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Ovarian tumor diagnosis using 
deep convolutional neural 
networks and a denoising 
convolutional autoencoder
Yuyeon Jung1,8, Taewan Kim2,8, Mi‑Ryung Han3, Sejin Kim4, Geunyoung Kim4, 
Seungchul Lee2,5,6,8* & Youn Jin Choi4,7,8*

Discrimination of ovarian tumors is necessary for proper treatment. In this study, we developed 
a convolutional neural network model with a convolutional autoencoder (CNN‑CAE) to classify 
ovarian tumors. A total of 1613 ultrasound images of ovaries with known pathological diagnoses 
were pre‑processed and augmented for deep learning analysis. We designed a CNN‑CAE model that 
removes the unnecessary information (e.g., calipers and annotations) from ultrasound images and 
classifies ovaries into five classes. We used fivefold cross‑validation to evaluate the performance of 
the CNN‑CAE model in terms of accuracy, sensitivity, specificity, and the area under the receiver 
operating characteristic curve (AUC). Gradient‑weighted class activation mapping (Grad‑CAM) 
was applied to visualize and verify the CNN‑CAE model results qualitatively. In classifying normal 
versus ovarian tumors, the CNN‑CAE model showed 97.2% accuracy, 97.2% sensitivity, and 0.9936 
AUC with DenseNet121 CNN architecture. In distinguishing malignant ovarian tumors, the CNN‑
CAE model showed 90.12% accuracy, 86.67% sensitivity, and 0.9406 AUC with DenseNet161 CNN 
architecture. Grad‑CAM showed that the CNN‑CAE model recognizes valid texture and morphology 
features from the ultrasound images and classifies ovarian tumors from these features. CNN‑CAE is a 
feasible diagnostic tool that is capable of robustly classifying ovarian tumors by eliminating marks on 
ultrasound images. CNN‑CAE demonstrates an important application value in clinical conditions.

Ovarian tumors affect women of all ages and pose a difficult diagnostic challenge for gynecologists. Once an 
ovarian mass is detected, the clinician’s priority is to determine whether it is a benign or a malignant tumor 
and to assess the options for optimal  management1. Pelvic ultrasonography, which provides information about 
the tumor such as its size, consistency, and nature, is the most commonly used imaging approach in assessing 
ovarian tumors. The major limitation of ultrasonography is that it is operator-dependent and results can vary 
between interpreters.

Recent research has examined the value of texture analysis in the detection of cervical neoplasms on colpo-
scopic  images2 and the identification of breast lesions on digital X-ray mammograms through deep  learning3. 
Khazendar et al.4 developed a support vector machine (SVM) to distinguish benign and malignant lesions by 
using 187 ultrasound images of ovarian tumors, and a three-dimensional texture analysis algorithm has been 
developed to evaluate structural changes in the extracellular matrix between normal ovary and serous ovarian 
 cancer5.
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Not only is it important to differentiate benign from malignant ovarian tumors, it is also important to distin-
guish among the various benign ovarian tumor types, because it is estimated that up to 10% of women will have 
surgery for an ovarian cyst in their  lifetime6. Therefore, in this study, we aimed to accurately diagnose malignant 
and various benign ovarian tumors by using a texture analysis approach on ultrasound  images7.

The most important thing in texture analysis is the quality of the image. Any disturbances on an image can 
interfere with texture feature learning, and it is inevitable that among the many images collected for large cohort 
 studies8, there will be images with disturbances. These disturbances are not easily removed manually, as the 
phenotypes of disturbances are different from each other. This study proposes a deep learning-based approach, 
a convolutional neural network with a convolutional autoencoder (CNN-CAE), to remove disturbances auto-
matically and sort ovarian tumors into five classes: normal (no lesion), cystadenoma, mature cystic teratoma, 
endometrioma, and malignant tumor.

The effectiveness of the proposed CNN-CAE is validated across 1613 ovarian ultrasound images collected 
from 1154 patients. The deep learning visualization method and degradation of sorting performance validate the 
effect of image disturbance on texture analysis qualitatively and quantitatively. We believe that the CNN-CAE 
we propose is a viable deep learning-based diagnostic tool for distinguishing ovarian tumors.

The remainder of this paper is organized as follows. Section “Results” presents the results of this study. Sec-
tion “Discussion” presents the discussion. Section “Material and methods” describes the material and methods.

