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Abstract: Background: Neurodegenerative diseases such as Alzheimer's disease (AD), amyotro-
phic lateral sclerosis, Parkinson's disease (PD), spinal cerebellar ataxias, and spinal and bulbar mus-
cular atrophy are described by slow and selective degeneration of neurons and axons in the central 
nervous system (CNS) and constitute one of the major challenges of modern medicine. Computer-
aided or in silico drug design methods have matured into powerful tools for reducing the number of 
ligands that should be screened in experimental assays.  

Methods: In the present review, the authors provide a basic background about neurodegenerative 
diseases and in silico techniques in the drug research. Furthermore, they review the various in silico 
studies reported against various targets in neurodegenerative diseases, including homology model-
ing, molecular docking, virtual high-throughput screening, quantitative structure activity relation-
ship (QSAR), hologram quantitative structure activity relationship (HQSAR), 3D pharmacophore 
mapping, proteochemometrics modeling (PCM), fingerprints, fragment-based drug discovery, 
Monte Carlo simulation, molecular dynamic (MD) simulation, quantum-mechanical methods for 
drug design, support vector machines, and machine learning approaches.  

Results: Detailed analysis of the recently reported case studies revealed that the majority of them 
use a sequential combination of ligand and structure-based virtual screening techniques, with par-
ticular focus on pharmacophore models and the docking approach.  

Conclusion: Neurodegenerative diseases have a multifactorial pathoetiological origin, so scientists 
have become persuaded that a multi-target therapeutic strategy aimed at the simultaneous targeting 
of multiple proteins (and therefore etiologies) involved in the development of a disease is recom-
mended in future. 

Keywords: Neurodegenerative diseases, cheminformatics, chemometrics, in silico drug discovery and design, virtual screen-
ing, virtual docking, QSAR, MD. 

1. INTRODUCTION 

 Neurodegenerative diseases (NDDs), termed ‘protein-
misfolding disorders’, are a heterogeneous group of disor-
ders that are described by profound loss of neurons and dis-
tinct involvement of functional systems defining clinical 
presentations. Comprehensive neuropathological, molecular 
genetic and biochemical assessments suggested that proteins 
with modified physical and chemical properties are depos-
ited in the human brain but also in peripheral organs as a 
fundamental phenomenon in many forms of NDDs [1]. Ac-
cording to this, a physiological protein triggers structural 
conformational changes, which can result in the loss of func-
tion or altered function, aggregation and intra- or extra- neu-
ronal accumulation of amyloid fibrils. The ubiquitin-  
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proteasome pathway and the autophagy-lysosome system, 
oxidative stress response proteins and chaperone network are 
protein elimination pathways that contribute to controling 
the quality of cellular components and serve to maintain pro-
teostasis of the cell. These pathways have high impact on the 
pathogenesis of NDDs. Impaired mitochondrial function and 
oxidative damage, dysregulated bioenergetics and DNA oxi-
dation, neuroinflammation, dysregulation of ion homeostasis 
and cellular/axonal transport defects are related to the forma-
tion of toxic forms of NDD-related proteins [2]. Classifica-
tion of NDDs is based on the correlation of clinical symp-
toms with neuropathology, anatomical distribution of neu-
ronal loss and cell types affected, conformationally changed 
proteins, and etiology. Clinical–anatomical classification of 
neurodegenerative disorders, which is useful mostly when 
clinical symptoms and signs are early diagnosed, is as fol-
lows: (1) Cognitive dysfunction as early symptom, dementia 
and alteration in high-order brain functions that are closely 
related to involvement of the hippocampus, entorhinal cor-

 
 
 
 
 

A R T I C L E  H I S T O R Y	
  

Received: January 11, 2017 
Revised: July 24, 2017 
Accepted: August 16, 2017 
 
DOI: 
10.2174/1570159X15666170823095628	
  

 



In Silico Studies in Drug Research Against Neurodegenerative Diseases Current Neuropharmacology, 2018, Vol. 16, No. 6    665 

tex, limbic system (amygdala, olfactory cortices, anterior 
cingulate cortex, subcortical structures) and neocortical ar-
eas; (2) Movement disorders in which the most important 
anatomical regions involved are the motor cortical areas, 
lower motor neurons of the spinal cord, basal ganglia, brain-
stem nuclei, thalamus, cerebellar cortex and nuclei; and (3) 
Combinations of these symptoms that form early during the 
clinical course [3]. Neuropathological-based classification 
relies on the assessment of the anatomical distribution of 
neuronal loss, and histopathological hallmarks like spongi-
form change in the neuropil, or vascular lesions, and the dis-
tinction of intracellular and extracellular protein accumula-
tions. The conformationally changed proteins involved in the 
majority of sporadic and genetic adult-onset NDDs are as 
follows: α-synuclein (α-syn), an abundant brain protein of 
140 residues that belongs to a family of three closely related 
proteins (α-, β- and γ-syn); transactive-response (TAR) 
DNA-binding protein 43 (TDP-43), a nuclear protein with 
414 aa which is ubiquitously expressed in non-central nerv-
ous system in nearly all tissues; the microtubule-associated 
protein tau (MAPT) with pivotal role for the assembly of 
tubulin into microtubules and stabilization of microtubules; 
amyloid β-peptide (Aβ); PrP, a 253 aa protein involved in 
prion diseases or transmissible spongiform encephalopathies; 
the fused-in-sarcoma (FUS), Ewing’s sarcoma RNA-binding 
protein 1 (EWSR1) and TATA-binding protein-associated 
factor 15 (TAF15) proteins, belong to the FET (FUS, EWS 
and TAF15) family of DNA/RNA binding proteins [4]. Pro-
tein aggregation in the nervous system can be deposited in-
tracellularly including tau, α-syn, TDP-43, FUS/FET pro-
teins, and those related to trinucleotide repeat expansion or 
rare hereditary diseases and extracellularly consisting mainly 
of Aβ or PrP. Alzheimer's disease (AD) is described by the 
existence of extracellular amyloid plaques and by the in-
traneuronal aggregates of hyperphosphorylated and mis-
folded tau protein. Lewy body (LB)-associated disorders, 
including Parkinson disease (PD) and dementia with Lewy 
bodies (DLB) exhibit intraneuronal cytoplasmic and neuritic 
inclusions, whereas multiple system atrophy (MSA), a spo-
radic, adult-onset degenerative movement disorder of un-
known cause, is described by α-syn–positive glial cytoplas-
mic and rare neuronal inclusions. Tauopathies are a spectrum 
of neurodegenerative disorders which are classified into 
three categories (neuronal, mixed neuronal/ glial and glial 
predominant) in view of the cellular distribution of tau pa-
thology. Neuronal tau deposition is an important feature of 
AD, Pick disease (PiD), neurofibrillary tangle (NFT)-
dementia or primary age-related tauopathy (PART) and fron-
totemporal lobar degenerations (FTLD). Argyrophilic grain 
disease (AGD), progressive supranuclear palsy (PSP) and 
corticobasal degeneration (CBD) show both neuronal and 
glial tau aggregates, while globular glial tauopathies (GGT) 
are characterized by the presence of glial tau pathologies  
[5, 6]. Prion diseases make up a group of rare fatal neuro-
logical disorders with various etiologies, including sporadic 
(Creutzfeldt-Jakob disease (CJD)), genetic (genetic CJD, 
Gerstmann-Sträussler-Scheinker syndrome (GSS), and fatal 
familial insomnia (FFI)), and acquired (kuru, variant CJD, 
and iatrogenic CJD) forms [7]. TDP-43 is a major protein 
component of the ubiquitin-immunoreactive inclusions in the 
pathologic condition of sporadic and familial FTLD with 

