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Abstract: In this paper, we describe an image-based approach for estimating the speed of a moving
vessel using the wakes that remain on the surface of water after the vessel has passed. The proposed
method calculates the speed of the vessel using only one RGB image. In this study, we used the
vanishing line of the mean water plane, the camera height concerning the level of the tide, and the
intrinsic parameters of the camera to perform geometric rectification on the surface plane of the
water. We detected the location of troughs on one of the wake arms and computed the distance
between them in the rectified image to estimate the speed of the vessel as a so-called inverse ship
wake problem. We used a radar that was designed to monitor ships to validate the proposed method.
We used statistical studies to determine the reliability and error propagation of the estimated values
throughout the calculation process. The experiments showed that the proposed method produced
precise and accurate results that agreed with the actual radar data when using a simple capture
device, such as a conventional camera.

Keywords: vessel speed; Kelvin wake; ship wake; error propagation; object detection; planar homog-
raphy; metrology

1. Introduction

Radar-based electronic navigation systems (ENSs) that keep the pilot informed about
the location and speed of nearby vessels have been a significant technological advance for
the maritime industry. Unfortunately, radars and other sensors may fail to detect stealth
ships and non-metallic targets because they reflect a low amount of radiation. Additionally,
many vessels are not equipped with an ENS. As a result, naked eye visibility still plays a key
role in making decisions, especially at close range. Going further, projects have been carried
out on the creation of autonomous vessels [1,2], in which autonomous navigation makes
use of motion flow techniques, such as FeatFlow [3], as auxiliary sources of information.

Vessel detection and tracking using computer vision-based systems are convenient
methods for measuring vessel speed [4]. A large number of algorithms estimate the vessel
speed by analyzing the traces that are left by the vessel using synthetic-aperture radar (SAR)
imagery [5,6]. Techniques, such as the CRSN [7], have been used to improve the quality
of SAR images and CenterNet++ [8] performs vessel detection. In the work developed
by Liu et al. [9], ship wakes were used to detect vessels and to identify the position and
direction of the vessel using optical images. Although these techniques provide good
results, the SAR and optical images that were considered in the above-mentioned studies
were not captured at close range; they were generated by airborne sensors or satellites and
could not be obtained from inside an autonomous vessel.

Other techniques perform tracking and estimations of speed using image sequences
that were taken with a digital camera [10–12]. However, video-based techniques require
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fixed cameras to estimate speed from the relative motion. Therefore, this type of method is
limited to applications in which the camera is onshore, since cameras that are placed on
autonomous vessels and drones produce additional movement in the optical flow.

In a recent study, Huillca and Fernandes [13] presented a semi-automatic method
to calculate the speed of a vessel directly from one image that was acquired by a con-
ventional camera. The method is based on projective geometry and estimates vessel
speed from an analysis of the Kelvin wake pattern. The key observation is that naval
objects leave traces of their movements on the surface of the water and the appearance
of these traces is related to speed. Actually, as Lord Kelvin demonstrated in 1887, the
wakes that are left by vessels maintaining a constant course and speed can be modeled
as a function of speed [14]. The inverse ship wake problem consists of estimating pa-
rameters, such as speed, from the observation of wake patterns [15]. The approach that
was proposed by Huillca and Fernandes [13] detects features (crests or troughs) of the ex-
tracted wave arm and applies the inverse ship wake problem to estimate the speed of the
corresponding vessel. However, the technique requires the horizon line to be visible in the
image. The curves that are adjusted to the wave arms are also sensitive to noise and the
analysis of the results of the study was limited to a few test cases using ground truth that
was based on rough estimates of the maximum and minimum speeds that were reached by
the observed vessels.

This paper presents an extended version of the approach that was proposed by Huillca
and Fernandes [13]. The extension included the automatic estimation of the vanishing
line, a different approach to identifying the wave arms, the use of the troughs in the
closest wave arm to estimate the wavelength, the use of radar to validate the results,
the estimation of confidence intervals for the measurements, and the analysis of error
propagation throughout the computational chain. Unlike previous work, the use of a
more sophisticated vanishing line detection method allowed for the application of the
new method even when the line between the sky and the water was not visible. Our new
clustering strategy for identifying the two wave arms made our approach less prone to
misidentification. In the previous study, the validation was performed using only the
speed information that was presented on the Rio de Janeiro Ferry Services website. In this
work, we verified the accuracy and reliability of the measurements that were obtained
through our method using ground truth data that were collected from a radar that was
designed to monitor vessels, including ferries and other types of vessels. We also used a
sampling-based method and first-order error propagation [16] to estimate the uncertainty
of the estimations that were produced using our technique. We showed that the confidence
intervals that were obtained with error propagation were equivalent to those that were
computed by sampling, but also had the advantage of allowing for uncertainty estimation
when using one image. Our results were consistent and agreed with the values that were
obtained by the radar and did not present the limitations of video-based approaches, since
all estimates were performed using a single image.

2. Computing Vessel Speed

For the proposed method, it is assumed that the camera is mounted at a given height
h above sea level in such a way that the target ship and the traces that are left by the target
ship can be observed (see Figure 1). The camera could be onshore, aboard a vessel or on
a moving drone. The orientation of the camera in world space is estimated during the
process. The speed is computed using the wavelength of the trace information. For each
acquired image, the processing steps include: (i) the estimation of the vanishing line of the
mean water plane; (ii) the definition of the corners of the region of interest (ROI), including
the ship wake; (iii) the identification of the wave arms and troughs that are present in the
ROI; and (iv) the estimation of the speed of the vessel using the wavelength.

The notation adopted in this article was inspired by Hartley and Zisserman [17] and
is shown in Table 1.
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Figure 1. The pipeline followed to estimate the vessel speed. We intentionally flipped the rectified
region of interest (ROI) image to make the vessel travel to the left.

Table 1. Notation convention that is used in this article.

Notation Meaning

I ,B Input and edge image, respectively
ΠΠΠ Water plane
xi The i-th point in image space under homogeneous coordinates
Xi The i-th point in world space under homogeneous coordinates

xxi , yxi Coordinates of point xi in image space
XXi , YXi , ZXi Coordinates of point Xi in world space

l Vector encoding the vanishing line in image space
~v Vector in image space under homogeneous coordinates
~V Vector in world space under homogeneous coordinates
M An m× n matrix

M−1 Inverse of a matrix M
MT Transpose of a matrix M

2.1. Vanishing Line Estimation

We used the Horizon Line in the Wild (HLW) algorithm [18] to automatically detect
the vanishing line of the water body. The HLW algorithm estimated the left- and right-hand
endpoints of the vanishing line of the most prominent plane that was observed in the
input color image I . In our equations, we represented the endpoints using homogeneous
coordinates as vectors pl = (0, ypl , 1)T and pr = (W − 1, ypr , 1)T , where W is the width of
I and ypl and ypr are the vertical coordinates of the points that were returned by the HLW
algorithm. The vector l = (A, B, C)T that encoded the vanishing line of the mean water
plane in homogeneous coordinates could be computed as the cross product of vectors pl
and pr [17]:

l = (A, B, C)T = pl × pr =
(
ypl − ypr , W − 1, (1−W)ypl

)T , (1)

where A, B, and C are the coefficients of the general equation of the line Ax + By + Cw = 0.
It is important to emphasize that the horizon line did not need to be visible for the

HLW algorithm to estimate the endpoints of the vanishing line of the mean water plane.
For instance, notice in Figure 1 that the horizon line would be behind the mountains. For
the RANSAC-based technique that was used by Huillca and Fernandes [13], on the other
hand, the horizon line between the sky and the water must be visible because it is detected
as the most apparent straight line in the edge image.



Sensors 2022, 22, 4213 4 of 24

2.2. Definition of the Corners of the ROI

The ROI had to include the ship wake. It was defined in I as the quadrilateral that
resulted from the projection of a rectangular region onto the water surface (see Figure 1). We
found the set of corners {xk}4

k=1 of the ROI in I using the reference corner x1 = (xx1 , yx1 , 1)T ,
the direction~u = (x~u, y~u, 0)T = (cos φ~u, sin φ~u, 0)T of the vessel in the image, the vanishing
line l of the water (1), the camera calibration matrix K, the ROI size WROI × HROI (in
meters) in 3D space, and the camera height h above sea level.