Results
Removing marks via CAE. Figure 1 shows the images before and after removal of marks via the CAE 
model. There are calipers and annotations around the ovary on the upper images, which inevitably affect the 
features that the CNN model learns. As seen in the lower row, the images we obtained through the CAE model 
are relatively clean, without calipers or annotations around the ovary. The pixels replacing the marks are well 
generated compared with the surrounding pixels, without a sense of heterogeneity.

Classification results of CNN‑CAE. The DenseNet classification results are shown in Table 1. In clas-
sifying normal versus other ovaries, the DenseNet121 model showed an accuracy of 97.22% with an area under 
the receiver operating characteristic curve (AUC) of 0.9936, sensitivity of 97.22%, and specificity of 97.21% the 
DenseNet161 model showed an accuracy of 97.28% with an AUC of 0.9918, sensitivity of 90.70%, and specificity 
of 98.29%. In determining tumor malignancy, the DenseNet121 model showed an accuracy of 90.49% with an 
AUC of 0.9395 and the DenseNet201 model showed an accuracy of 88.7% with an AUC of 0.9419. In the classi-
fication of the different types of benign tumors, the DenseNet161 model showed 82.18% sensitivity and an AUC 
of 0.9394 for cystadenoma, 80.82% sensitivity with an AUC of 0.9414 for mature cystic teratoma, and 73.33% 
sensitivity with an AUC of 0.9248 for endometrioma.

The classification results for the two highest performance models are shown on the confusion matrices in 
Fig. 2. The predictions by the model are shown on the X-axis and the pathology diagnoses are shown on the 
Y-axis. As can be seen from these diagrams, the DenseNet161 model showed a better result in the classification 
of malignancies. Malignancies were correctly identified in 467 of 539 images (86.6%). The DenseNet121 model 
correctly classified 451 (83.7%) lesions as malignant. For benign tumors, approximately 70.0–80.0% of the images 
were correctly sorted into each class. In the sorting of benign tumors, the DenseNet161 model correctly classified 
682 images out of 860 images, while the DenseNet121 model classified 679 images out of 860 images correctly.

Figure 1.  Ultrasound images before and after removing the marks via the convolutional autoencoder. The first 
row is the images with marks, and the second row is the image without marks. Example images are from left to 
right normal, cystadenoma, mature cystic teratoma, endometrioma, and malignancy.
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Comparison of the receiver operating characteristic curves (ROC) for the two top models is shown in Fig. 3. 
The AUC values for each class of both models are in the range of 0.89–0.98. In determining tumor presence, 
the DenseNet161 model had an AUC of 0.9837, indicating that the presence of a tumor is well distinguished. 
The ROC for tumor malignancy had an AUC > 0.9, which is promising for distinguishing malignant tumors.

Validation of CNN‑CAE through the visualization method. We applied a gradient-weighted class 
activation mapping (Grad-CAM)9 CNN visualization method to determine the effects of marks on CNN learn-
ing. For comparison, we trained the same CNN model with the images without removing the marks and visual-
ized both CNN models. The visualization results are shown in Fig. 4. The images on the left are input images, 
and those on the right are visualization results through Grad-CAM. In the Grad-CAM image, the activated (red) 
area is strongly considered in predicting final results, whereas the blue area is generally not considered in the 
final result. The Grad-CAM result shows that marks on the images, such as calipers and annotation, can affect 
the classification process in the CNN model. Furthermore, we could see that the activation area of the model 
trained without marks coincided with the correct area more often. This means that the classification is based on 
morphology and texture information, and thus we can regard the classification results are valid. However, the 

Table 1.  Diagnostic performance and 95% confidence intervals (in parentheses) of the DenseNet models. PPV 
positive predictive value, NPV negative predictive value, AUC  area under the receiver operating characteristic 
curve.