ubiquitin-positive and sporadic amyotrophic lateral sclerosis 
(ALS). FUS is a multifunctional RNA-binding protein whose 
mutations in FUS could cause familial ALS and a rare group 
of diseases with FTLD. ALS and spinal muscular atrophy 
(SMA) are among the group of neurodegenerative disorders 
that essentially influence the spinal cord, in which the most 
severe lesions are observed in the anterior portion of the spi-
nal cord. Non-neuronal deposits are also seen in the posterior 
part of the spinal cord in Friedreich ataxia (FRDA), the most 
frequent hereditary ataxia, which is described by the early 
loss of the large sensory neurons of the spinal cord and car-
diomyopathy [8, 9]. Besides these obvious NDDs, there is 
one group of neurological disorders such as Tourette syn-
drome, essential tremor, torsion dystonia, and schizophrenia 
that are often viewed as neurodegenerative in light of their 
chronic course and obscure etiopathogenesis, but they do not 
show any apparent structural abnormalities. All neurodegen-
erative disorders of cerebellum are related to ataxia and can 
readily be classified into three main types based on the loci 
of pathology: pontocerebellar atrophy, FRDA, and cerebellar 
cortical atrophy. Huntingtons disease (HD), spinocerebellar 
ataxias, FRDA, Kennedy´s disease (SBMA), dentirubral-
pallidoluysian atrophy are a group of genetic diseases caused 
by expansion mutations of trinucleotide repeats. PD, DLB, 
MSA (P and C) fall into the category of the synuclei-
nopathies. GSS, FFI, sporadic fatal insomnia (FSI), Kuru, 
CJD - sporadic, iatrogenic, familial, and new variant as-
signed to the class of the prion diseases. FTLD and Parkin-
sonism dementia, PSP, CBD, PiD, and AGD fit into the 
spectrum of the tauopathies [10]. 

 It is challenging to develop new drugs because drug dis-
covery process is very time and resources consuming proc-
esses. However, the processes of drug discovery have been 
changed with the assistance of powerful computers and in-
formation technology to expedite drug discovery, lead opti-
mization, drug development and design. In biomedical field, 
computer-aided or in silico design which uses computational 
techniques in drug discovery process is being used to stream-
line and accelerate hit identification and hit-to-lead optimiza-
tion process [11]. Methods employed in computer-aided drug 
design (CADD) can be broadly break down into two general 
categories: structure-based and ligand-based. When the tar-
get protein's structure is known, structure-based CADD is 
generally favored especially for soluble proteins that can 
readily be crystallized. However, when there is no informa-
tion on the structure of the target, ligand-based CADD is 
applied based on information of known active and inactive 
compounds through chemical similarity searches or con-
struction of predictive, quantitative structure-activity rela-
tionship (QSAR) models [12, 13]. Several computational 
techniques have been proposed to recognize and select 
therapeutic relevant targets, study the molecular basis of 
drug-receptor complexes interactions, structurally character-
ize ligand binding sites on biological targets, design de novo 
target-specific compound libraries, predict target protein 
structure, identify hit compound by ligand- and structure-
based virtual screening, estimate binding free energy be-
tween a ligand and receptor, and optimize high-affinity 
ligands, all of which can be used to rationalize and improve 
the productivity, speed, and cost-efficiency of the drug dis-
covery process [14]. 



666    Current Neuropharmacology, 2018, Vol. 16, No. 6 Makhouri and Ghasemi 

2. PROTEIN STRUCTURE DETERMINATION 

 In order to use structure-based drug design tools, struc-
tural information about the target can be determined by ex-
perimental techniques including X-ray crystallography and 
nuclear magnetic resonance (NMR) spectroscopy. In the 
situations where an experimental structure of a target is not 
available, computational methods like homology modeling 
can be utilized to anticipate the three-dimensional (3D) 
structures of targets [15]. Homology modeling, also known 
as comparative modeling of protein, is a popular computa-
tional structure prediction method for modeling of 3D struc-
ture of a protein using the known structure of other proteins 
as a template that possess sequences similar to the amino 
acid sequences of a target protein. Since amino acid se-
quence specifies protein unique 3D shape and structure man-
ages biochemical function, structures that share sequence 
identity to the target sequence of interest, can contribute to 
determining the target structure, function and even possible 
binding and functional sites of the structure [16]. In bioin-
formatics, NCBI Basic Local Alignment Search Tool 
(BLAST) is an algorithm that performs comparisons be-
tween pairs of sequences, searching for regions of local simi-
larity. The model building of a target structure is performed 
by comparative modeling algorithms in light of the compari-
son with the information derived from homologous se-
quences with known structures, and then the models built are 
evaluated and refined [17, 18]. In this review, we provided 
an overview of several successful instances of reported ho-
mology modeling studies used to predict target structures 
that are essential in neurodegenerative disorders. 

 Lee and Kim [19] investigated human Catecholamine-O-
methyltransferase (COMT) for designing anti-PD drug by 
using the ligand docking and comparative homology model-
ing. COMT is an S-adenosylmethionine (SAM, AdoMet) 
dependent methyltransferase, which is associated with the 
functions of dopamine and epinephrine in several mental 
processes, including PD. 3D structure of human COMT 
(hCOMT) was built by comparative modeling approach us-
ing MODELLER based on x-ray crystal structure of rat 
COMT (rCOMT) as a template protein for homology model-
ing. Ligand docking study was then performed using Auto-
Dock for complex of hCOMT and fifteen molecules which 
were collected as COMT inhibitors from world patent. 
AutoDock revealed that among the fifteen inhibitors which 
included catechol ring, nine inhibitor binding models were 
energetically favorable (-6.3 to -8.2 kcal.mol-1). From the 
analysis of binding model, authors deduced that Arg201 and 
Cys173 on hCOMT play critical roles in the interaction with 
COMT inhibitors. 

 Homology modeling using Geno3D, SWISS-MODEL, 
and MODELLER 9v7 was applied by Dhanavade et al. [20] 
to constructed a 3D structure of cysteine protease from bac-
terial source Xanthomonas campestris. The model compari-
son between cysteine protease from X. campestris structure 
and human cathepsin B (CB) showed that active site pocket 
forming residues of cysteine protease are almost identical to 
the active site residues of human CB. The predicted cysteine 
protease structure was then utilized for docking of the patch 
of Aβ peptide using AutoDock 4.2. The results revealed that 

the hydrogen atom of sulfhydryl group of active site residue 
Cys17 of cysteine protease enzyme forms hydrogen bonding 
interactions with backbone carboxyl oxygen atoms of Lys16 
and Leu17 of Aβ peptide, hence authors concluded that it 
might play a role in Aβ peptide cleavage as a new therapeu-
tic strategy for the treatment of AD patients. Then, molecular 
dynamics simulations studies were implemented to confirm 
the stable behavior of the complex of cysteine protease and 
patch of Aβ peptide over the entire simulation period. 