Using techniques such as YOLO [19] and the training model that was used by Bre-
itinger et al. [20] to detect the vessels is straightforward. However, as this was a separate
problem that was subject to the quality of the detection technique without the loss of
generality, we chose to manually set x1 and ~u in image space in our experiments. The
selection condition for x1 was to place this point in image space to the left of the vessel in
3D space. It could be placed either near the bow or near the stern. We set x1 close to the
bow for all images in our experiments. The definition of direction ~u in image space was
straightforward. It could be defined by tracing a line segment from the stern to the bow or
it could be calculated from the edge pixels of the wake as the eigenvector with the largest
eigenvalue pointing to the bow. In this work, we extracted metadata from the image files to
compute K. WROI and HROI were constant values that were defined by the user.

The camera height h was given by the construction and was defined as the distance
between the camera and the mean water plane in meters. We assumed that the origin O of
the world coordinate system (see Figure 1) lay on the orthogonal projection of the camera
center C to the mean water plane ΠΠΠ, that the X and Y axes spanned ΠΠΠ, and that the Z axis
was parallel to the vector ~N that was normal to ΠΠΠ. We set C = (0, 0, h, 1)T and computed
its orientation with respect to the world’s frame from the vanishing line l. Therefore, even
though the camera could move with six degrees of freedom, only one (the height) had to be
known a priori.

When a camera is mounted on a vessel’s mast, its height h can be calculated from
the mast’s height and its relative orientation to the normal vector ~N (computed from the
vanishing line). For drones, the vehicle needs to be able to determine its altitude. In our
experiments, the camera was mounted on a tripod that was inside a building. In this case,
the camera height above the sea level was calculated as the sum of the heights hg, h f , ht, and
hs representing the ground height, floor height, tripod height, and tide height, respectively:

h = hg + δh f + ht − hs, (2)

where δ is the floor number on which the camera was mounted.
We let {Xk}4

k=1 be the set of corners of the ROI lying on plane ΠΠΠ. By tracing a ray from
the camera to ΠΠΠ through point x1, we computed:

X1 =
(
XX1 , YX1 , 0, 1

)T
=
(
−hX~D/Z~D,−hY~D/Z~D, 0, 1

)T , (3)

where ~D = (X~D, Y~D, Z~D)T = M−1x1 is the direction of the traced ray, M = KR, and R is
a rotation matrix whose columns correspond to the X, Y, and Z axes of the camera in
the world’s frame of reference (the red, green, and blue segments leaving C in Figure 1,
respectively). The columns of R were ~R1 = ~R3 × ~R2, ~R2 = unit((1, 0, 0)T × ~R3), and
~R3 = unit(up(KTl)). The unit function normalized the vector to unit length and the
up function changed the orientation of ~R3 when its Y~R3

coordinate was negative. It was

necessary to correct the hand of the camera coordinate system by forcing the ~R2 vector
to point upward, as with the normal vector ~N of the mean water plane and the Z axis of
the world’s frame of reference (see Figure 1), while ~R1 and ~R3 pointed to the right and the
front, respectively.
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X2, X3, and X4 were computed by translating X1 by WROI and HROI in directions
~U = unit(A~E) and ~V = B~U on plane ΠΠΠ:

X2 = X1 −WROI~U, (4a)

X3 = X1 − HROI~V, (4b)

X4 = X1 −WROI~U− HROI~V, (4c)

where ~U is the direction of the vessel in world space and ~V is the perpendicular direction
that was computed by rotating ~U in ΠΠΠ through an angle of π/2. Thus, B was a constant ro-
tation matrix. Here,~E = (X~E, Y~E, Z~E)

T = M−1~u was the back projection of~u (an improper
point) onto the world coordinate system and A encoded the orthogonal projection onto ΠΠΠ.

Finally, the corners of the ROI in I were computed as:

xk = PXk, (5)

where k ∈ {2, 3, 4}, P = M
(
I | −C̃

)
is the 3× 4 camera matrix, I is a 3× 3 identity matrix,

and C̃ = (0, 0, h)T .

2.3. Finding the Wave Arms

We used the edge image B of the color image I to find the wave arms. To avoid
processing the whole image or working with a non-rectangular ROI, the procedure for
finding the wave arms considered a small portion of B that was defined as the axis-aligned
bounding box of the ROI. Thus, in the remainder of this section, all described processing
was restricted to that portion of B.

In this work, we used the Richer Convolutional Features (RCF) algorithm [21] to
compute the edge image B from I . RCF helped to detect the wakes that were left by the
vessels by making the waves more visible. Among the edge detection strategies that we
tested, RCF was less sensitive to weather conditions and poor natural light.

The edge image B that was produced by RCF was an intensity image, in which 1
indicated that the pixel had a high chance of being an edge while 0 meant the opposite.
We used the Otsu algorithm to find an automatic threshold t to separate the pixels into
the two classes, i.e., edge and non-edge, and compute the binary image B∗. We used the
k-means algorithm [22] with k = 2 to differentiate the two wave arms that were present in
the wakes that were left by the ships. The image coordinates of the edge pixels were taken
as the inputs for the algorithm. As illustrated in Figure 2a, the k-means algorithm was not
directly applied to the entire binary image. We divided the portion of B∗ that was inside
the bounding box of the ROI into vertical partitions qi, each with a width of ∆ pixels and
height that was equal to the height of the bounding box. In each partition qi, we applied the
k-means algorithm to obtain the centroid of each wake arm. The k-means points in partition
qi were equal to the centroids that were calculated in qi−1, except for the first partition
(i = 1) or when no centroid was detected in qi−1. For those cases, the two points were taken
as random. The points that were obtained as the centroids defined the samples for the
curves that described each wake arm. Figure 2a highlights three consecutive partitions,
while Figure 2b shows the detected centroids using green and red for the most distant and
closest wake arms, respectively. In our experiments, we set ∆ to 5 pixels. According to
our experience, the results of the curve fitting process that follows did not differ when a ∆
value between 3 and 9 pixels was chosen.
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Δ Δ Δ

qi qi+1qi -1

(a) (b)
Figure 2. Finding the wave arms: (a) we applied the k-means algorithm to the edge pixels that
were included in each partition qi of the ROI’s bounding box and the partitions each had a width of
∆ pixels; (b) the detected wave arms.

2.4. Wavelength and Speed Estimation

To solve the inverse Kelvin wake problem, we needed to calculate the Euclidean
distance between at least two consecutive troughs or crests in the world coordinate system.
A key observation is that the image of the wave arm that was closest to the camera was the
least affected by the turbulence of the wake. In addition, its troughs were less affected by
errors when we performed the rectification of the ROI. The steps for performing wavelength
and speed estimation are described below.

2.4.1. ROI Image Rectification

The objective of the ROI rectification was to eliminate the projective distortion that
was introduced by the camera from the image of the mean water plane, thereby simulating
an aerial view of the ROI that was similar to the sketch that is presented in Figure 3. We
used the line at infinity l∞ of the water plane to remove affine distortion and the camera
height above sea level to eliminate projective ambiguity. The line at infinity l∞ allowed
for the recovery of the related properties of image elements, such as parallelism and the
proportion of areas [17].

Trough Crest

Transverse Component

Wake Envelop

Divergent Component

U

Ship

c1

c2

c3

c4

Figure 3. The Kelvin wake structure, indicating the transverse and divergent components as well as
the crests and troughs of the wave arms.

For convenience, we used canonical coefficients to define the general equation of the
line at infinity, i.e., l∞ = (0, 0, 1)T in homogeneous coordinates. By taking the vanishing
line l = (A, B, C)T from (1), the projective transformation H that mapped l onto l∞ was
given by:

H = HAHl =

a11 a12 a13
a21 a22 a23
0 0 1

 1 0 0
0 1 0
A B C

. (6)

Using H, we were able to rectify each point on the mean water plane in the image.
In (6), Hl was used to offset the affine matrix HA, in which a11, a12, a21, and a22 defined a
2× 2 non-singular matrix and (a13, a23)

T was a translation vector.
A planar affine transformation HA has six degrees of freedom, which can be computed

using three-point correspondences. We used the correspondence between the corners of
the rectified ROI using homogeneous coordinates (0, 0, 1)T , (WROI , 0, 1)T , and (0, HROI , 1)T
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and points x′k = Hlxk for k ∈ {1, 2, 3}, where xk are the corners of the ROI in image space (5).
From the correspondences, we defined a linear system of the equation in matrix form:

A~v =



xx′1
yx′1

wx′1
0 0 0 0

0 0 0 xx′1
yx′1

wx′1
0

xx′2
yx′2

wx′2
0 0 0 −WROI

0 0 0 xx′2
yx′2

wx′2
0

xx′3
yx′3

wx′3
0 0 0 0

0 0 0 xx′3
yx′3

wx′3
−HROI





v11
v12
v13
v21
v22
v23
v33


=



0
0
0
0
0
0
0


,

where A is a matrix of known values and~v is the vector of variables. The coefficients of
HA were computed as aij = vij/v33 after solving the system for~v as the right-hand null
space of A. We used the singular value decomposition A = USVT to solve the system by
taking~v (i.e., the vector that was associated with the zero singular value) as the last column
of matrix V.

