\rm min} = -0.54 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O3-H1O3\cdots O1W^{i}$	0.80	1.79	2.5867 (14)	170
$N1 - H1N1 \cdots O3^{ii}$	0.86	2.18	3.0107 (16)	162
$O1W - H1OW \cdot \cdot \cdot O1^{iii}$	0.82	1.93	2.7409 (14)	171
$O1W - H2OW \cdot \cdot \cdot O1^{iv}$	0.78	2.16	2.8883 (14)	154
$O1W - H2OW \cdot \cdot \cdot N2^{iv}$	0.78	2.49	3.0971 (16)	136
$C6-H6A\cdots O3^{ii}$	0.95	2.59	3.4832 (15)	156
C8−H8A···O3 ⁱⁱ	0.95	2.40	3.2604 (17)	150
$C10-H10A\cdots O1W^{v}$	0.95	2.45	3.3933 (15)	172

Symmetry codes: (i) $x - 1, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) $x+1, -y+\frac{3}{2}, z+\frac{1}{2};$ (iii) -x + 1, -y + 2, -z + 1; (iv) x + 1, y, z; (v) x - 1, y, z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

JH thanks the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education, and the Graduate School, Prince of Songkla University, for financial support. The authors thank the Prince of Songkla University and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/ 811160.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2521).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.

V = 1547.8 (2) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 2.68 \text{ mm}^-$ T = 100 K $0.58 \times 0.21 \times 0.11 \text{ mm}$

 $R_{\rm int} = 0.024$

[§] Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: hkfun@usm.my.

Fun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644– o2645.

Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985.Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004).*Eur. J. Med. Chem.* 39, 1067–1071.

- Promdet, P., Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, 03224.
- Raj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425–429.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2012). E68, o1069-o1070 [doi:10.1107/S160053681201032X]

(*E*)-4-Bromo-*N'*-(4-hydroxy-3-methoxybenzylidene)benzohydrazide monohydrate

Jirapa Horkaew, Suchada Chantrapromma, Teerasak Anantapong, Akkharawit Kanjana-Opas and Hoong-Kun Fun

Comment

As part of our study on bioactivity of hydrazone and benzohydrazide derivatives, the title compound is one of the several benzohydrazide derivatives which were synthesized and tested for biological activity. It have been known that some benzohydrazides possess various biological properties, such as antibacterial and antifungal (Loncle *et al.*, 2004), and antiproliferative (Raj *et al.*, 2007) activities. We have previously reported some crystal structures of this category of compounds (Fun *et al.*, 2011; Horkaew *et al.*, 2011; Promdet *et al.*, 2011). The title compound (I) was synthesized in order to study the effect of functional groups and their positions on their bioactivities by comparing with the closely related structures in our research project. (I) was screened for antibacterial and antioxidant activities. Our biological testing found that (I) exhibits potent antioxidant activity whereas inactive against the tested bacteria strains which are *Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus*, Methicillin-Resistant *Staphylococcus aureus*, Vancomycin-Resistant *Enterococcus faecalis, Pseudomonas aeruginosa, Salmonella typhi* and *Shigella sonnei*. Herein we report the crystal structure of (I).

The molecule of the title benzohydrazide derivative (Fig. 1), $C_{15}H_{13}BrN_2O_3$. H_2O , comprises of a molecule of benzohydrazide and one water solvent molecule. The molecule of benzohydrazide exists in a *trans*-configuration with respect to the C8=N2 bond [1.2853 (14) Å] and the torsion angle N1–N2–C8–C9 = 178.54 (10)°. The molecule is twisted with the dihedral angle between the two phenyl rings being 13.92 (6)°. The methoxy group of the 4-hydroxy-3-methoxy-phenyl is co-planar with its bound benzene ring [C15–O2–C11–C10 = 0.35 (16)°].

The middle bridge fragment (O1/C7/N1/N2/C8) is essentially planar with the torsion angle N2–N1–C7–O1 = $-0.21 (17)^{\circ}$. The mean plane through this bridge makes the dihedral angles of 12.71 (7) and 1.25 (7)° with the 4-bromophenyl and 4 benzene rings, respectively. The methoxy group of 4-hydroxy-3-methoxyphenyl is co-planar with its bound benzene ring with the torsion angle C15–O2–C11–C10 = $0.35 (16)^{\circ}$ and the r.m.s 0.0063 (2) Å for the eight non H atoms. Bond distances are in normal ranges (Allen *et al.*, 1987) and are comparable with the related structures (Fun *et al.*, 2011; Horkaew *et al.*, 2011).