 Conforti et al. [21] conducted a structure-based virtual 
screening (SBVS) study to identify huntingtin (HTT) mimet-
ics, a group of small organic molecules that can disrupt the 
complex formation between paired amphipathic helix 1 
(PAH1) hydrophobic cleft of mSIN3 molecules and re-
pressor element 1 silencing transcription factor (REST). The 
structure of REST in complex with mSIN3a-PAH1 domain 
was obtained from the NMR structure of the mSIN3b-PAH1 
complex with the REST fragment by homology modeling 
using MOE software. Starting from the filtration of ZINC 
database (7 million molecules) by redundancy, drug likeness 
and diversity one million compounds were obtained, which 
further subjected to a consensus docking approach including 
two docking software programs, MOE and Autodock4. Fi-
nally, after force field refinement procedure, secondary 
docking with the AutoDock 4 package and redocking using 
both MOE and AutoDock 4, 94 compounds were selected to 
inhibit complex formation with a binding energy less than -
6.5 kcal.mol-1, an arbitrarily chosen threshold. In the primary 
screening, 94 compounds selected by the virtual screening 
(VS) approach were examined in DiaNRSELuc8 cell line 
and quinolone-like compound 91 (C91) at a non-toxic nano-
molar concentration was chosen and assessed in neural stem 
cell lines (NS) carrying the mutant huntingtin gene. At the 
non-toxic concentration of 250 nM, C91 had ability to re-
duce the silencing activity of RE1/NRSE in luciferase re-
porter assays by a RE1/NRSEBDNF-LUC (DiaNRSELuc8) 
construct. C91 was bound to the PAH1 hydrophobic cleft of 
mSIN3 through hydrophobic interactions between the 2-
fluorobenzyl moiety and the Phe36 side chain (Fig. 1). In 
conclusion, authors demonstrated that, combining VS ap-
proaches to in vitro and in vivo experiments can lead to 
compounds inhibiting the PAH1-REST interaction, which 
might be helpful in HD and in other pathological conditions. 

 Among glutamate-gated ion channels (iGluRs), N-
methyl-D-aspartate receptors (NMDARs) are Ca2+ favoring 
glutamate-gated cation channels that their abnormal expres-
sion and deficiency have been associated with chronic neu-
rodegenerative disorders like AD, PD, and HD. The allos-
teric modulation of N-terminal domain (NTD) of subunit 
NR2B of NMDARs by endogenous allosteric modulator like 
endogenous Zn2+ or by synthetic compounds like ifenprodil 
have a pivotal role in pathology by modulating pain process-
ing. Marinelli et al. [22] presented a reliable 3D model of the 
NR2B–ifenprodil complex using homology modeling, which 
provided important clues for the development of NR2B se-
lective antagonists. Docking calculations were used to define 
the ifenprodil binding mode at an atomic level and com-
pletely clarify all the accessible structure–activity relation-
ships. Furthermore, MD simulations along with Molecular 
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Mechanic/ Poisson-Boltzmann Surface Area (MM-PBSA) 
analysis were used to gain insight into the ifenprodil mecha-
nism of action to find whether it binds and stabilizes an open 
or a closed conformation of the NR2B modulatory domain. 
The results revealed that the closed conformation of the R1-
R2 domain instead of the open, forms the high affinity bind-
ing pocket for ifenprodil, so the closed conformation of the 
R1-R2 domain was considered for rational design and/ or for 
VS experiments (Fig. 2). 

3. BINDING POCKET IDENTIFICATION 

 After determining the protein’s 3D structure by experi-
mental or computational approaches, discovering binding 
pockets on that protein is an essential next stage in structure-
based drug discovery which can be determined using a vari-
ety of computational binding pocket identifying algorithms. 
Binding pocket predicting algorithms can be classified into 
two main groups; geometry-based and energy-based methods 
[23]. One of the energy-based binding site identification 
servers is Q-SiteFinder [24]. As a geometry-based algorithm 
fpocket [25] program can be applied. 

 Pinhiero et al. [26] selected a set of 40 inhibitor mole-
cules from the database BindingDB and executed a predic-
tion of ligand binding site of beta-site amyloid precursor 
protein cleaving enzyme 1 (BACE-1) using the Q-SiteFinder 
webserver, which has a method based on purely energetic 
criterion: calculating van der Waals interaction energy of a 
methyl group with the submitted protein. Then, molecular 
docking using AutoDock Vina software and molecular inter-
actions analyses were carried out to propose the binding 
mode of the inhibitors with the enzyme. 32 highly active 
compounds (with the lowest Ki values: 0.017 nM to 2.0 nM) 
were selected for pharmacophore perception calculation us-
ing the web server PharmaGist [17], which detects the phar-
macophoric groups by multiple and flexible alignment of the 
ligands. New proposals based on molecular changes applied 
into the structure of the compound CID_46 888954 (binding 
affinity of -10.7 kcal.mol-1) together with a pharmacophore 
modeling as well as biological activity and synthetic accessi-
bility predictions were made (Fig. 3).  

 Pathak et al. [27] performed cheminformatics and mo-
lecular docking studies using Autodock Tools 4.2 on a series 
of 15 different cholinesterase inhibitors (ChEIs) to compare 
their inhibitory activity against acetylcholinesterase (AChE). 
This approach helped to determine the affinity of the interac-
tion, mode of binding and to understand the selectivity of 
drug molecule for the treatment of AD. Q-SiteFinder was 
employed to evaluate the catalytic binding site of AChE, 
which uses the interaction energy between the protein and a 
simple imaginary van der Waals probe to retrieve energeti-
cally favourable binding sites. Docking results based on this 
kind of comparison revealed that huperzine A with inhibition 
constant of 0.009 µM is the best drug to treat AD patients 
among the 15 drugs available in market (Fig. 4). 
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Fig. (1). 2D structure and predicted binding mode for C91 (highlighted 
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Fig. (2). 2D structure of ifenprodil and its binding modes in the a) open and b) closed conformation of R1-R2 modulatory domain. 
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Fig. (4). 2D structure of Huperzine A. 

 
 Glycogen synthase kinase 3 (GSK-3), a serine/threonine 
protein kinase, is one of the critical signaling molecules that 
regulates a number of prominent intracellular signaling 
pathways, which has a more instigative role in the etiology 
of AD as major signaling link between Aβ and tau pathol-
ogy. Palomo et al. [28] performed a search for the druggable 
active sites on GSK-3 surface susceptible to small-molecule 
modulation using the free geometry-based algorithm fpocket 
and hpocket programs. Authors discovered four new poten-
tial allosteric sites on GSK-3 that could be utilized for future 
rational drug design and development of small molecule 
modulators as future therapies for NDDs where GSK-3 is 
up-regulated. Furthermore, they carried out the docking 
simulation taking into account the whole protein surface to 
find the preferential binding site of the quinoline derivative 
VP0.7 and to explore if it matches with any of fpocket’s re-
sults (Fig. 5). The predicted binding site matched with 

pocket no. 7 reported by hpocket with highly similar binding 
modes. Docking results proposed a change in the activation 
loop of the GSK-3 came about because of allosteric binding 
of VP0.7 (IC50 value on GSK-3 of 3.01 ± 0.14 µM) to the 
enzyme. 