Outcome 
measure Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) AUC 

Normal

DenseNet121 97.22 (96.68–
97.76)

97.22 (96.85–
97.59)

97.21 (94.79–
99.63)

84.28 (82.37–
86.19)

99.56 (99.19–
99.94)

0.9936 (0.9914–
0.9958)

DenseNet161 97.28 (96.37–98.2) 90.70 (86.13–
95.26)

98.29 (97.64–
98.95) 89.1 (85.24–92.95) 98.57 (97.88–

99.27)
0.9918 (0.988–
0.9956)

DenseNet201 96.98 (96.41–
97.54) 89.3 (85.43–93.18) 98.15 (97.78–

98.52) 88.1 (85.97–90.23) 98.36 (97.78–
98.94)

0.9909 (0.9878–
0.9940)

DenseNet161(no 
CAE)

95.25 ( 94.81–
95.68) 89.3 (86.01–92.59) 96.16 (95.43–

96.88)
78.14 (75.26–
81.01)

98.33 (97.83–
98.83)

0.9906 (0.9885–
0.9927)

Cystadenoma (benign)

DenseNet121 92.72 (91.92–
93.51)

80.36 (77.42–
83.31)

95.24 (94.64–
95.84)

77.56 (75.14–
79.98)

95.96 (95.37–
96.55)

0.9213 (0.9062–
0.9364)

DenseNet161 93.02 (92.59–
93.46)

82.18 (77.03–
87.33)

95.24 (93.96–
96.52)

78.11 (74.56–
81.67)

96.33 (95.33–
97.33)

0.9394 (0.9272–
0.9515)

DenseNet201 92.10 (91.35–
92.85)

68.00 (64.22–
71.78)

97.03 (96.16–
97.89)

82.51 (78.36–
86.66) 93.69 (93.0–94.37) 0.9423 (0.9324–

0.9521)

DenseNet161(no 
CAE) 88.83 (88.0–89.66) 68.0 (63.05–72.95) 93.09 (92.56–

93.61)
66.77 (64.77–
68.78) 93.44 (92.5–94.37) 0.9109 (0.9076–

0.9143)

Mature cystic teratoma (benign)

DenseNet121 91.85 (91.21–
92.49) 77.53 (76.6–78.47) 96.02 (95.23–96.8) 85.02 (82.51–

87.53)
93.63 (93.38–
93.88)

0.9409 (0.9390–
0.9429)

DenseNet161 92.47 (91.77–
93.17)

80.82 (77.88–
83.77)

95.86 (95.11–
96.61)

85.05 (82.84–
87.26)

94.51 (93.73–
95.28)

0.9326 (0.9247–
0.9404)

DenseNet201 88.40 (87.0–89.79) 75.89 (70.84–
80.94)

92.03 (91.11–
92.96)

73.47 (70.82–
76.13)

92.93 (91.55–
94.31)

0.9144 (0.8951–
0.9338)

DenseNet161(no 
CAE) 87.1 (85.49–88.71) 72.33 (68.64–

76.02)
91.39 (90.31–
92.48) 70.97 (67.4–74.54) 91.9 (90.84–92.97) 0.9056 (0.8972–

0.914)

Endometrioma (benign)

DenseNet121 93.64 (92.41–
94.87)

79.56 (75.96–
83.15)

95.91 (94.59–
97.23)

76.08 (69.94–
82.22)

96.68 (96.11–
97.25)

0.9398 (0.9245–
0.9550)

DenseNet161 93.64 (92.95––
94.34)

73.33 (70.57–
76.09)

96.92 (96.17–
97.66) 79.43 (75.36–83.5) 95.75 (95.33–

96.17)
0.9248 (0.9097–
0.9400)

DenseNet201 92.84 (92.52–
93.16)

76.89 (74.42–
79.36)

95.41 (94.83–
95.99)

73.04 (71.08–
75.01)

96.24 (95.87–
96.61)

0.9311 (0.9235–
0.9388)

DenseNet161(no 
CAE)

91.79 (90.75–
92.83) 76.8 (74.42–79.36) 94.19 (93.23–

95.16)
68.19 (64.37–
72.01) 96.19 (95.78–96.6) 0.9238 (0.9188–

0.9288)

Borderline/cancer (malignant)

DenseNet121 90.49 (88.9–92.08) 83.7 (78.72–88.69) 93.89 (92.94–
94.83)

87.27 (85.67–
88.87) 92.05 (89.8–94.29) 0.9395 (0.9293–

0.9497)

DenseNet161 90.12 (88.39–
91.86) 86.67 (81.0–92.33) 91.85 (91.2–92.51) 84.17 (83.15–

85.18)
93.28 (90.55–
96.01)

0.9406 (0.9269–
0.9542)

DenseNet201 88.7 (87.47–89.93) 85.0 (81.92–88.08) 90.56 (89.9–91.21) 81.81 (80.54–
83.09)

92.36 (90.88–
93.84)

0.9419 (0.9356–
0.9483)

DenseNet161(no 
CAE)

85.43 (84.75–
86.12)

71.48 (69.59–
73.37)

92.41 (91.89–
92.92)

82.48 (81.46–
83.51) 86.64 (85.87–87.4) 0.9093 (0.8995–

0.9191)
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activation area of the model trained with marks is distributed over an incorrect area, as can be seen in Fig. 4 
(red circles), which means that the classification is not based on shape and texture information. Therefore, these 
results are considered invalid.