By construction, the wave arm that was closest to the camera was always as shown
below in the ROI image. Therefore, the rectification only needed to be applied to the points
that were obtained in Section 2.3 for that wave arm, since we were interested in the red line
that is presented in Figure 3. The black dots in Figure 4 represent the rectified set of points
that was used to fit the red curve in Figure 2.

Figure 4. The black points are the curve samples and the red line is the smooth curve that was
computed by the LOWESS algorithm [23]. Axes in centimeters.

2.4.2. Curve Fitting

As can be seen in the black points in Figure 4, the discrete set of points that was
obtained in Section 2.3 could be corrupted by noise, which made it challenging to find
the troughs of the wake. We used the locally weighted scatterplot smoothing (LOWESS)
algorithm [23] to smooth the digital curve that was extracted from the rectified ROI image.
The black points in Figure 4 correspond to the input curve samples in this example, while
the red line is the resulting smooth curve that was used to find the troughs.

Huillca and Fernandes [13] took the point samples for one of the wave arms and
followed a naive approach that used a Savitzky–Golay filter [24] for curve fitting. They
performed both procedures in the rectified image of the ROI. According to our experience,
the use of the k-means algorithm on the input image domain to obtain the point samples
followed by the application of the LOWESS algorithm to the points that were mapped onto
the domain of the rectified ROI was much less sensitive to noise.

2.4.3. Wavelength Estimation

The wavelength of the transverse components of the Kelvin wake pattern (see Figure 3)
can be estimated using the distance between the successive crests or troughs. From
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those wavelengths, the speed of a vessel can then be estimated [5]. One finds a set of
crests/troughs as the curve maximum or minimum, depending on the direction of the
vessel with respect to the camera. Since we had a curve that corresponded to the arm that
was closest in the V-shaped pattern, we could find the crests and troughs as follows:

• When the vessel went to the right in the input image I , the curve maximum and
minimum corresponded to the troughs and crests of the wave arm;

• When the vessel went to the left in the input image I , the curve maximum and
minimum corresponded to the crests and troughs of the wave arm.

We avoided the identification of noisy troughs by imposing a minimum horizontal
distance of ψ = 20 m between valid consecutive troughs and by only extracting two mini-
mums and maximums (depending on the case). The value of ψ was empirically defined
based on the observation that the speed is close to 10 knots for a wavelength of approxi-
mately 20 m and, as discussed in Section 4, most vessels that leave visible tracks move at
higher speeds. We computed the wavelength λ by replacing D in:

λ =

√
3

2
D, (7)

where D = distE(cn, cn+1) is the Euclidean distance (in meters) between the location of the
crests (or troughs) cn and cn+1.

2.4.4. Vessel Speed Estimation

Finally, the speed of the vessel was:

U = 1.944
√

g
2π

λ, (8)

were λ is given by (7) and g ≈ 9.80665 m/s2 is the acceleration of gravity. Since knot is the
unit of measurement that is used for speed in maritime navigation, the m/s values had to
be multiplied by 1.944 to be converted into knots.

3. First-Order Error Propagation

The theory of errors [16] provides the expressions that were needed to estimate the
standard uncertainty of a measurement U using the standard uncertainties of the exper-
imental values in the dataset ϑ = {ypl , ypr , xx1 , yx1 , φ~u, hg, h f , ht, hs}. In matrix form, the
first-order error propagation of such uncertainties was expressed by:

σ2
U = ∇UΛϑ∇T

U , (9)

where

∇U =

(
∂U
∂ypl

,
∂U

∂ypr

,
∂U

∂xx1

,
∂U

∂yx1

,
∂U
∂φ~u

,
∂U
∂hg

,
∂U
∂h f

,
∂U
∂ht

,
∂U
∂hs

)
(10)

is the Jacobian matrix of the function that calculated the speed U of a vessel using the
method that was described in Section 2 and

Λϑ = diag(σ2
ypl

, σ2
ypr

, σ2
xx1

, σ2
yx1

, σ2
φ~u

, σ2
hg

, σ2
h f

, σ2
ht

, σ2
hs
) (11)

is the covariance matrix that encoded the uncertainty of the input variables that were used
to compute U. In this paper, we assumed the independence of the input variables. Thus,
their covariances were zero, with Λϑ being a diagonal matrix and σθ being the standard
deviation of the input variable θ ∈ ϑ. The partial derivatives in ∇U (10) were taken with
respect to the nine variables in ϑ. Appendix A presents the expressions that were used to
compute those partial derivatives.

The computational flow of the U function is illustrated in Figure 5, in which the circles
represent the input variables with uncertain values, pentagons represent the input variables
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that we assumed to have no uncertainty, rectangles represent the intermediary variables,
and the rhombus is the estimated speed of the vessel. Altogether, the proposed method has
20 input variables:

ypl , ypr : The y axis coordinates of the endpoints pl and pr of the vanishing line that are
estimated for the mean water plane, respectively (Section 2.1);

xx1 , yx1 : The coordinates of the corner x1 of the ROI in the input image I ;
φ~u: The angle that defines the direction~u of the vessel in the input image I ;
hg, h f , ht, hs: The set of heights that is used in (2) to calculate the camera height h above the

sea level in meters;
xc′1

, yc′1
, wc′1

, xc′2
, yc′2

, wc′2
: The homogeneous coordinates of two adjacent troughs of the wave

arm that is closest to the camera, i.e., points c1 and c2 that were used in (7), but repre-
sented by pixel coordinates in I . These variables are not taken as sources of uncertainty
because their rectified counterparts (c1 = (xc1 , yc1 , 1)T and c2 = (xc2 , yc2 , 1)T) naturally
include the uncertainty that is propagated from other variables (see Appendix A for
details);

αx, αy, γ, xo, yo: The intrinsic parameters that define the camera calibration matrix K. They
are the focal length in terms of pixel dimensions in the x and y directions, skew, and the
coordinates of the principal point in terms of pixel dimensions, respectively [17]. Recall
from Section 2.2 that we extracted metadata from the input image file to compute K. In
this work, we assumed that the intrinsic parameters of the camera were constant values
since it was observed that they do not usually have much influence on the uncertainty
of image-based measurements [25].

~u ~V P c′1 U

pr M−1 ~E ~U X2 x2 c1 c2

l R M ~D X1 X3 x3 H c′2

pl K h P l

x1

Figure 5. Computational chain for estimating vessel speed (rhombus) using experimental variables
with (circles) and without (pentagons) uncertainty.

Section 4 describes how to estimate the uncertainty in θ ∈ ϑ.

4. Experiments and Results

The procedures that were described in Section 2 were implemented in Python 2.7.0.
Speeds were calculated on a computer that had an Intel Xeon CPU E-2698 v4 with 2.20 GHz
and a Tesla P100-SXM2 video card with 16 GB of VRAM.

In the experiments, the images of moving vessels were acquired under natural lighting
and different weather conditions. The images were taken using a Nikon D3300 camera
with 24.2 megapixels and were then encoded in JPG format file (any other image format
can be used without affecting the results). The lens model that we used was an AF-S
DX NIKKOR, with an 18∼55 mm focal length and vibration reduction (VR II) [26]. The
resolution of the captured images was 6000× 4000 pixels. The ROI size lying on plane
ΠΠΠ was intentionally set to WROI × HROI = 180× 90 m in order to cover the wave arms of
vessels that were traveling at more than 10 knots, as the speed of the vessels was rarely
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less than this threshold within the field of view that was used for the experiments. The
camera was mounted in two places. The camera height was approximately h = 27.79 and
h = 23.88 m for images i1–i17 and i18–i23, respectively. The camera height varied according
to the tide height at the time the image was taken and the floor of the building.