In the crystal packing (Fig. 2), the molecules are linked by N—H…O, O—H…N and O—H…O hydrogen bonds together with weak C—H…O interactions (Table 1) into a three dimensional network. A C8…O2ⁱ[3.0191 (15) Å] short contact was presented.

Experimental

The title compound (I) was prepared by dissolving 4-bromobenzohydrazide (2 mmol, 0.43 g) in ethanol (15 ml). The solution of 4-hydroxy-3-methoxy-benzaldehyde (2 mmol, 0.30 g) in ethanol (15 ml) was then added slowly to the

reaction. The mixture was refluxed for around 5 hr and the white solid of the product that appeared was collected by filtration, washed with ethanol and dried in air. Colorless block-shaped single crystals of the title compound suitable for *X*-ray structure determination were recrystallized from methanol by slow evaporation of the solvent at room temperature after several days, Mp. 513 K (decomposed).

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(N-H) = 0.86 Å, d(O-H) = 0.80 Å for hydroxy and 0.78 and 0.82 Å for water, d(C-H) = 0.95 Å for aromatic and CH and 0.98 Å for CH₃ atoms. The U_{iso} values were constrained to be $1.5U_{eq}$ of the carrier atom for methyl H atoms and $1.2U_{eq}$ for the remaining H atoms. A rotating group model was used for the methyl groups.

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

Figure 1

The molecular structure of the title compound, showing 55% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

The crystal packing of the title compound viewed approximately along the *a* axis, showing 3D network. Hydrogen bonds were drawn as dashed lines.

(E)-4-Bromo-N'-(4-hydroxy-3-methoxybenzylidene)benzohydrazide monohydrate

Crystal data	
$C_{15}H_{13}BrN_2O_3\cdot H_2O$	F(000) = 744
$M_r = 367.19$	$D_{\rm x} = 1.576 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Melting point > 513 K
Hall symbol: -P 2ybc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 7.9772 (7) Å	Cell parameters from 5602 reflections
b = 21.446 (2) Å	$\theta = 2.4 - 32.6^{\circ}$
c = 10.3928 (7) Å	$\mu = 2.68 \text{ mm}^{-1}$
$\beta = 119.479 \ (5)^{\circ}$	T = 100 K
V = 1547.8 (2) Å ³	Block, colorless
<i>Z</i> = 4	$0.58 \times 0.21 \times 0.11 \text{ mm}$
Data collection	
Bruker APEX DUO CCD area-detector	Absorption correction: multi-scan
diffractometer	(SADABS; Bruker, 2009)
Radiation source: sealed tube	$T_{\rm min} = 0.306, \ T_{\rm max} = 0.756$
Graphite monochromator	18815 measured reflections
φ and ω scans	5602 independent reflections
	4894 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.024$	$k = -29 \rightarrow 32$
$\theta_{\rm max} = 32.6^{\circ}, \theta_{\rm min} = 2.4^{\circ}$	$l = -15 \rightarrow 15$
$h = -11 \rightarrow 12$	