Validation of CNN‑CAE through classification accuracy. For quantitative evaluation of the effect of 
the marks, we tested the classification performance the best-performing model, DenseNet161, without CAE. 
The results are shown in in Table 1. Compared to the DenseNet models with CAE, DenseNet161 without CAE 
showed lower accuracy (95.25%) for classifying normal versus other ovarian tumors and showed 71.48% sensi-
tivity for detecting malignancy, with an AUC of 0.9093.

Diagnostic accuracy based on the interpreter’s experience. All of the ultrasound images were 
independently interpreted by novice, intermediate, and advanced readers. The novice readers had two years 
of experience interpreting gynecologic ultrasound, the intermediate readers had 5 years of experience, and the 
advanced readers had ten years of experience. Two interpreters served as readers for each group. As shown in 
Table 2, the novice readers had an accuracy of 66.8%, the intermediate readers had an accuracy of 86.9%, and the 
advanced readers obtained an accuracy of 91.0%.

Figure 2.  Multiclass classification of ultrasound images. Heat map of the confusion matrices of two highest 
performance models, DenseNet121 and DenseNet161.

Figure 3.  Receiver operating characteristic (ROC) curves of the classification results for two models, 
DenseNet121 (left) and DenseNet161 (right). The ROC curves are based on the binary results for each class.
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Discussion
The correct diagnosis of ovarian tumors is necessary for determining the appropriate treatment, and several 
machine learning methods have been studied for ovarian tumor diagnosis. It is of utmost importance to dis-
tinguish malignancies among the various ovarian tumors. Previous machine learning trials have distinguished 
only between benign and malignant tumors in small populations. In two papers from the Timmerman group 
evaluating the differentiation of ovarian tumors using machine learning, the first study showed 76.0% accuracy 
using SVM on 187 ultrasound  images10, and the second reported an accuracy of 77.0% using a local binary pat-
tern coding  operator4. However, the ultrasound images were based on the segmentation of lesions and displayed 
calipers used by the ultrasound specialists, which presents the limitation of an intervention bias. Another recent 
study reported that the manual removal of peripheral organs (e.g., uterus) from the image resulted in a sensitivity 

Figure 4.  Convolutional neural network visualization of ultrasound images via a gradient-weighted class 
activation map (Grad-CAM). The first two rows (“Before CAE”) show the images with marks and the 
corresponding Grad-CAM results, and the next two rows (“After CAE”) show the images with marks removed 
and the corresponding Grad-CAM results.

Table 2.  Diagnostic performance of interpreters of ultrasonography.

Accuracy (%) Normal (%) Cystadenoma (%)
Mature cystic teratoma 
(%) Endometrioma (%) Malignancy (%)

Beginner 66.8 96.3 54.1 59.2 56.6 67.9

Intermediate 86.9 99.6 56.1 88.7 94.8 95.3

Advanced 91.0 97.6 84.3 89.1 89.9 94.0
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of 96.0% and a specificity of 89.3% for distinguishing between benign and malignant ovarian  tumors11, but it 
is important not only to distinguish between malignant and benign tumors, but also to identify benign tumors 
that require surgery and those that may progress to malignancies. We performed deep learning analysis in one 
normal ovary and four common ovarian tumors, and our CNN-CAE study differentiated four types of ovarian 
tumor that required surgical treatment with an accuracy of 97.0%. In particular, we determined that the AUC 
for malignancy was 0.94, which clearly distinguished malignant from benign. Comparing the CNN-CAE results 
with the reading results of novice, intermediate, and advanced readers showed an accuracy of 66.8%, 86.9%, and 
91.0%, respectively, suggesting that, considering the CNN-CAE results, inexperienced examiners can diagnose 
ovarian tumors with high accuracy.