A total of 40 images was obtained, of which 23 were used to analyze the results that
are presented in this section. Table 2 describes the conditions under which the images that
we used were acquired and Figure 6 shows some of the cropped versions. Special attention
was paid to the noisy inputs that we included in our experiments, such as images i18 to i23
(see Figure 6g,h), because those cases included natural noise as they were acquired during
a scattered storm or the partially cloudy and windy weather that followed the storm. The
remaining 17 of the original 40 images were not considered because they were taken during
unfavorable weather conditions (Figure 7a) and low natural lighting (Figure 7b), which
prevented the edge detection approach from being successful in the detection of the troughs.
Additionally, some of the vessels in those images were merchant ships (Figure 7c). As such,
their speed had to be low because they were close to a port area. In all of those cases, at
least two troughs of the traces that were left by the vessels could not be distinguished, even
by human observers. In Table 2, the tide height was obtained from webpages that freely
provide sea conditions [27–29]. The noise that was introduced by the wind speed was not
considered in these experiments.

Table 2. Information regarding each captured image, where U denotes the speed that was measured
by a radar (ground truth), Û is the speed that was estimated by our approach using the troughs of
the wave arms, and εa and εr are the absolute and relative errors of estimations, respectively. The
subtable summarizes the results of Huillca and Fernandes [13].

Image
Vessel Time

(hh:mm) Weather Tide
(Meters)

Speed (knots) Error Results of [13]

Model Name U Û εa εr Û εr

i1 HSC Fenix 10:09 Cloudy 0.30 18.2 18.339 0.139 0.008 17.234 0.053
i2 MC25 Apolo 10:12 Cloudy 0.30 20.6 21.533 0.933 0.045 25.467 0.236
i3 MC25 Apolo 10:13 Cloudy 0.30 20.5 20.609 0.109 0.005 26.629 0.299
i4 MC25 Neptuno 10:19 Cloudy 0.50 19.2 19.434 0.234 0.012 21.788 0.135
i5 MC25 Neptuno 10:21 Cloudy 0.50 17.3 16.683 0.617 0.036 20.346 0.176
i6 MC25 Neptuno 10:22 Cloudy 0.50 17.1 16.530 0.570 0.033 27.785 0.625
i7 Other Escander Amazonas 10:28 Cloudy 0.60 9.2 19.262 10.062 1.094 17.326 0.883
i8 MC25 Missing 10:39 Cloudy 0.70 19.5 19.288 0.212 0.011 26.036 0.335
i9 HSC Fenix 10:41 Cloudy 0.70 15.6 15.984 0.384 0.025 18.231 0.169

i10 HSC Fenix 10:43 Cloudy 0.70 16.5 16.611 0.111 0.007 20.133 0.220
i11 MC25 Missing 11:08 Cloudy 0.50 20.4 20.771 0.371 0.018 26.436 0.296
i12 MC25 Missing 11:09 Cloudy 0.50 20.4 20.543 0.143 0.007 23.863 0.170
i13 MC25 Missing 11:12 Cloudy 0.50 17.3 16.846 0.454 0.026 23.259 0.344
i14 MC25 Zeus 11:42 Cloudy 0.70 19.6 20.533 0.933 0.048 26.982 0.377
i15 MC25 Neptuno 11:43 Cloudy 0.70 19.1 19.861 0.761 0.040 19.407 0.016
i16 MC25 Neptuno 12:10 Cloudy 0.90 20.2 22.120 1.920 0.095 25.951 0.285
i17 MC25 Missing 12:13 Cloudy 0.90 20.3 20.638 0.338 0.017 22.254 0.096
i18 MC25 Zeus 16:12 Scattered storm 1.10 18.9 19.617 0.717 0.038 22.086 0.169
i19 MC25 Zeus 16:50 Partly cloudy 0.70 17.5 17.342 0.158 0.009 22.249 0.271
i20 MC25 Zeus 16:51 Partly cloudy 0.70 17.6 17.808 0.208 0.012 19.947 0.133
i21 MC25 Zeus 16:51 Partly cloudy 0.70 17.8 18.947 1.147 0.064 25.107 0.410
i22 MC25 Missing 17:01 Partly cloudy 0.70 20.3 16.490 3.810 0.188 23.448 0.155
i23 MC25 Zeus 17:21 Partly cloudy 0.50 16.8 16.084 0.716 0.043 21.008 0.251
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. Cropped versions of some of the images that were used in the experiments: images
i1, i9, and i10 show HSC passenger vessels; images i10, i13, i18, and i22 show MC25 passenger
vessels; image i7 shows another vessel model. (a) Image i1; (b) Image i2; (c) Image i5; (d) Image i7;
(e) Image i13; (f) Image i16; (g) Image i18; (h) Image i22; and (i) Image i17.

A radar that was designed to monitor vessels was used as a resource to validate the
proposed method. The radar was a FAR− 21× 7 series of X- and S-bands with a 19-inch
LCD screen [30]. The radar screen information was captured using a smartphone camera.
The radar screen included the name and knot speed of the tracked vessel. The images
that were taken of the radar screen and the moving vessel were acquired at approximately
the same time. Table 2 shows the identification of the vessels (columns “Model” and
“Name”), the time at which both pictures were taken (column “Time”), and the speed that
was measured by the radar (column “U”). Of the 23 images that were used, 22 were of
six different passenger vessels (models HSC and MC25) and one was a tugboat (image i7,
Figure 6d). As we had limited access to the radar (upon authorization), it was necessary
to restrict the image sections and only take 40 images. Additionally, later access was not
allowed due to the COVID-19 pandemic. Even so, the set of images that was captured led
to exciting results that prove the technique to be promising.

Considering that the data that were used as the input (e.g., the y coordinate of the
endpoints of the vanishing line, the camera height, the reference corner of the ROI, and
direction of the vessel in image space) were subject to errors, it was expected that the
estimated speeds would also have uncertainties. By comparing the computed values to the
speeds that were measured by the radar, it was possible to develop an idea of the accuracy
and precision of the proposed technique. In Section 4.1, we analyze the relative error of our



Sensors 2022, 22, 4213 12 of 24

estimations and compare the quality of the estimates that were made using our technique
to the approach that was presented by Huillca and Fernandes [13]. Sections 4.2 and 4.3
present an analysis of the confidence intervals that were computed using sampling and first-
order error propagation. In Sections 4.4–4.6, we discuss the influence of each experimental
variable on the uncertainty of the estimated speed, the resilience to changes in the resolution
of the input image, and the variations in JPG compression rate, respectively.

For Sections 4.2–4.4, the input uncertainties were estimated as follows:

σypl
, σypr : The standard deviations of ypl and ypr were estimated using:

σz =

√
1

n− 1

n

∑
i=1

(zi − µz)
2, (12)

where µz is the mean value of the differences zi between the y coordinates that were
observed on endpoints that were returned by HLW and the endpoints of vanishing lines
that were manually identified by us in a dataset comprising n = 30 images, which led to
σypl

= 22.72 and σypr = 23.62 pixels;

σxx1
, σyx1

: We also used the n = 30 experimental samples to set σxx1
= 5.51 and σyx1

= 2.41
pixels. The samples were obtained by repeatedly selecting the first corner of the ROI in
the chosen image to serve as a reference. The standard deviations for the xx1 and yx1

coordinates were calculated using (12) for the coordinates of the selected points;
σφ~u : The same reference image was used to indicate the orientation of a vessel, which

produced n = 30 angular samples that were used to compute σφ~u = 0.011 radians;
σhg , σh f

, σht , σhs : The standard deviations of the tripod height and the floor height were
empirically set to σht = 0.006 and σh f

= 0.03 m, respectively, by assuming a conservative
uncertainty for the measurement of those input variables. We used Google Maps
to measure the ground height and set its uncertainty to σhg = 1.15 m based on the
variations we observed in this tool. We estimated σhs = 0.05 m by applying (12) to a set
of n = 27 average tidal heights zi that were computed from observations in [27–29].

We assumed that the locations c1 and c2 of the troughs that were detected in the
rectified ROI images carried the uncertainties that were introduced by the input variables,
but the detection process itself did not introduce any new uncertainties (see Figure 5 and
Appendix A).

(a) (b) (c)
Figure 7. Cropped versions of some of the images in which our approach could not detect wave arms
that had at least two well-defined troughs in the edge image.

4.1. Analysis of Relative Error

Relative error εr = εa/U indicates the proportion of the absolute error εa = |Û −U|
of an estimated value Û with regard to the true value U. We used εr to determine the
accuracy of our approach. In Table 2, the absolute error is given in knots. Û was calculated
by applying the proposed method, while U was measured by the radar.