Kejinemeni	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.025$	Hydrogen site location: inferred from
$wR(F^2) = 0.065$	neighbouring sites
S = 1.04	H-atom parameters constrained
5602 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0304P)^2 + 0.5617P]$
200 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.009$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.54 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.54 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	1.165101 (18)	1.138681 (6)	1.032760 (13)	0.02180 (4)	
01	0.31020 (12)	0.98324 (4)	0.62686 (11)	0.02206 (18)	
O2	-0.26566 (11)	0.74388 (4)	0.19684 (10)	0.01696 (15)	
03	-0.14414 (12)	0.64604 (4)	0.11703 (10)	0.01614 (15)	
H1O3	-0.1053	0.6238	0.0752	0.024*	
N1	0.50431 (13)	0.91557 (4)	0.59638 (11)	0.01464 (16)	
H1N1	0.6171	0.9016	0.6218	0.018*	
N2	0.34933 (13)	0.87658 (4)	0.51278 (11)	0.01445 (16)	
C1	0.64474 (16)	1.00888 (5)	0.74049 (12)	0.01489 (18)	
C2	0.62537 (18)	1.05722 (6)	0.82220 (15)	0.0223 (2)	
H2A	0.5052	1.0635	0.8185	0.027*	
C3	0.77907 (19)	1.09623 (6)	0.90869 (15)	0.0233 (2)	
H3A	0.7652	1.1289	0.9644	0.028*	
C4	0.95314 (17)	1.08667 (5)	0.91237 (13)	0.0176 (2)	
C5	0.97598 (17)	1.03960 (6)	0.83136 (13)	0.0186 (2)	
H5A	1.0960	1.0339	0.8344	0.022*	
C6	0.82108 (17)	1.00077 (5)	0.74535 (13)	0.0178 (2)	
H6A	0.8356	0.9684	0.6893	0.021*	
C7	0.47302 (16)	0.96867 (5)	0.65048 (12)	0.01518 (19)	
C8	0.39443 (15)	0.82791 (5)	0.46425 (12)	0.01448 (18)	
H8A	0.5240	0.8228	0.4859	0.017*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

С9	0.25378 (15)	0.78044 (5)	0.37726 (12)	0.01375 (18)
C10	0.05771 (15)	0.78701 (5)	0.33432 (12)	0.01418 (18)
H10A	0.0146	0.8225	0.3646	0.017*
C11	-0.07205 (15)	0.74162 (5)	0.24783 (12)	0.01331 (18)
C12	-0.00870 (15)	0.68869 (5)	0.20363 (12)	0.01369 (18)
C13	0.18522 (16)	0.68186 (5)	0.24792 (13)	0.01568 (19)
H13A	0.2288	0.6460	0.2194	0.019*
C14	0.31573 (16)	0.72779 (5)	0.33436 (13)	0.01619 (19)
H14A	0.4484	0.7231	0.3643	0.019*
C15	-0.33607 (17)	0.79716 (6)	0.23765 (15)	0.0201 (2)
H15A	-0.4763	0.7943	0.1930	0.030*
H15B	-0.3026	0.8350	0.2024	0.030*
H15C	-0.2776	0.7988	0.3455	0.030*
O1W	0.94692 (12)	0.92018 (4)	0.45250 (10)	0.01886 (16)
H1OW	0.8746	0.9503	0.4230	0.028*
H2OW	1.0559	0.9287	0.4881	0.028*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Br1	0.02481 (7)	0.01815 (6)	0.01611 (6)	-0.00733 (4)	0.00520 (5)	-0.00200 (4)
01	0.0137 (4)	0.0200 (4)	0.0292 (5)	0.0032 (3)	0.0080 (3)	-0.0033 (3)
O2	0.0091 (3)	0.0177 (4)	0.0223 (4)	-0.0001 (3)	0.0064 (3)	-0.0044 (3)
03	0.0129 (3)	0.0161 (4)	0.0196 (4)	-0.0031 (3)	0.0081 (3)	-0.0051 (3)
N1	0.0099 (4)	0.0142 (4)	0.0170 (4)	-0.0005 (3)	0.0045 (3)	-0.0019 (3)
N2	0.0109 (4)	0.0147 (4)	0.0146 (4)	-0.0018 (3)	0.0039 (3)	-0.0008 (3)
C1	0.0152 (5)	0.0122 (4)	0.0150 (4)	0.0006 (3)	0.0056 (4)	0.0007 (3)
C2	0.0182 (5)	0.0206 (5)	0.0256 (6)	0.0023 (4)	0.0088 (5)	-0.0057 (4)
C3	0.0222 (6)	0.0194 (5)	0.0238 (6)	0.0011 (4)	0.0080 (5)	-0.0064 (4)
C4	0.0199 (5)	0.0145 (5)	0.0138 (5)	-0.0031 (4)	0.0046 (4)	-0.0002 (4)
C5	0.0184 (5)	0.0189 (5)	0.0194 (5)	-0.0048 (4)	0.0100 (4)	-0.0032 (4)
C6	0.0186 (5)	0.0166 (5)	0.0192 (5)	-0.0034 (4)	0.0101 (4)	-0.0039 (4)
C7	0.0137 (4)	0.0141 (4)	0.0154 (5)	0.0013 (3)	0.0053 (4)	0.0007 (4)
C8	0.0106 (4)	0.0154 (4)	0.0152 (5)	0.0000 (3)	0.0046 (4)	0.0007 (4)
C9	0.0112 (4)	0.0141 (4)	0.0145 (4)	-0.0005 (3)	0.0052 (4)	-0.0001 (3)
C10	0.0121 (4)	0.0143 (4)	0.0150 (5)	0.0001 (3)	0.0058 (4)	-0.0007 (4)
C11	0.0100 (4)	0.0147 (4)	0.0145 (4)	0.0003 (3)	0.0054 (4)	0.0006 (3)
C12	0.0116 (4)	0.0141 (4)	0.0142 (4)	-0.0015 (3)	0.0055 (4)	-0.0009 (3)
C13	0.0131 (4)	0.0148 (4)	0.0192 (5)	0.0006 (4)	0.0080 (4)	-0.0020 (4)
C14	0.0109 (4)	0.0172 (5)	0.0198 (5)	-0.0002 (4)	0.0070 (4)	-0.0013 (4)
C15	0.0134 (5)	0.0214 (5)	0.0261 (6)	0.0014 (4)	0.0103 (4)	-0.0048 (4)
O1W	0.0147 (4)	0.0161 (4)	0.0266 (4)	0.0023 (3)	0.0108 (3)	0.0042 (3)