 The second most common chronic progressive neuro-
logical disorder, PD, is caused by death of dopaminergic 
neurons in the substantia nigra and other pigmented brain-
stem nuclei like the locus coeruleus. Dopamine receptor D3 
(DRD3) serves as a therapeutic target for drugs used for the 
treatment of PD and schizophrenia because of less serious 
side effects and significant level of neuro-protection. Ac-
cording to the study performed by Usman Mirza and co-
workers [29], 40 active phytochemicals against PD were 
retrieved from literature search and docked with DRD3 using 
AutoDock and AutoDockVina to find potent lead com-
pounds. The binding residues of DRD3 were explored by 
using Computed Atlas of Surface Topography of Proteins 
(CASTp) server and Pocket Finder. CASTp gives an exten-
sive and itemized quantitative identification and measure-
ments of interior inaccessible cavities and surface accessible 
pockets of proteins, which are prominent concave regions on 
3D structures of proteins and are frequently related with 
binding events. The docking results with phytochemicals 
showed that Thr369, Tyr373, Asp110, and Ile183 are likely 
target sites for designing drugs against PD. It is also con-
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Fig. (3). Proposals of molecular changes to the inhibitor CID_46888954. 
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cluded that glycyrrhetinic acid (binding energy of −12.7 
kcal.mol-1) and E.resveratroloside (binding energy of −11.7 
kcal.mol-1) as potential plant derived compounds can be 
evaluated as a template for future drug development against 
PD (Fig. 6). 

 Dysfunction of Neuronal nicotinic receptors (nAChRs) 
has been implicated in a number of diseases and disorders 
such as mild cognitive impairment (MCI), attention deficit 
hyperactivity disorder (ADHD), AD, PD, schizophrenia, 
nicotine addiction, pain, and cancer. Mahasenan et al. [30] 
carried out a hierarchical structure-based VS protocol to dis-
cover novel chemotypes that can serve as new tem-
plates/scaffolds for the development of subtype selective 
nAChR antagonists. Human α4β2 nAChR extracellular do-
main homology models were built in an iterative fashion 
with MODELLER 9v1 based on PDB IDs: 1UW6, 2BYR, 
2BJ0, and 2QC1. The VS template was prepared by docking 
the agonist epibatidine to 25 receptor conformation as ex-
tracted from a 5 ns molecular dynamics (MD) simulation. 
The putative ligand binding subpockets at the α4/β2 interface 
were screened using the SiteMap module of the Schrödinger. 
They identified compounds with similar scaffolds in the top 
hits; so, ligands with diverse chemotypes were chosen for in 

vitro test to obtain structurally diverse molecules for further 
examination. Eleven predicted active compounds and three 
negative control compounds were chosen for experimental 
assay based on structural diversity, binding pocket location, 
and standard error of the scoring results. Out of the eleven in 
silico hits tested for the activity in a preliminary single con-
centration assay, four compounds showed approximately 
50% inhibition of hα4β2 nAChRs at concentrations of 50 
µM (Fig. 7). 

 Landon et al. [31] employed both the multiple solvent 
crystal structures (MSCS) method, an approach for detection 
of consensus solvent binding regions on protein surfaces, 
and the FTMap algorithm, a fragment-based method for the 
in silico identification of hot spots, in the identification of 
hot spots for DJ-1 and glucocerebrosidase (GCase), potential 
therapeutic targets for the treatment of Parkinson’s and Gau-
cher’s diseases, respectively. The FTMap algorithm con-
sisted of five steps as follows: (1) rigid body docking of 
fragments; (2) minimization and re-scoring; (3) clustering 
and ranking; (4) identification of consensus sites; and (5) 
defining of the binding site. Authors identified non-catalytic 
binding regions that could serve as starting points for the 
discovery of pharmacological chaperones for DJ-1 and 
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Fig. (5). Chemical structure of the quinoline derivative VP0.7 and seven cavities found by hpocket. 
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GCase. Comparison of data resulted from the MSCS ex-
periments to hot spots derived from FTMap showed that 
FTMap is precise and robust alternative to the performance 
of costly and difficult MSCS methods. New hot spots were 
recognized on the surface of DJ-1 in two regions. The first 
region contained a residue whose oxidation may prevent PD 
and the second region was found in the dimer interface, 
where a pharmacological chaperone could be bound to en-
hance the stability of the dimeric structure. Moreover, three 
regions of interest were determined for GCase, with multiple 
hot spots emerging in the catalytic region. 

 The pathophysiology of the FRDA, an inherited neu-
rodegenerative disease, is the consequence of frataxin defi-
ciency in the mitochondria and cells. Rufinia et al. [32] iden-
tified a set of novel and more potent small molecules that 
more efficiently prevent frataxin ubiquitin-dependent degra-
dation. These compounds which called ubiquitin-competing 
molecules (UCM) directly bind to frataxin protein and in-
hibit its ubiquitination. The NMR and x-ray structures of 
human frataxin were employed to identify the location of 
putative binding pockets on the solvent accessible area of the 
frataxin using MetaPocket. This method seeks consensus 
among eight different methods: ConCavity, Fpocket, 
GHECOM, LIGSITE, PASS, POCASA, Q-SiteFinder and 
SURFNET, by concentrating the analysis on the areas near 
to Lys147. VS experiment was conducted by AutoDock and 
AutoDock/Vina on in-house database of commercially avail-
able molecules including the sulfonyl-hydrazone scaffold 
with aromatic substituents utilizing the following principles: 
MW less than 500, logP less than 5, no atoms with undefined 

stereo, and no reactive groups. A total of 5000 molecules 
were recognized and docked on the X-ray structure of fra-
taxin, which approximately 100 compounds were retrieved 
and purchased for biological evaluation using fluorescence 
spectroscopy via the investigation of the changes of the sig-
nal of the protein tryptophan residues in the presence of the 
different molecules. At the end, some of these compounds 
were predicted to bind with frataxin proximal to K147  
(Table 1). 

4. MOLECULAR DOCKING STUDIES 

 Molecular docking is a standout amongst the most fre-
quently utilized strategies in structure-based drug design 
which can be employed to model the interaction between a 
small molecule ligand and a biological target at the atomic 
level. This computational technique enables us to character-
ize the behavior of small molecules in a structurally defined 
site of the targeted proteins as well as to get information 
about essential biochemical mechanisms [33]. Furthermore, 
molecular docking algorithms execute quantitative predic-
tions of the strength of association or binding, providing 
scoring function to rank docked ligands based on the binding 
energy of protein-ligand complexes [34]. The determination 
of the correct binding conformations requires two fundamen-
tal prerequisites: (i) searching of an extensive conforma-
tional space displaying different potential binding modes by 
incrementally modification of torsional (dihedral), transla-
tional and rotational orientations of the ligand relative to the 
protein by employing systematic and stochastic search tech-
niques; and (ii) precise prediction of the binding energy re-
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Fig. (7). The hit molecules identified through structure-based VS. 

Table 1. Chemical structure and activity of the compounds described in the Rufinia et al. study. 