We used the troughs of the closest wave arms to estimate the Û values that are
presented in Table 2. Those troughs were the least affected by the noise that was introduced
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by the vessel’s turbulence and the distortion of the rectified elements that were not in the
actual mean water plane. According to Table 2, the relative error was below 2% for ten
images, within the [2%, 4%] interval in six cases, within the (4%, 5%] range in three images,
and between 5% and 10% in three cases. Only image i7 (Figure 6d) had a relative error
that surpassed the true measure (109%). The explanation for this behavior is that the trace
that was left by the tugboat was weak because it was traveling at 9.2 knots and we set
the ψ parameter for the minimum horizontal distance between valid consecutive troughs
as 20 m, which limited the estimated speeds to a minimum of 10 knots. The mean and
median relative errors that are presented in Table 2 were 8.18% and 2.60%, respectively.
The mean relative error was clearly affected by the result in image i7. Observing the robust
statistics that were provided by the median, we could conclude that the proposed method
was accurate.

To the best of our knowledge, the only work that has presented an approach for the
estimation of the speed of moving vessels using single color images was developed by Huillca
and Fernandes [13]. The subtable in Table 2 summarizes the results that were obtained by their
approach after we replaced their RANSAC-based vanishing line detection scheme with the
HLW algorithm. Otherwise, their method would not have been applicable to most of the images
in Table 2. Unfortunately, it was not possible to perform a comparison between our approach
and techniques that use image sequences, such as [10,11], because their implementation was
not available and the descriptions that are presented in the articles proved to be insufficient for
proper reproduction. In any case, such techniques cannot be used for video from cameras that
are onboard vessels, which limits the scope of their application.

Observing εr in Table 2, our new technique outperformed the previous approach
for 20 out of the 23 images. For two cases in which our relative errors were higher, the
difference in the errors was only 2.4% on image i15 and 3.3% on image i22. The third case
was image i7, which, as previously mentioned, was not correctly handled by our approach
because of the ψ parameter that was set.

4.2. Analysis of Confidence Intervals Estimated Using the Samples

In practice, each image that is presented in Table 2 provided one sample for which we
could estimate speed. One way to assess the accuracy of the technique was to analyze the
variations in the speed estimates that were obtained for the same vessel when considering a
set of images that were captured under similar conditions as the input. To simulate several
image captures of the same ship, we introduced small variations in the input variables
that were considered to be sources of uncertainty for each captured image. We used the
standard deviations that were assumed in the error propagation model (11) to produce
n = 150 Gaussian-distributed variations in the original set of input values for each image
in Table 2, thereby generating samples from which we could compute speeds and the
corresponding confidence intervals:

CI(γ) =
[

Ū − tγ
sU√

n
, Ū + tγ

sU√
n

]
, (13)

where Ū is the mean speed of the sample, sU is the standard deviation of the sample, tγ is a
t-Student variable with n− 1 degrees of freedom, and γ is the confidence level.

Figure 8a shows the confidence intervals with γ = 99.8% that were calculated for the
vessels using sampling (Table 2). The narrowest confidence intervals were for images i10
and i3, which were 0.30 and 0.50 knots wide, respectively. Notice that the mean speed Ū
was close to the true speed U in most cases and was included within the confidence interval
in 16 out of the 23 images. Images i7, i16, and i22 were the cases with the most considerable
distances between U and Ū, whose confidence intervals did not include the true speed.
The problem with image i7 was discussed in Section 4.1. For image i16 (Figure 6f), the
location of the troughs was affected by the weather conditions. Notice the presence of more
capillary wakes that were due to wind in this image than in the other images in Figure 6.
For image i22 (Figure 6h), low natural lighting made the trail of the vessel very blurred.



Sensors 2022, 22, 4213 14 of 24

For the remaining four cases in which the true speed was outside of the confidence interval
(images i6, i11, i14, and i21), the distance to the limits of the interval was negligible and
ranged from 0.05 to 0.50 knots.
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Figure 8. Confidence intervals (γ = 99.8%) that were computed using (a) sampling and (b) first-order
error propagation. Images sorted by vessel speed.

Including all cases that are presented in Figure 8a, the largest confidence intervals
were 2.86 and 1.78 knots for images i1 and i22, respectively. The median interval was
only 0.3 knots. The variations in the values that were reported by the radar for the three
consecutive speed measurements of vessels Zeus (images i19 to i21), Neptune (images i4
to i6), and Missing (images i11 to i13) were 0.3, 2.1, and 3.1 knots, respectively. Thus, we
could conclude that the proposed approach was accurate. However, we cannot make a
strong statement in this regard because each interval was calculated using samples that
were generated from one image.

4.3. Analysis of Confidence Intervals Estimated Using Error Propagation

In this section, we analyze the confidence intervals that were produced by the first-
order error propagation approach, as discussed in Section 3, and compare them to the
intervals that were produced using sampling.

First-order error propagation may provide the correct Gaussian uncertainty for the
resulting estimations when the uncertainty of the input variables follows Gaussian distri-
bution and the process for computing the resulting values is linear. Otherwise, it provides
a first-order approximation of the error [16]. To verify which is the case for our approach,
we used the Shapiro and Wilk [31] test to check whether the resulting samples that were
produced in Section 4.2 fit Gaussian distribution. The null hypothesis of this test was: the
data are normally distributed when ρ > α. For α = 0.05, images i7, i16, i19, i22, and i23 had
ρ-values that suggested evidence of non-normality. Therefore, we could only expect an
approximation from the first-order error propagation of these cases.

The ratio r = sU/σÛ between the standard deviations that were computed using
sampling and propagation showed that the first-order error propagation approach was
equivalent to and slightly more conservative than the sampling-based approach. The only
exceptions were r > 1 for images i1, i22, and i23. In 16 cases, 0.4 ≤ r ≤ 1. This was reflected
in the results that are presented in Figure 8b, in which only two confidence intervals
clearly did not include the true speeds (images i7 and i22) and four almost included them
(images i2, i6, i9, and i21). Notice that images i7, i22, and i23 did not pass the normality test.

The narrowest intervals in Figure 8b were 0.80 and 0.86 knots in width, while the
widest were 3.38 knots (image i17) and 3.76 knots (image i15). Using first-order error
propagation, the mean width of the confidence intervals was 0.942 knots and the median
was 0.46 knots.

With error propagation, it was easy to detect cases that had more considerable uncer-
tainty for the calculated speeds because this approach does not require several samples.



Sensors 2022, 22, 4213 15 of 24

4.4. Impact of the Uncertainty of Each Input Variable

The impact of each input variable on the uncertainty of the estimated speed could be
assessed using the error propagation model (9). The absolute contribution of any input
variable θ ∈ ϑ was obtained using a covariance matrix Λϑ (11), for which the only non-zero
elements were those related to θ in the main diagonal. The relative impact of θ was obtained
by dividing its absolute impact by the sum of the absolute impacts of all input variables.

For this analysis, we grouped the input variables into four groups (see the columns of
the heatmap tables in Figure 9): the first group l included ypl and ypr ; the second group
represented x1 and included xx1 and yx1 ; the third group was~u and only included the angle
φ~u; and the last group included the variables hg, h f , ht, and hs, which were used to compute
the camera height h.

Figure 9 (left) shows the relative impact of each group of input variables, assuming
that they all had the same uncertainty (σθ = 1 for all θ ∈ ϑ) and were independent. Taking
this as a premise, the largest sources of uncertainty for the estimated speeds were the
parameters of x1 and~u. One possible explanation is that x1 and~u were the variables that
were used to calculate the first point X1 in the world coordinate system and X1 was used to
calculate the remaining corners. Furthermore, the ROI coordinates in image space came
from the world coordinate system and they directly fed the uncertainties into the matrix H.

Figure 9 (right) shows the scenario illustrating the results that were obtained by the
estimated uncertainties of the input variables for the proposed method. It can be seen that
the most significant source of uncertainty was the camera height h, which demonstrates
the importance of this parameter in breaking projective ambiguity and, consequently, the
correct scale of the estimates that are produced. In the particular case of our experiments, it
was necessary to assume σhg = 1.15 since we observed inconsistent height readings at close
points on the map.
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Figure 9. The relative impact of the input parameters on the computed speeds, assuming that (left) all
input variables were independent and had the same uncertainty or (right) had the uncertainty that
was estimated for the experiments: l represents the vanishing line; x1 is the reference corner of the
ROI; ~u is the direction of the vessel; and h is the camera height. Stronger shades of blue indicate
greater relative impact.
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4.5. Resilience to Variations in Resolution

In this experiment, the tests were carried out with scaled versions of the original image.
This experiment simulated the use of lower resolution cameras and the speed estimation of
more distant vessels. Here, we discuss the results that assumed scaling factors of 0.5, 0.25,
and 0.125. In each case, the camera calibration matrix K and the location of the reference
corner x1 of the ROI were transformed accordingly. Furthermore, the corresponding edge
image and the new y coordinates for the endpoints of the vanishing line l were obtained
by applying the RCF and HLW algorithms to the scaled versions of the input images. The
camera height h and the direction of the vessel~u did not change.