Deep learning is vulnerable to imperceptible perturbations of input data. Some studies have shown that small 
disturbances to the input data can significantly degrade deep learning  performance12. In this study, CNN-CAE 
was used to remove marks from ultrasound images to improve diagnostic accuracy. We confirmed that distur-
bances such as calipers and annotations could affect the CNN model results via Grad-CAM, and we developed 
the CNN-CAE model to eliminate these calipers and annotations. The CNN-CAE model successfully removed 
the calipers and annotations and classified ultrasound images at a high level of accuracy. These results show that 
even if marks are present on ultrasound images, they can be removed automatically so that only the ovary can 
be assessed for the correct diagnosis. The visualization results of Grad-CAM verify the reliability of the CNN-
CAE model in terms of utilizing data in which disturbances exist. These results show that our method no longer 
needs to save a no-caliper image when taking an ultrasound image, and has the advantage of utilizing existing 
stored caliper images in addition to the images taken on-site. Our study is the first to address the removal of 
disturbances on ovarian ultrasound images via deep learning, and we have also demonstrated the usefulness of 
a deep learning-based method to solve the problem of disturbances existing in medical data.

There are some limitations to this study. First, this study was a retrospective cohort study performed on images 
of tumors with a known histological diagnosis, and was performed on a relatively small number of patients and 
images. Second, only still ultrasound images were used. Therefore, the multi-focal images that can be extracted 
from the ultrasound video were not fully utilized. Nevertheless, the CNN-CAE model has the potential to be 
widely used not only to identify malignancy but also for the classification of benign tumors that require surgery. 
Furthermore, the model has the advantage that it can be read not only in newly captured ultrasound images but 
also previously captured images. In future research, we will develop a classification model based on the most 
recent method and examine various aspects of ovarian tumor imaging, such as clinical radiology and ultrasound 
imaging technique. In addition, we will conduct a study to improve classification accuracy using multi-focal 
images.

Material and methods
Overall process. The research algorithm is shown in Fig. 5. The collected images went through the pre-
processing stage to eliminate the effects of different devices and conditions. As the marks on the collected images 
can affect model training, we removed the marks through the CAE. After the CAE model successfully removed 
the marks on the images, these processed images were used to train and validate the CNN model. In the final 
stage, the results were compared against expert readings to validate the results, and CNN visualization methods 
were used to verify reliability.

Dataset. This study was conducted using 1613 single-ovary ultrasound images from 1154 patients at the 
Seoul St. Mary’s Hospital, who underwent surgical removal of tumors of one or both ovaries between Janu-
ary 2010 and March 2020 and had known pathology diagnoses. Preoperative ultrasound images were obtained 
by using a GE Voluson E8 Expert ultrasound system (GE Healthcare, Milwaukee, WI, USA), an Accuvix XQ 
(Medison, Seoul, Korea), or a WS80A Elite (Samsung Medison. Co., Ltd, Seoul, Korea). Representative grayscale 
images of the tumors were made by the expert ultrasonographer, and all of the images were stored in JPG digi-
tized format. The information from color Doppler was not taken into account in this study. The images were 
categorized according to the pathology diagnosis as (1) normal (no lesion), (2) cystadenoma (mucinous/serous), 
(3) mature cystic teratoma, (4) endometrioma, and (5) malignancy, including cancerous and borderline tumors. 
Representative images are shown in Fig. 1.

Ethical approval. This study was approved by the Institutional Review Board (IRB) of Seoul St. Mary’s Hos-
pital of the Catholic University of Korea College of Medicine (IRB approval no. KC18RESI0792). All procedures 
performed in studies involving human participants were carried out in accordance with the Helsinki Declara-
tion ethical principles for medical research. The requirement for informed consent was waived because of the 
retrospective study design after in-depth review by IRB.

We separated the 1613 images into five data subsets for 5-fold cross-validation. The five subsets were used 
for training and validation iteratively, yielding robust results from each independent result. Since only one ultra-
sound image was taken for each ovary, there were no instances of duplication of images of the same ovary in the 
training and validation data. The data overview is shown in Table 3. All images were processed by the following 
steps: (1) the frame information for the ultrasound images (patient identification number, name, and timestamp) 
was removed; (2) the ultrasound images were trimmed to a 1:1 ratio, as not to distort the scale and shape of the 
original image; and (3) in the final step, the pixel values of the ultrasound images pixel were normalized to (0, 1), 
and the image resolution was resized to 360 × 360 considering the compatibility between CAE and CNN model. 
For model training, we performed offline data augmentation only on the training images to 8× by rotating the 
images by 90° 3 times and flipping each rotated image horizontally.
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Methods. The images processed by the data acquisition methods described above still contained marks, 
such as calipers and annotations, which cannot be removed manually. These marks can affect the features for 
classifying each class. Therefore, we designed a CAE model that removed the marks on images and regenerates 
the pixels where the marks were placed. The structure of the CAE model is shown in Fig. 6. The U-net structure 
was referenced and minor variations, such as squeeze and excitation block (SE-block) and multi-kernel dilated 
convolution, were adapted to improve the mark removal  performance13.