Compound Name Structure Half-saturation Binding Constant, L1/2 (µM) 
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lated with each of the predicted binding poses [35]. Molecu-
lar docking programs play out these undertakings through a 
cyclical procedure, in which the ligand conformation is as-
sessed by specific scoring functions. Ligand-protein docking 
explores conformations and orientations of small molecules 
(ligands) within the binding sites of macromolecular targets, 
and scoring functions are applied to rank different poses by a 
score, a quantity that ideally would correlate with the free 
energy of binding [36]. There are different docking pro-
gramming packages accessible, in view of various search 
algorithms and scoring functions, such as AutoDock [37], 
Dock [38], FlexX [39], Glide [40], Gold [41], Surflex [42], 
ICM [43], Ligand- Fit [44], Drugster [45], and eHiTS [46]. 
An assortment of conformational search procedures have 
been created with a specific end goal to investigate the 
ligand conformational space; these are classified as follow-
ing: (a) systematic search algorithms attempt to search dif-
ferent positions and orientations for the ligand in the binding 
site of receptor, (b) stochastic methods, such as random 
search about rotatable bonds that implement Monte Carlo 
and genetic algorithms to discover new low energy binding 
modes, and (c) Molecular Dynamics simulation techniques 
and energy minimization for probing the free-energy land-
scape of a molecule [47]. Docking programs utilize various 
methods of scoring functions which can be grouped into 
three main categories: (a) force field-based scoring functions 
take into account the sum of bonding interaction terms (bond 
stretching, angle bending, and dihedral variation) and non-
bonding interactions terms (electrostatic and van der Waals 
interactions) between all atoms of the ligand and protein in 
the complex; (b) empirical scoring functions fit a set of dif-
ferent parameterized terms (polar–apolar interactions, loss of 
ligand flexibility, and desolvation effects), describing prop-
erties known to be decisive in molecular interaction, to for-
mulate an equation for predicting experimental binding en-
ergies (such as LUDI, FlexX, F-Score, ChemScore and 
Fresno); and (c) knowledge-based functions are parameter-

ized from statistical information of intermolecular contacts 
in a large set of known protein-ligand complexes (like Mean 
Force (PMF), DrugScore and SMoG (Small Molecule 
Growth)) [34]. In the present review, we give an overview of 
some successful examples of reported docking studies em-
ployed to design potential hits for NDDs which are essential 
from the polypharmacological point of view. 

 The endogenous cyclo-oxygenase (COX) enzyme cata-
lyzes the generation of prostaglandin-H2 from arachidonic 
acid and is expressed in inflammatory reactions. COX has 
two isoforms, constitutive cyclooxygenase-1 (COX-1), 
which is expressed in almost all tissues and has an essential 
fuction in cell signaling and maintaining the homeostasis in 
normal cells, and inducible cyclooxygenase- 2 (COX-2), that 
is expressed and activated only in inflammatory situations. 
COX is competitively inhibited by a set of drugs named non-
steroidal anti-inflammatory drugs (NSAIDs) to overcome 
inflammation and for therapeutic purposes even in neuro 
inflammatory-based diseases like AD. Recently, Dadashpour 
et al. [48] designed and synthesized a series of novel COX-2 
inhibitors for disrupting fibrillar Aβ aggregates. The accu-
mulation of Aβ peptides as amyloid deposits within the brain 
results in mitochondrial impairment, oxidative damage, and 
finally causing neuronal damage. In this study, a series of 
newly designed derivatives based on the structure of a di-
aryltriazine lead was docked into the active site of both 
COX-1 (PDB 3N8Z, 2.90 Å) and COX-2 (PDB 3NT1, 1.73 
Å) using AutoDock 4.2. To assess the reliability of the pre-
dicted enzyme-inhibitor complexes, authors estimated 
ligand-receptor binding free energy by evaluating the key 
intermolecular interactions, which showed higher activity for 
COX-2 rather than COX-1, in which Arg513 had a central 
role in selective COX-2 inhibition. Compound 6c, with 
methoxy group at the para position of phenyl ring of the 
ethyl 5-aryl-6-(4-methylsulfonyl)-1,2,4-triazine-3- thioace-
tate, with IC50 value of 10.1 µM was the most potent and 
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Fig. (8). Chemical structure and binding mode of compound 6c in the COX-2 active site. 
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selective COX-2 inhibitor (Fig. 8), which could remarkably 
destabilize the toxic Aβ plaques (94% inhibition for Aβ1–40 
and 93% for Aβ1–42).  

 The pan neurotrophin receptor (p75NTR) is known for 
mediating neural loss and acts as a target for the treatment of 
neurodegenerative disease. It has been identified that the 
binding of Aβ to the ectodomain of p75NTR receptor in-
duces apoptosis in nerve cells and activation of signalling 
cascade triggered by Aβ and gave the possibility that beta 
amyloid oligomer is a ligand for p75NTR. To study the 
atomic contact point responsible for molecular interactions 
and conformational changes of the p75NTR upon binding to 
Aβ42, Devarajan et al. [49] performed a molecular docking 
and simulation study to explore the binding behaviour of 
Aβ42 monomer with p75NTR ectodomain and represented a 
p75NTR- ectodomain-Aβ42 complex model. Cluspro 2.0 
protein-protein docking algorithm was employed to study the 
molecular interactions and binding. The docking results indi-
cated that, Aβ42 specifically recognizes cysteine rich do-
mains (CRD1 and CRD2) and forms a “cap” like structure at 
the N-terminal of receptor which is stabilized by a network 
of hydrogen bond interactions. Molecular dynamics simula-
tion was used to investigate the conformational stability of 
Aβ42 and p75NTR complex and demonstrated that Aβ42 
shows distinct structural alterations at N- and C-terminal 
regions due to the influence of the receptor binding site. 
These findings provided an opportunity to analyze the intra-
cellular signalling events mediated through various domains 
which lead to apoptosis. 

 To identify novel AChE inhibitors (AChEIs) based on 
their interaction with AChE, Rohit and coworkers [50] con-
structed a structure-based pharmacophore model from di-
verse series of compounds including flavonoids, cardenol-
oids, steroids, terpenes, vitamins, and phenols reported from 
leaves of Cassia tora, latex of Calotropis procera and seeds 
of Brassica campestris based on their interaction with 
AChE. The docking study revealed that calotropagenin 
(cardenolides) present in latex of C. procera, flavonoids and 
glucobrassicin (glucosinolate) showed better alignment at 
active site, by interacting with all major amino acid residues. 
The in silico method used in this study contributed to identi-
fication the lead compounds which further in vitro and in 
vivo researches could prove their therapeutic potential.  

 In AD, reduction in AChE activity, and an increase in 
butyrylcholinesterase (BChE) activity occur. González-

Naranjo and collaborators [51] studied twenty five indazole 
compounds to perfect the dual activity of cannabinoid CB2 
agonists and BChE inhibitors observed in indazole ethers. 
The binding affinity of the molecules was evaluated for can-
nabinoid receptors CB1 and CB2 and the AChE/BChE in-
hibitory activity was tested in vitro, and through flexible 
docking analysis. The best results were selected: compounds 
3 and 24 were the most interesting, showing antioxidant 
properties as well (Table 2).  