Table 3 summarizes the speed Ûs and relative error εrs that were computed for each
input image, in which s ∈ {1.0, 0.50, 0.25} denotes the scaling factor, s = 1.0 is the original
scale, and U is the true speed value that was measured by the radar.

Table 3. Variation in the estimated speeds as a function of image resolution: U is the speed that
was measured by the radar; Ûs and εrs are the speed that was estimated by our approach and the
relative error that was obtained using an input image at a scale of s, respectively; and s = 1.0 for the
original images.

Image
Speed (knots) Relative Error

U Û1.00 Û0.50 Û0.25 εr1.00 εr0.50 εr0.25

i1 18.2 18.34 18.75 – 0.01 0.03 –
i2 20.6 21.53 22.39 21.82 0.05 0.09 0.06
i3 20.5 20.61 23.53 13.64 0.01 0.15 0.33
i4 19.2 19.43 20.71 19.36 0.01 0.08 0.01
i5 17.3 16.68 19.10 13.96 0.04 0.10 0.19
i6 17.1 16.53 17.93 17.86 0.03 0.05 0.04
i7 9.2 19.26 – – 1.09 – –
i8 19.5 19.29 19.30 21.75 0.01 0.01 0.12
i9 15.6 15.98 19.38 – 0.02 0.24 –
i10 16.5 16.61 16.15 15.38 0.01 0.02 0.07
i11 20.4 20.77 22.24 6.40 0.02 0.09 0.69
i12 20.4 20.54 13.32 10.45 0.01 0.35 0.49
i13 17.3 16.85 18.78 – 0.03 0.09 –
i14 19.6 20.53 19.50 – 0.05 0.01 –
i15 19.1 19.86 11.08 – 0.04 0.42 –
i16 20.2 22.12 20.09 – 0.10 0.01 –
i17 20.3 20.64 18.95 – 0.02 0.07 –
i18 18.9 19.62 22.07 14.48 0.04 0.17 0.23
i19 17.5 17.34 21.46 18.58 0.01 0.23 0.06
i20 17.6 17.81 19.24 10.54 0.01 0.09 0.40
i21 17.8 18.95 – – 0.06 – –
i22 20.3 16.49 10.22 14.99 0.19 0.50 0.26
i23 16.8 16.08 17.09 – 0.04 0.02 –

Recall that the resolution of the original images (s = 1.0) was 6000× 4000 pixels. However,
it is important to notice that, except for the detection of the vanishing line, all visual information
that was used by our approach was within the ROI in image space. The average resolution
of the axis-aligned bounding box of the ROI at s = 1.0 was only 151× 1647 pixels. For the 0.5,
0.25, and 0.125 scaled images, the average resolutions of the ROI were 73× 807, 36× 406, and
17× 202 pixels, respectively.

According to Table 3, most of the speeds that were calculated with a scale of 0.5
were close to the true speed, the relative errors were below 10% for 13 images, and there
were eight cases between 10% and 50%. Image i16 was the least affected by the change
in resolution, which presented a degradation of only 10% of the relative error compared
to the original image. It was only not possible to estimate speeds for images i7 and i21.
Among those that resulted in measurements, the worst case was image i12 with a 3500%
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degradation in the relative error. The mean and median degradations were 681.66% and
300%, respectively.

In total, it was not possible to estimate speeds using 43.5% of the images with a scale
of 0.25. The relative errors for the remaining cases were below 13% for seven images and
there were six cases between 18% and 70%. The mean relative error for images with a
scale of 0.25 was 22.74%, while the mean and median degradations of the relative error
concerning the original images were 1514.63% and 600%, respectively.

These results showed that the resolution of the ROI and, hence, the amount of infor-
mation that was available to produce a quality edge image was critical to the performance
of the proposed approach, since the edge image was used to provide the visual clues for the
identification of the wave arms. In the practical use of this technique, automatic zooming
could be used to increase the resolution of the ROI.

4.6. Resilience to Variations in JPG Compression Rate

In the last experiment, we analyzed the variation in estimated speeds as we changed
the JPG image compression level. For each original image that was stored at 100% qual-
ity, we created copies at 90%, 75%, and 50% quality and applied the approach that was
described in Section 2.

In Table 4 it is possible to observe that the estimated speed Û100% did not change much
compared to the lower resolution counterparts of the same image. Surprisingly, in images
i1, i7, i14, i15, i16, i21, and i22, there was a decrease of 1 to 4% in the relative error of the
estimates for images with 90%, 75%, or 50% quality. The biggest increase in relative error
was 6% for image i18 at 75% quality. As mentioned before, image i18 (Figure 6g) was one
of the noisy images that was captured under a scattered storm. In another 20 cases (images
i3, i4, i5, i7, i13, i15, i17, i18, i20, and i22), the increase ranged from 1 to 5%. In 32 out of the
69 cases, the increase or decrease in the relative error was less than 1%.

Table 4. Variation in estimated speeds as a function of image compression: U is the speed that was
measured by the radar; Ûq and εrq are the speed that was estimated by our approach and the relative
error of using an image at quality compression q, respectively; and q = 100% for the original images.

Image
Speed (knots) Relative Error

U Û100% Û90% Û75% Û50% εq100% εq90% εq75% εq50%

i1 18.2 18.34 18.21 18.21 18.21 0.0077 0.0005 0.0005 0.0005
i2 20.6 21.52 21.48 21.48 21.48 0.0447 0.0427 0.0427 0.0427
i3 20.5 20.55 20.52 20.42 20.00 0.0024 0.0010 0.0039 0.0244
i4 19.2 19.63 19.93 19.93 20.27 0.0224 0.0380 0.0380 0.0557
i5 17.3 16.68 16.34 16.34 16.34 0.0358 0.0555 0.0555 0.0555
i6 17.1 16.53 16.54 16.54 16.54 0.0333 0.0327 0.0327 0.0327
i7 9.2 19.26 19.32 19.32 19.12 1.0935 1.1000 1.1000 1.0783
i8 19.5 19.29 19.28 19.28 19.28 0.0108 0.0113 0.0113 0.0113
i9 15.6 16.07 16.09 16.09 16.09 0.0301 0.0314 0.0314 0.0314

i10 16.5 16.61 16.55 16.55 16.55 0.0067 0.0030 0.0030 0.0030
i11 20.4 20.77 20.83 20.83 20.83 0.0181 0.0211 0.0211 0.0211
i12 20.4 21.04 21.10 21.10 21.03 0.0314 0.0343 0.0343 0.0309
i13 17.3 16.85 16.82 16.00 15.99 0.0260 0.0277 0.0751 0.0757
i14 19.6 20.38 20.17 20.21 20.21 0.0398 0.0291 0.0311 0.0311
i15 19.1 19.86 19.70 19.73 19.70 0.0398 0.0314 0.0330 0.0314
i16 20.2 21.42 21.22 21.76 21.22 0.0604 0.0505 0.0772 0.0505
i17 20.3 20.64 20.62 20.54 20.82 0.0167 0.0158 0.0118 0.0256
i18 18.9 19.62 20.29 20.80 20.61 0.0381 0.0735 0.1005 0.0905
i19 17.5 17.34 17.40 17.40 17.40 0.0091 0.0057 0.0057 0.0057
i20 17.6 17.72 16.95 17.87 17.12 0.0068 0.0369 0.0153 0.0273
i21 17.8 18.99 18.36 18.36 18.36 0.0669 0.0315 0.0315 0.0315
i22 20.3 17.02 17.25 17.25 6.80 0.1616 0.1502 0.1502 0.6650
i23 16.8 16.96 16.99 16.99 16.99 0.0095 0.0113 0.0113 0.0113
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The results that were presented in this section suggested that the proposed approach
had a good resilience to the compression of the input image. We believe that the reason for
this is the robustness of the edge detection technique that was used in our implementation.

5. Conclusions and Future Works

We presented a method for the estimation of vessel speed using single perspective
projection images. The approach uses geometric constraints to remove perspective distor-
tion from the images of traces that were left by a moving vessel and uses curve fitting and
peak detection to identify troughs in the wave arms and natural constraints in components
of Kelvin wakes in order to compute vessel speed.