Geometric parameters (Å, °)

Br1—C4	1.8939 (12)	С5—Н5А	0.9500
O1—C7	1.2374 (14)	С6—Н6А	0.9500
O2—C11	1.3650 (13)	C8—C9	1.4541 (15)
O2—C15	1.4266 (14)	C8—H8A	0.9500
O3—C12	1.3627 (13)	C9—C14	1.3911 (15)

O3—H1O3	0.8032	C9—C10	1.4066 (15)
N1—C7	1.3467 (14)	C10—C11	1.3825 (15)
N1—N2	1.3876 (13)	C10—H10A	0.9500
N1—H1N1	0.8572	C11—C12	1.4082 (15)
N2—C8	1.2853 (14)	C12—C13	1.3876 (15)
C1—C6	1.3935 (16)	C13—C14	1.3930 (16)
C1—C2	1.3959 (16)	С13—Н13А	0.9500
C1—C7	1.4947 (16)	C14—H14A	0.9500
C2—C3	1.3879 (18)	С15—Н15А	0.9800
C2—H2A	0.9500	C15—H15B	0.9800
C3—C4	1.3854 (18)	C15—H15C	0.9800
С3—НЗА	0.9500	O1W—H1OW	0.8179
C4—C5	1.3828 (16)	O1W—H2OW	0.7806
C5—C6	1.3900 (16)		
C11—O2—C15	116.68 (9)	N2—C8—H8A	118.9
C12—O3—H1O3	111.4	С9—С8—Н8А	118.9
C7—N1—N2	118.68 (9)	C14—C9—C10	119.65 (10)
C7—N1—H1N1	123.2	C14—C9—C8	118.72 (9)
N2—N1—H1N1	117.4	C10—C9—C8	121.63 (10)
C8—N2—N1	113.57 (9)	C11—C10—C9	119.71 (10)
C6—C1—C2	118.85 (11)	C11—C10—H10A	120.1
C6—C1—C7	123.27 (10)	C9—C10—H10A	120.1
C2—C1—C7	117.87 (10)	O2—C11—C10	124.71 (10)
C3—C2—C1	120.97 (11)	O2—C11—C12	114.91 (9)
C3—C2—H2A	119.5	C10—C11—C12	120.37 (9)
C1—C2—H2A	119.5	O3—C12—C13	122.71 (10)
C4—C3—C2	118.85 (11)	O3—C12—C11	117.47 (9)
С4—С3—НЗА	120.6	C13—C12—C11	119.82 (10)
С2—С3—НЗА	120.6	C12—C13—C14	119.78 (10)
C5—C4—C3	121.46 (11)	C12—C13—H13A	120.1
C5—C4—Br1	119.34 (9)	C14—C13—H13A	120.1
C3—C4—Br1	119.20 (9)	C9—C14—C13	120.66 (10)
C4—C5—C6	119.15 (11)	C9—C14—H14A	119.7
С4—С5—Н5А	120.4	C13—C14—H14A	119.7
С6—С5—Н5А	120.4	O2—C15—H15A	109.5
C5—C6—C1	120.70 (11)	O2—C15—H15B	109.5
С5—С6—Н6А	119.6	H15A—C15—H15B	109.5
С1—С6—Н6А	119.6	O2—C15—H15C	109.5
O1—C7—N1	121.53 (10)	H15A—C15—H15C	109.5
O1—C7—C1	121.85 (10)	H15B—C15—H15C	109.5
N1—C7—C1	116.62 (9)	H1OW—O1W—H2OW	114.1
N2—C8—C9	122.22 (10)		
C7—N1—N2—C8	178.70 (10)	N2—C8—C9—C14	-177.20 (11)
C6—C1—C2—C3	-0.88 (19)	N2-C8-C9-C10	3.67 (17)
C7—C1—C2—C3	179.75 (12)	C14—C9—C10—C11	-1.09 (16)
C1—C2—C3—C4	0.3 (2)	C8—C9—C10—C11	178.04 (10)
C2—C3—C4—C5	0.4 (2)	C15—O2—C11—C10	-0.35 (16)