 Chen et al. [52] synthesized five tacrine-flurbiprofen 
hybrid compounds as multi-target-directed compounds for 
the treatment of AD, in which the tacrine-like heterocycle 
was connected to racemic flurbiprofen via alkylenediamine 
linkers, and evaluated them in vitro as inhibitors of the 
EeAChE (AChE from Electrophorus electricus) and BChE. 
All of the compounds displayed better or the same BChE 
inhibitory activity when compared to the reference drug 
tacrine and two of the them, (2-(2-fluorobiphenyl-4-yl)-N-[6-
(1,2,3,4-tetrahydroacridin-9-ylamino)hexyl] propanamide 
(3d), and 2-(2-fluorobiphenyl-4-yl)-N-[8-(1,2,3,4- tetrahy-
droacridin-9-ylamino) octyl] propanamide (3e)) were more 
potent than tacrine (IC50 = 19.3 ± 3.4, and 34.5 ± 3.3 nM, 
respectively). Based on the crystal structure of AChE (PDB 
id: 2X8B), the inhibitory behavior of compound 3d was ex-
amined by molecular modeling study using CDOCKER 
module in Discovery Studion 3.0. (DS, Accelrys). The 
analysis of binding mode of 3d by docking simulation exhib-
ited that 3d covered the binding gorge in a good position and 
mode, thus resulted in higher inhibitory affinity (IC50 of 
ACHE=19.3 nM, IC50 of BuCHE=3.7 nM). Tacrine fragment 
of 3d bound via strong parallel π–π stacking against the in-
dole ring of Trp86, to near the bottom of the gorge (CAS), 
and at the mouth of the gorge, the benzene ring of flurbipro-
fen showed hydrophobic interactions with residue Try286, a 
key peripheral anionic site (PAS) residue. The results indi-
cated the novel tacrine–flurbiprofen hybrids as multipotent 
anti-AD drug candidates, which can be used as lead com-
pounds for the development of new potent anti-AD drugs. 

 Based on the multi-target-directed ligand (MTDL) con-
cept, various authors have designed and synthesized com-
pounds to treat AD. Azam and collaborators [53] studied 
twelve compounds from Ginger (Zingiber officinale) against 
Alzheimer drug targets: AChE, BChE, BACE, GSK-3, TNF-
α converting enzyme (TACE), c-Jun N-terminal kinase 
(JNK), nitric oxide synthase (NOS), Human carboxyles-

Table 2. Structures for compounds 3 and 24 and their IC50 values. 

R1

N
N

O R3

R2  

Compound R1 R2 R3 Ki CB1 (µM) Ki CB2 (µM) IC50 hAChE (µM) IC50 hBuChE (µM) 

3 H (CH2)2-N-(iPr)2 4-Methoxyphenyl >40 7.7±2 >10(24±2) 4.8±0.3 

24 NH2 (CH2)2-piperidino 2-Naphthyl >40 2±1 >10(13±4) 1.78±0.001 
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terase, NMDA, COX1, COX2, Phosphodiesterase-5, and the 
angiotensin converting enzyme. The authors used a rigid 
protein and a flexible ligand whose torsion angles were iden-
tified (for ten independent runs per ligand). The calculations, 
reliability, and reproducibility of the molecular docking 
methodology were validated and docking parameters showed 
a correlation coefficient of R2 =0.931. In order to evaluate 
the pharmacokinetic profile of the compounds, molecular 
descriptors were calculated, including miLogP, the number 
of hydrogen bond donors, the number of hydrogen bond ac-
ceptors, the molecular mass of the compounds, the topologi-
cal polar surface area (TPSA), the number of rotatable 
bonds, and violations of Lipinski’s rule of five. Based on the 
docking data, the authors built a “Ginger” model from struc-
tural requirements and interactions with the receptors.  

 Consensus scoring methods which comprised of an inte-
gration of several scoring functions have shown better per-
formance and accuracy compared to one scoring function. In 
this regard, Cozza et al. [54] constructed a homology model 
for CK1d catalytic subunit as a target to combat various dis-
eases such as neurodegenerative disorders, such as AD and 
PD. The generated homology model in this study was further 
used to find two new RSK2 NTD (N-terminal domain of p90 
ribosomal S6 kinase 2) low micromolecular inhibitors from 
the National Cancer Institute (NCI) open repository. They 
have used an integration of four docking protocols (MOE-
Dock, Glide, Gold and FlexX) and five different scoring 
functions (MOE-Score, GlideScore, Gold-Score, ChemScore 
and Xscore) to properly dock and rank all MMsINC (a large-
scale chemoinformatics database) entries with a lead-
likeness profile. A ‘FiTkconsensus scoring function’ was 
utilized to correctly rank the potential hit compounds. It has 
been observed that only few compounds (less than 150) have 
been scored with a full ‘FiTkconsen-sus’ from consensus 
structure-based VS protocol. Two anthraquinone derivatives 
were identified among them after visual inspection, which 
are amongst the most active and selective CK1d inhibitors 
known today (IC50= 0.3 and 0. 6 µM). 

 The diverse cerebral mechanisms involved in neurode-
generative disorders along with the heterogeneous and over-
lapping nature of phenotypes have shown that multitarget 
procedures might be proper for the enhanced treatment of 
complex brain diseases. Discovering dual-target-directed 
drugs that have dual functionality for both MAO-B and 
AA2AR represents a possible approach to prevent the pro-
gression of PD. C8-substituted caffeinyl derivatives are dual-
target-directed drugs that inhibit MAO-B and AA2AR for the 
therapy of PD. Azam and coworkers [55] employed molecu-
lar docking technique to understand the dual mechanism of 
MAO-B inhibition as well as AA2AR antagonism at the mo-
lecular level by AA2AR antagonists with MAO-B inhibitory 
activities which were retrieved from the literature and sub-
jected to in silico investigations. Molecular docking ap-
proach was established a good correlation (R2= 0.524 and 
0.627 for MAO-B and AA2AR, respectively) between dock-
ing predicted and actual Ki values, which confirmed the reli-
ability of molecular docking to understand the mechanism of 
dual interaction of caffeinyl analogs with MAO-B and 
AA2AR. Parameters for Lipinski's “Rule-of-Five” were also 
computed to predict the pharmacokinetic properties of caf-

feinyl derivatives. The docking studies reflected that (E)-
styryl and 4-phenylbutadien-1-yl groups at C-8 position of 
the caffeinyl moiety utilize both cavities as potential binding 
targets making them potent MAO-B inhibitors (Ki= 31 µM- 
1712 nM). These computational studies provided some ad-
vantageous hints in structural modification of C-8 substituted 
caffeinyl analogs for exploring new inhibitors as dual-target-
directed drugs with favorable pharmacokinetic properties 
and also provided precious insight for comprehending the 
dual mechanism of MAO-B inhibition as well as AA2AR 
antagonism for the treatment of PD. 

 Signaling function of anandamide, a main actor of the 
endocannabinoid system, is terminated by fatty acid amide 
hydrolase (FAAH) via its hydrolysis in both the CNS and in 
peripheral tissues. So, inhibition of FAAH presents an inter-
esting strategy to induce the cannabinoid receptor type 1 
(CB1) stimulation and a valid pharmacological approach for 
the treatment of neurodegenerative and neuroinflammatory 
disorders like PD, AD, HD, and multiple sclerosis (MS). Poli 
et al. [56] employed VS study utilizing a mixed FLAP (fin-
gerprints for ligands and proteins) consensus docking 
method to identify new noncovalent FAAH inhibitors. The 
main weakness point of the consensus docking approach was 
the needed computing time for subjecting a whole data set of 
molecules to all the docking procedures. Because of this, the 
application of a prefilter step capable to reduce the number 
of compounds to be analyzed was necessary, so in this study 
authors employed a FLAP prefilter for selecting potential 
noncovalent FAAH inhibitors. For FLAP analysis a database 
constituted by FAAH noncovalent inhibitors and decoys was 
generated and six different groups of compounds were ob-
tained as the potent noncovalent FAAH inhibitors. A repre-
sentative compound of each cluster was selected and inserted 
in the enriched database as active molecule. To evaluate the 
effectiveness of the FLAP software in discriminating FAAH 
inhibitors from decoys, the enriched database with six active 
molecules and 43629 decoys was employed. FLAP receptor–
based approach was applied to prefilter a commercial data-
base of approximately 1 million of compounds and selected 
set of molecules were introduced to the consensus docking 
analysis. This step was further followed by a total of 2ns MD 
simulation study to verify the stability of the docking pose 
for the best ranked compounds. Finally, ten most potent 
molecules were examined for their inhibitory activity against 
FAAH which two of them displayed low micromolar IC50 
values (Fig. 9). 