Figure 5.  Study flow chart. A deep learning method, a convolutional autoencoder (CAE), was used in the pre-
processing stage, and hyper-parameter tuning was conducted in the deep learning model training process.

Table 3.  The number of patients and images used in the fivefold cross-validation of the classification model.

Types Normal Cystadenoma Mature cystic teratoma Endometrioma Malignancy Total

Patients 145 245 324 196 244 1,154

Image 214 272 364 224 539 1,613

Fold-1 171/43 217/55 291/73 179/45 431/108 1,289/324

Fold-2 171/43 217/55 291/73 179/45 431/108 1,289/324

Fold-3 171 /43 218/54 291/73 179/45 431/108 1,290/323

Fold-4 171/43 218/54 291/73 179/45 431/108 1,290/323

Fold-5 172/42 218/54 292/72 180/44 432/107 1,294/319
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The operation of the CAE model is performed in a series of steps. First, the original image with the marks is 
input and passed through the squeezing and excitation block, which compresses and weights the information 
and features of the convolution  layer14. These feature maps pass into deeper layers by average pooling. In the 
deepest layer, feature maps are merged with context information via dilated convolution operations with multi-
ple dilation values. After passing through convolution and transposed convolution layers, the feature maps are 
generated to the clean ultrasound image. During this process, the high-resolution information of the shallow 
layer is concatenated to the convolution layers to enhance resolution. The CAE model was trained on 171 pairs 
of marked and clean ultrasound images by setting the following training parameters: 200 epochs, 2 batch size, 
mean squared loss, Adam optimizer, and 0.00005 learning rate decaying every epoch for 0.95 times. These 171 
pairs of marked and clean ultrasound images were collected by saving images separately before adding calipers 
and annotations to ultrasound images. The marked ultrasound image was input to the CAE model, and the 
image result of the CAE model was compared to the clean image. The weight parameters of the CAE model are 
optimized to minimize a mean squared error between two images.

The purpose of this study was to produce a deep learning model for classifying ovarian tumors from ultra-
sound images. To date, deep learning models that have demonstrated success in the field of image recognition 
have mostly been valid in general RGB images. Unlike RGB images, which directly capture reflected light, ultra-
sound images are obtained indirectly from sound waves reflected from the layers between different tissues. As a 
result, ultrasound images have low resolution and hazy object boundaries. Considering these differences between 
ultrasound images and RGB images, it is as yet unknown which deep learning model is optimal for classifying 
ultrasound images. We trained three CNN models  ResNet15, inception-v316, and  DenseNet17 architecture, that 
have been widely used and validated in many other classification tasks, to discover the best model for classifica-
tion of ovarian tumors on ultrasound images. Each model’s end layer was modified to have five hidden nodes to 
classify five classes of ovarian ultrasound images. The model weights, except for the end layer, were initialized 
with pre-trained parameters that were optimized for another computer vision task (ImageNet). We newly trained 
these models, ResNet101, Inception48, and DenseNet121, for the task of distinguishing the five classes by set-
ting the following training parameters: 50 epochs, 8 batch size, cross-entropy loss, Adam optimizer, and 0.00005 
learning rate decaying every epoch for 0.95 times. Among the models, the DenseNet121 structure showed best 
result on the validation dataset, and we additionally trained other DenseNet models having a different number 
of convolutional layers. The results for each structure are shown in Table 4 and Fig. 7, respectively.

Evaluation measures. For the evaluation of the ovarian tumor classification, sensitivity, specificity, posi-
tive predictive value (PPV), negative predictive value (NPV), accuracy, and area under the receiver operating 
characteristic (ROC) curve (AUC) were used as performance measures. The mean and 95% confidence interval 
of the five-fold cross-validation results were used to calculate performance measures.

Figure 6.  The architecture of the convolutional autoencoder model. This model is designed to remove marks on 
images and generate high-resolution pixels to replace the marks.
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