C2—C3—C4—Br1	-178.89 (10)	C15—O2—C11—C12	-179.25 (10)
C3—C4—C5—C6	-0.52 (19)	C9—C10—C11—O2	-178.33 (10)
Br1-C4-C5-C6	178.78 (9)	C9—C10—C11—C12	0.52 (16)
C4—C5—C6—C1	-0.09 (18)	O2—C11—C12—O3	-0.29 (14)
C2-C1-C6-C5	0.77 (18)	C10-C11-C12-O3	-179.25 (10)
C7—C1—C6—C5	-179.89 (11)	O2-C11-C12-C13	179.38 (10)
N2-N1-C7-01	-0.21 (17)	C10-C11-C12-C13	0.42 (16)
N2—N1—C7—C1	179.66 (9)	O3—C12—C13—C14	178.87 (10)
C6—C1—C7—O1	-166.86 (12)	C11—C12—C13—C14	-0.78 (17)
C2-C1-C7-O1	12.48 (17)	C10-C9-C14-C13	0.74 (17)
C6—C1—C7—N1	13.26 (16)	C8—C9—C14—C13	-178.42 (11)
C2-C1-C7-N1	-167.40 (11)	C12—C13—C14—C9	0.20 (18)
N1—N2—C8—C9	178.54 (10)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O3—H1 <i>O</i> 3····O1 <i>W</i> ⁱ	0.80	1.79	2.5867 (14)	170
N1—H1 <i>N</i> 1····O3 ⁱⁱ	0.86	2.18	3.0107 (16)	162
O1 <i>W</i> —H1 <i>OW</i> ···O1 ⁱⁱⁱ	0.82	1.93	2.7409 (14)	171
O1 <i>W</i> —H2 <i>OW</i> ···O1 ^{iv}	0.78	2.16	2.8883 (14)	154
O1 <i>W</i> —H2 <i>OW</i> ····N2 ^{iv}	0.78	2.49	3.0971 (16)	136
С6—Н6А…ОЗіі	0.95	2.59	3.4832 (15)	156
C8—H8A····O2 ⁱⁱ	0.95	2.46	3.0191 (15)	118
С8—Н8А…ОЗіі	0.95	2.40	3.2604 (17)	150
C10—H10 <i>A</i> ···O1 <i>W</i> ^v	0.95	2.45	3.3933 (15)	172

Symmetry codes: (i) *x*-1, -*y*+3/2, *z*-1/2; (ii) *x*+1, -*y*+3/2, *z*+1/2; (iii) -*x*+1, -*y*+2, -*z*+1; (iv) *x*+1, *y*, *z*; (v) *x*-1, *y*, *z*.