 γ-Aminobutyrate aminotransferase (GABA-AT), a pyri-
doxal phosphate dependent homodimeric enzyme of 50 kD 
subunits, is a target for neuroactive drugs containing drugs 
for Huntington’s disease (HD) because its inhibition alters 
the balance between its substrate 4-aminobutanoic acid 
(GABA) and the product L-glutamate. GABA-AT degrades 
the inhibitory GABA which is responsible for the regulation 
of muscle tone. Pareek et al. [57] conducted de novo drug 
designing approach and docking analysis to identify the po-
tent inhibitors of GABA-AT which could be a promising 
drug to cure HD. Acetic acid and its derivatives were chosen 
as parent molecules and rigid docking simulation based on 
the potential distributions of the Tyr97 was performed be-
tween parent compounds and GABA-AT protein. The pre-
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diction of active inhibitory site for compounds were per-
formed with the help of Ligsite. Seed molecules were ma-
tured in the identified inhibitory site after setting up the posi-
tion of Tyr97 amino acid. The results revealed that the ligand 
5 ((2 S)-3-[(3aR, 4S, 6R, 7aS)-6-methyloctahydro-1H-inden-
4-yl]-2-(propanoylamino)propanoic acid) was the best suited 
to be a drug for HD base on Lipinski’s rule of five and 
ADME profiling. The ligand molecule 5 exhibited close in-
teractions with the residues present in its binding site, includ-
ing His72, Tyr97 and Ile100 and formed strong hydrogen 
bond with His72 and Tyr97 (Fig. 10). 

 G protein-coupled receptor 17 (GPR17), a orphan recep-
tor responding to both uracil nucleotides and cysteinyl-
leukotrienes, has been suggested as a new therapeutic target 
for human neurodegenerative disorders. Eberini et al. [58] 
carried out comparative modelling to build 3D structure of 
GPCR by using four crystallized GPCRs as template and 
identified its binding site through the MOE Site. The in 
silico screening of 130,000 lead-like and non-targeted struc-
tural library was performed with the Dock program to iden-
tify putative GPR17-targeting ligands with diverse chemical 
scaffolds. The five top scoring compounds was kept and 
submitted to in vitro molecular pharmacology experiments, 

which suggested that thirty one amino acids were associated 
with the interaction between GPR17 and selected com-
pounds as previously identified by the MOE Site Finder 
modul. Finally, to assess the functional activity of the 5 can-
didate molecules on GPR17, the selected compunds were 
examined in a well established cell-based GPCR assay (pKi= 
10.5 – 16.6). 

 Familial ALS (FALS) appeares to result from a gain of 
toxic function or loss-of-nuclear function due to mutations in 
superoxide dismutase-1 (SOD1) which facilitate protein ag-
gregation. In silico restricted docking calculations of a set of 
drug-like molecules that bind the SOD-1 dimer interface as 
pharmacological chaperones and disrupt accumulation of the 
mutant form of the protein were performed by Nowak et al. 
[59] to understand structural information and improve the 
binding specificity to identify new sites for modification on 
the parent molecules. The hydrophobic interior of the SOD 
monomer is comprised of Val148 and Val7 residues with a 
small number of charged or polar residues such as Lys9 and 
Asn53. The docked structures of aggregation inhibitors at the 
dimer interface binding pocket revealed that the 
azauracil/uracil imino groups form electrostatic and hydro-
gen bonds interactions with the backbone carbonyl of Val7 
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Fig. (9). Structures of the compounds VS4 and VS7 with IC50 values of 34.6±2.0 µM and 62.3±5.3 µM, respectively. 
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Fig. (10). 3D representation of interaction between residues docking complex between GABA-AT and Ligand 5. 
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and side chain carbonyl of Arg53. According to this, they 
peformed docking simulations and VS on a library of about 
2.2 million compounds with four hydrogen bonding con-
straints, which at last 20 new compounds were obtained. 
These novel compounds were analyzed for their ability to 
inhibit SOD1 A4V aggregation and bind to SOD1, which 
eventually six of these compounds indicated effective inhibi-
tory activity (ΔG= 8.56 – 11.77 kcal.mol-1) and could be 
great starting points for drug development for ALS. 

 The FUS protein interacts with karyopherine β2 (Kapβ2) 
via its proline/tyrosine nuclear localization signal (PY-NLS) 
that allows for FUS protein nuclear localization. ALS with or 
without frontotemporal dementia arises from mutation in 
arginine residue in 521 position (R521) of PY-NLS of FUS 
protein and leads to incytoplasmic delocalization of mutant 
FUS. Swetha and coworkers [60] conducted protein-protein 
docking using HADDOCK and MD studies to examine the 
interaction behaviour of the mutants FUS (R521C) and FUS 
(R521H) with Kapβ2. In wild-type FUS structure, the contri-
bution from cationic residues, lysine and arginine was more 
in binding with Kapβ2 and five H-bonds were observed be-
tween R521 and Kapβ2. The docking results indicated that 
the mutants had slightly low binding activity with Kapβ2 in 
comparison with wild FUS–Kapβ2 as proved by the lesser 
number of interactions found between the mutant FUS and 
Kapβ2. Subsequently, the wild and mutant complexes of 
FUS–Kapβ2 were subjected to MD simulation to evaluate 
the effects of mutation on the molecular and structural prop-
erties and binding with Kapβ2. They observed that wild 
FUS–Kapβ2 structure was the most stable structure among 
the investigated structures. Principle component analysis on 

the MD trajectories indicated that the concerted motions 
were increased in the mutant FUS (R521C)–Kapβ2 and mu-
tant FUS (R521H)–Kapβ2 structures; therefore, the muta-
tions in FUS reduced the stability of the protein relative to 
the wild FUS–Kapβ2 complex. These results provided better 
understanding of binding behavior of mutants FUS with 
Kapβ2 and could be a new channel for further experimental 
inspections on adult-onset motor neuron disease. 

 Rezaei Makhuri et al. [61] performed 3D-QSAR and 
molecular docking studies on a series of 47 CK1d inhibitors 
to identify the most important structural features required for 
designing of next generation compounds with increased bio-
activity. Molecular docking simulation using GOLD proto-
col identified two different binding orientations: orientation 
1, in which the benzothiazole ring of the inhibitors was lo-
cated close to the hydrophobic center formed by Ile23 and 
Ile37, Ala36, Lys38, Met80, Met82 and Val81, and orienta-
tion 2, in which the benzene ring of the compounds was di-
rected toward the hydrophobic area (Fig. 11). Finally, a two-
stage VS approach was performed to find similar analogs 
using pharmacophore-based screening as ligand-based VS 
followed by structure-based VS using molecular docking. 