We validated the measurements that were produced by our approach using the speeds
that were obtained by a radar. The quality of the results was verified by the application of
a statistical analysis on the estimated speeds. We also used error propagation along the
computational chain to provide reliable confidence intervals that provided a notion of the
quality of the speeds that were estimated from a single image and presented a study that
could identify the set of input parameters that had more impact on the uncertainty of the
estimated speeds. The statistical analysis revealed that the estimated speeds were accurate
and precise. We believe that our algorithm could be used by autonomous vessels and for
maritime surveillance using drones and smart lighthouses.

In order to consider the use of our technique in real situations, it is necessary to draw
some recommendations:

1. Lighting conditions affect edge detection and the detection of wave arms. In our
experiments, we had no problems in daylight, but it was not always possible to process
images that were captured at dawn or dusk and our solution cannot be applied at
night. The same applies to rain and fog;

2. Due to geographical restrictions in our experiments, we used images of the port and
starboard of vessels that were traveling in the left and right directions in front of the
camera and moving along a linear course at a (supposedly) constant speed. However,
we believe that our approach is robust to variations in camera orientation since it was
possible to see the troughs in the wake, even at the grazing angle;

3. As demonstrated in our experiments, well-defined capillary wakes due to wind
and, possibly, those generated by nearby vessels may affect the Kelvin wake pattern.
However, we believe that this is a problem that could be overcome by the detection of
crossing wakes;

4. Since this method is to be applied to single images, the use of video could provide
dozens of independent measurements per second, which could be combined to reduce
error or eliminate spurious estimates;

5. Although we did not try this in our experiments, pre-processing the images to increase
contrast could help in the detection of the wakes of slower vessels.

Unfortunately, the radar that we used could not automatically display information on
the speed of small vessels, e.g., sailboats and fishing boats. This is because small vessels
do not have to be equipped with an automatic identification system (AIS), which allows
sensors to display the ship’s speed information. In addition, the social isolation that was
imposed by the COVID-19 pandemic prevented us from having access to the radar to
expand data acquisition. Even so, we were able to obtain speed information from several
medium-sized vessels. The results showed that our approach was robust. It was validated
by considering the measurements from standard nautical equipment and we believe that it
could be applied to any vessel that leaves distinguishable wake patterns. As a direction for
future work, we point to the investigation of the influence of climatic conditions to better
analyze the few cases in which the results were not consistent. For this analysis, images
must be systematically captured at different times of day, under various lighting conditions,
in different weather conditions, at different wind speeds, and in all four seasons of the year.
So, ideally, systematic captures need to take place over at least one year in order to obtain a
wide range of image conditions.
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Another direction for future work is to extend the analyses that were presented in
this paper through the application of the ISO Guide to the Expression of Uncertainty of
Measurement (GUM) [32].

The testbed implementation of our approach took approximately 12 s to process each
image. Most of that time was used to compute the edge image using the RCF algorithm.
Faster methods for calculating the edge images proved ineffective in enhancing the ship
wakes. So, we aim to optimize this stage to calculate the vessel speed in real time. We are
also exploring ways to work with super-resolution images in order to improve the quality
of the information being included in the ROI and ways to use a sequence of images to
calculate the vessel speed in each image and analyze the resulting speeds, although the
central idea of this work was to use only one image. Our implementation will be made
available after the publication of this paper.
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Appendix A. Partial Derivatives for Error Propagation

Section 3 shows that we used first-order error propagation to compute the standard
uncertainty of the estimated vessel speed (σU) using the uncertainties of the experimental
input variables in the dataset ϑ as the sandwich product of the Jacobian matrix ∇U and
the covariance matrix Λϑ (9). This appendix includes the expressions that were used to
compute the partial derivatives in ∇U using the chain rule. Here, we present the partial
derivatives for the variables of the computational chain that is illustrated in Figure 5.

Vanishing line l. According to (1), the vanishing line of the water surface was computed
from points pl and pr. Thus:

∂l
∂ϑ

=

 ∂A
∂ϑ
∂B
∂ϑ
∂C
∂ϑ

 =


∂ypl
∂ϑ −

∂ypr
∂ϑ

0

(1−W)
∂ypl
∂ϑ

,

where
∂ypl
∂ϑ and ∂ypr

∂ϑ are 1 when the derivatives are taken with respect to ypl and ∂ypr ,
respectively, and are otherwise 0.

Camera height h. In this work, the camera height was given by (2). The partial derivative
of h was:

∂h
∂ϑ

=
∂hg

∂ϑ
+ δ

∂h f

∂ϑ
+

∂ht

∂ϑ
− ∂hs

∂ϑ
.

where hg, h f , ht, and hs are used as input; thus, their partial derivatives are 1 when taken
with respect to themselves and are otherwise 0.
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Rotation matrix R. It was easier to obtain the derivatives of R by considering its
columns ~R1, ~R2, and ~R3 separately. In this case:

∂R
∂ϑ

=

(
∂~R1

∂ϑ
,

∂~R2

∂ϑ
,

∂~R3

∂ϑ

)
,

where

∂~R1

∂ϑ
= ~R3 ×

∂~R2

∂ϑ
+

∂~R3

∂ϑ
× ~R2,

∂~R2

∂ϑ
=

Z~R3

∂Y~R3
∂ϑ −

∂Z~R3
∂ϑ Y~R3

(Y2
~R3

+ Z2
~R3
)

3
2

(
0, Y~R3

, Z~R3

)T
, and

∂~R3

∂ϑ
= ± 1

(X2
~L
+ Y2

~L
+ Z2

~L
)

3
2


(Y2

~L
+ Z2

~L
)

∂X~L
∂ϑ − X~L(Y~L

∂Y~L
∂ϑ + Z~L

∂Z~L
∂ϑ )

(X2
~L
+ Z2

~L
)

∂Y~L
∂ϑ −Y~L(X~L

∂X~L
∂ϑ + Z~L

∂Z~L
∂ϑ )

(X2
~L
+ Y2

~L
)

∂Z~L
∂ϑ − Z~L(X~L

∂X~L
∂ϑ + Y~L

∂Y~L
∂ϑ )

.

The orientation of ∂~R3
∂ϑ was set according to the up function. Here,~L = (X~L, Y~L, Z~L)

T =

KTl was an auxiliary variable with:

∂~L
∂ϑ

=


∂X~L
∂ϑ

∂Y~L
∂ϑ

∂Z~L
∂ϑ

 =

 αx
∂A
∂ϑ

γ ∂A
∂ϑ

∂C
∂ϑ + xo

∂A
∂ϑ

.

Matrices M and M−1. We assumed that the intrinsic parameters of the camera had no
uncertainty. So, the derivatives of M were given by the multiplication of a constant matrix
K and ∂R

∂ϑ :

∂M
∂ϑ

=


∂m11

∂ϑ
∂m12

∂ϑ
∂m13

∂ϑ
∂m21

∂ϑ
∂m22

∂ϑ
∂m23

∂ϑ
∂m31

∂ϑ
∂m32

∂ϑ
∂m33

∂ϑ

 = K
∂R
∂ϑ

.

The derivatives of the inverse of M were:

∂M−1

∂ϑ
= −M−1 ∂M

∂ϑ
M−1.

Direction ~D. The ray from the camera center to the reference point X1 required the
input of point x1 and the computation of M−1 (see (3)), from which it followed:

∂~D
∂ϑ

=


∂X~D
∂ϑ

∂Y~D
∂ϑ

∂Z~D
∂ϑ

 = M−1 ∂x1

∂ϑ
+

∂M−1

∂ϑ
x1, were

∂x1

∂ϑ
=

(
∂xx1

∂ϑ
,

∂yx1

∂ϑ
, 0
)T

where
∂xx1
∂ϑ and

∂yx1
∂ϑ are 1 when taken with respect to themselves and are otherwise 0.

ROI corner X1 in world space. After computing the direction ~D, the computation of the
derivatives of X1 was straightforward:

∂X1

∂ϑ
=


∂XX1

∂ϑ
∂YX1

∂ϑ
∂ZX1

∂ϑ
∂WX1

∂ϑ

 =
1

Z2
~D


hX~D

∂Z~D
∂ϑ − Z~D

(
X~D

∂h
∂ϑ + h ∂X~D

∂ϑ

)
hY~D

∂Z~D
∂ϑ − Z~D

(
Y~D

∂h
∂ϑ + h ∂Y~D

∂ϑ

)
0
0

.
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Direction~E. The back projection of the improper point that was encoding the direction
of the vessel in I was~E = M−1~u, which led to:

∂~E
∂ϑ

=


∂X~E
∂ϑ

∂Y~E
∂ϑ

∂Z~E
∂ϑ

 = M−1 ∂~u
∂ϑ

+
∂M−1

∂ϑ
~u, where

∂~u
∂ϑ

=


∂x~u
∂ϑ

∂v~u
∂ϑ

∂w~u
∂ϑ

 =
∂φ~u
∂ϑ

− sin φ~u
cos φ~u

0

.

where, as an input variable, the derivative of φ~u is 1 with respect to itself and 0 for any
other case.

Vessel direction ~U in world space. We let A be a constant matrix that encoded the
orthogonal projection onto ΠΠΠ. We computed ~U by applying A to ~E and normalizing the
result to unit length:

~U =
(
X~U, Y~U, Z~U, W~U

)T
= unit

(
A~E
)
=

1√
X2
~E
+ Y2

~E

(
X~E, Y~E, 0, 0

)T .

The partial derivatives of ~U with respect to ϑ were:

∂~U
∂ϑ

=

(
∂X~U
∂ϑ

,
∂Y~U
∂ϑ

,
∂Z~U
∂ϑ

,
∂W~U
∂ϑ

)T

=
X~E

∂X~E
∂ϑ + Y~E

∂Y~E
∂ϑ

(X2
~E
+ Y2

~E
)

3
2

(
−X~E,−Y~E, 0, 0

)T .

Direction ~V. Vector ~V was computed by rotating ~U on the mean water plane by π/2
radians:

~V =
(
X~V, Y~V, Z~V, W~V

)T
= B~U =

(
−Y~U, X~U, 0, 0

)T ,

where B is a constant rotation matrix. The derivatives of ~V came from ~U:

∂~V
∂ϑ

=

(
∂X~V
∂ϑ

,
∂Y~V
∂ϑ

,
∂Z~V
∂ϑ

,
∂W~V
∂ϑ

)T

=

(
−

∂Y~U
∂ϑ

,
∂X~U
∂ϑ

, 0, 0
)T

.

ROI corners ~X2 and ~X3 in world space. Equation (4) showed how to compute corners Xk,
for k = {2, 3, 4}, from the intermediate variables X1, ~U, and ~V. However, only X2 and X3
were needed in the remainder of the computational flow. Their derivatives were:

∂X2

∂ϑ
=

(
∂XX2

∂ϑ
,

∂YX2

∂ϑ
,

∂ZX2

∂ϑ
,

∂WX2

∂ϑ

)T
=

∂X1

∂ϑ
−WROI

∂~U
∂ϑ

, and

∂X3

∂ϑ
=

(
∂XX3

∂ϑ
,

∂YX3

∂ϑ
,

∂ZX3

∂ϑ
,

∂WX3

∂ϑ

)T
=

∂X1

∂ϑ
− HROI

∂~V
∂ϑ

.

Camera matrix P. By rewriting the camera matrix as:

P =
(
M | −MC̃

)
=

m11 m12 m13 −h m13
m21 m22 m23 −h m23
m31 m32 m33 −h m33

,

it was easy to see that the partial derivatives of its components were:

∂P
∂ϑ

=


∂p11
∂ϑ

∂p12
∂ϑ

∂p13
∂ϑ

∂p14
∂ϑ

∂p21
∂ϑ

∂p22
∂ϑ

∂p23
∂ϑ

∂p24
∂ϑ

∂p31
∂ϑ

∂p32
∂ϑ

∂p33
∂ϑ

∂p34
∂ϑ

 =

 ∂M
∂ϑ

−
(

h ∂m13
∂ϑ + m13

∂h
∂ϑ

)
−
(

h ∂m23
∂ϑ + m23

∂h
∂ϑ

)
−
(

h ∂m33
∂ϑ + m33

∂h
∂ϑ

)
.
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ROI corners x2 and x3 in image space. Recall from (5) that, except for the reference corner
x1, the corners xk were computed by projecting Xk from world space onto image space. The
partial derivatives of those corners were:

∂xk
∂ϑ

=


∂xxk
∂ϑ

∂yxk
∂ϑ

∂wxk
∂ϑ

 =

XXk
∂m11

∂ϑ + m11
∂XXk

∂ϑ + YXk
∂m12

∂ϑ + m12
∂YXk

∂ϑ + ∂p14
∂ϑ

XXk
∂m21

∂ϑ + m21
∂XXk

∂ϑ + YXk
∂m22

∂ϑ + m22
∂YXk

∂ϑ + ∂p24
∂ϑ

XXk
∂m31

∂ϑ + m31
∂XXk

∂ϑ + YXk
∂m32

∂ϑ + m32
∂YXk

∂ϑ + ∂p34
∂ϑ

.

Homographic matrix H. In (6), H was computed by multiplying the matrices HA and
Hl, where the former was defined by the coefficients of the right-hand null space vector~v
and the later was related to the vanishing line l. In its final form:

H =

h11 h12 h13
h21 h22 h23
h31 h33 h33

 = HAHl.

The partial derivatives of H with respect to ϑ were:

∂H
∂ϑ

=


∂h11
∂ϑ

∂h12
∂ϑ

∂h13
∂ϑ

∂h21
∂ϑ

∂h22
∂ϑ

∂h23
∂ϑ

∂h31
∂ϑ

∂h32
∂ϑ

∂h33
∂ϑ

 = HA
∂Hl
∂ϑ

+
∂HA
∂ϑ

Hl,

where

∂HA
∂ϑ

=


v33

∂v11
∂ϑ −v11

∂v33
∂ϑ

v2
33

v33
∂v12

∂ϑ −v12
∂v33

∂ϑ

v2
33

v33
∂v13

∂ϑ −v13
∂v33

∂ϑ

v2
33

v33
∂v21

∂ϑ −v21
∂v33

∂ϑ

v2
33

v33
∂v22

∂ϑ −v22
∂v33

∂ϑ

v2
33

v33
∂v23

∂ϑ −v23
∂v33

∂ϑ

v2
33

0 0 1

, and

∂Hl
∂ϑ

=

 1 0 0
0 1 0

∂A
∂ϑ 0 ∂C

∂ϑ

.

The procedure to obtain the derivatives of~v from the singular value decomposition
can be found in the literature [33].

Location c1 and c2 of troughs in the rectified ROI. We were not able to estimate the
uncertainty of the location of the maximum and minimum of the smooth curve that was
computed by the LOWESS algorithm. Our approach to not interrupting the uncertainty
propagation of the computational chain while it was estimating c1 and c2 in the rectified
ROI was:

1. Take the coordinates of the troughs in the rectified ROI;
2. Map them onto I using the inverse homography H−1, thereby obtaining c′1 and c′2:

c′j =
(

xc′j
, yc′j

, wc′j

)T
= H−1

(
xcj , ycj , 1

)T
;

3. Consider that c′1 and c′2 are variables without uncertainty (see the pentagons in
Figure 5);

4. Transport the uncertainty that are propagated on H onto c1 and c2 by mapping c′1 and
c′2 back to the rectified ROI using:

cj =
(

xcj , ycj , 1
)T

= Hc′j = H
(

xc′j
, yc′j

, wc′j

)T
.
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The derivatives of cj, for j ∈ {1, 2}, were:

∂cj

∂ϑ
=


∂xcj
∂ϑ

∂ycj
∂ϑ

∂wcj
∂ϑ

 =


∂h11
∂ϑ xc′j

+ ∂h12
∂ϑ yc′j

+ ∂h13
∂ϑ wc′j

∂h21
∂ϑ xc′j

+ ∂h22
∂ϑ yc′j

+ ∂h23
∂ϑ wc′j

∂h31
∂ϑ xc′j

+ ∂h32
∂ϑ yc′j

+ ∂h33
∂ϑ wc′j

.

Vessel speed U. By replacing D and λ (7) in (8), U was written in terms of a constant
term r that multiplied the square root of the Euclidean distance between points c1 and c2:

U = r 4
√
(xc2 − xc1)

2 + (yc2 − yc1)
2, where r = 1.944

√
g
√

3
4π

.

The components of ∇U (10) were computed as:

∂U
∂ϑ

=
r
(
(xc1 − xc2)

(
∂xc1
∂ϑ −

∂xc2
∂ϑ

)
+ (yc1 − yc2)

(
∂yc1
∂ϑ −

∂yc2
∂ϑ

))
2
(
(xc1 − xc2)

2 + (yc1 − yc2)
2
) 3

4
.
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