 The potent C5-substituted quinazolines which enhance 
survival motor neuron 2 (SMN2) gene expression were used 
to investigate other molecular targets for transcriptional acti-
vation of the SMN2 promoter. Therefore, by screening ap-
proximately 5,000 proteins on the protein microarray with a 
radiolabeled C5-substituted quinazoline tracer, scavenger 
decapping enzyme (DcpS) was identified as a molecular tar-
get [62]. DcpS is a nucleocytoplasmic shuttling protein that 
regulates RNA metabolism and hydrolyzes potentially toxic 
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Fig. (11). The docking results of the a) compound 16 with orientation 2 and b) compound 24 with orientation 1. 
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aggregation of capped mRNA structures. Singh and cowork-
ers [62] performed molecular docking studies and cocrystal 
structure identification to determine the binding mode of the 
C5-substituted quinazolines to human DcpS as a potential 
therapeutic targe for the treatment of SMA. The molecular 
docking study of the potent C5-substituted quinazoline 
(D156844, Fig. 12) in the closed active site conformation of 
DcpS indicated that the 2,4-diaminoquinazoline moiety of 
the C5-substituted quinazolines nicely occupied the m7G 
binding pocket with excellent shape, hydrophilic, and hydro-
phobic complementarity. In the docked pose, the quinazoline 
ring displayed a potential for π-π stacking interaction with 
Trp175 and hydrophobic interaction with Leu206 side chain. 
This study represented DcpS as a new therapeutic target for 
modulating gene expression by a small molecule. 

 SMA is one of the most frequent autosomal recessive 
motor neuron disorders which is induced by deletions or 
mutations of the SMN1 gene but all patients retain a centro-
meric SMN gene, SMN2. The current main therapeutic strat-
egy for SMA is the stimulation of expression of SMN2 gene 
by histone deacetylase (HDAC) inhibitors. Dayangaç-Erden 
and coworkers [63] carried out molecular docking simula-
tions to predict the free energy and binding mode of E-
resveratrol and known inhibitors trichostatin A (TSA), 
suberoylanilide hydroxamic acid (SAHA) and valproic acid 
against HDAC8 (Fig. 13). It was shown that E-resveratrol, 
which belongs to family of polyphenolic compounds, had 

more negative free energy of binding (-9.09 kcal.mol-1, with 
IC50 value of 0.219 µM) than known inhibitors. The binding 
mode of E-resveratrol in the HDAC8 binding cavity exhib-
ited that the phenolic ring group of the ligand was fitted into 
the zinc binding cage encompassed by Asp178, Trp141, 
Gln263. E-resveratrol fitted the active site cavity by making 
diverse interactions between Gln263 and one of the hydroxyl 
group of the E-resveratrol (2.93 Å), Tyr306 side-chain hy-
droxyl group and one of the trans double bond carbon of the 
E-resveratrol (2.73 Å) and Phe208 and the phenolic group of 
the E-resveratrol (3.20 Å). These findings revealed that E-
resveratrol has the highest binding capacity toward HDAC8 
enzyme than known HDAC inhibitors and modifications of 
E-resveratrol could increase the possibility of discovering 
more active candidates to cure SMA.  

 Prion diseases, also named transmissible spongiform en-
cephalopathies are fatal neurodegenerative conditions that 
are described by the formation and aggregation of an abnor-
mal or scrapie form of the host-encoded prion protein (PrPSc) 
in the affected brains. In order to overcome the shortcomings 
of both NMR and X-ray crystallography techniques in the 
study of native PrP, Pagadala et al. [64] performed a robust 
in silico docking study using structural X- ray solvent to bet-
ter comprehend the potential role of water in thiamine–PrP 
binding. They implemented structural solvent docking to 
identify the correct binding site and analyze water’s in-
volvement in the binding and stabilization of thiamine (and 
its derivatives) to Syrian hamsterprion (ShPrP). Based on 
these studies, V conformation state was observed for thia-
mine (and its derivatives) upon the initial docking phase with 
the PrP, where the C4–NH2 of the pyrimidine ring contacted 
with the C2–H of the thiazolium, while the subsequent 
minimization with NMR-derived restraints allowed ligands 
to adopt an F conformation with the C2 carbon atom point-
ing over the pyrimidine ring (Fig. 14). In F conformation, the 
presence of 4-aminopyrimidine ring of thiamine allowed it to 
participate in π-stack interaction with Tyr150 and form hy-
drogen bonding between between the N4′ atom of thiamine 
and Asp147 residue. Furthermore, the terminal phosphate 
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Fig. (12). 2D structure of D156844. 
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Fig. (13). Chemical structures of a) (E)-resveratrol with ΔG= -9.09 kcal.mol-1, b) TSA with ΔG= -8.59 kcal.mol-1, c) SAHA with ΔG= -7.48 
kcal.mol-1 and d) valproic acid with ΔG = -4.41 kcal.mol-1. 
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groups of thiamines interacted mainly through water-
mediated hydrogen bonding with solvent molecules near the 
binding pocket. 

 Daisuke Ishibashi and coworkers [65] performed original 
docking simulations, termed Nagasaki University Docking 
Engine (NUDE), for PrPC conformation and small com-
pounds in an original chemical compound library included 
approximately 210,000 compounds to identify several com-
pounds with anti-prion effects. According this, they selected 
96 compounds as candidates for anti-prion agents by analys-
ing docking scores and similarities of chemical structures. 
The docking results revealed that the aromatic rings of these 
compounds were in contact with the amino acid residues, 
which were capable of generating a large attractive interac-
tion with PrPC. Following virtual screening, the ability of 
candidate compounds, termed NPRs, to bind to PrPC using 
surface plasmon resonance (SPR) analysis, the thermal shift 
assay (TSA) were tested. Results from the in vitro and ex 
vivo drug screening showed that NPR-053 (IC50= 7.68 ± 2.64 
µM) and NPR-056 (IC50= 3.72 ± 1.57 µM) significantly re-
duced PrPSc levels (Fig. 15). Molecular simulation and 
analysis of atomic level interactions between NPRs and PrPC 

indicated that the binding sites of NPR-053 and NPR-056 
were located around the four amino acid residues — Asn159, 
Gln160, Lys194 and Glu196 — which was considered to be 
a “hot spot” for the pathogenic conversion of prion diseases. 
Binding conformations obtained from the docking simulation 
were analysed using the fragment molecular orbital (FMO) 
method to identify novel anti-prion drugs. FMO calculations 
clearly revealed that the detailed interaction mechanisms of 
NPR-053 and NPR-056 were different than GN8, as the 
positive anti-prion control drug. In the case of GN8, polar 
interactions, including hydrogen-bonding interactions with 
N159, Q160, K194 and E196 were critical while HF level 
calculations revealed that polar interactions were not impor-
tant for the binding of NPR-053 and NPR-056. Instead, MP2 
energies of several residues were negatively large, indicated 
that van der Waals interactions play an important role in 
complex stability.  

 To incorporate receptor flexibility in docking method-
ologies, as it gives a more realistic depiction of the modeled 
system, Ensemble Docking (ED) can be used. ED includes 
docking a small chemical library against multiple rigid re-
ceptor conformations, in spite of the standard single rigid 

  
Fig. (14). Interaction maps for the V (a) and F (b) conformations. 
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Fig. (15). Chemical structures of NPR-053 and NPR-056. 
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receptor docking methods. The ensembles for the execution 
of ED can be retrieved through NMR spectroscopy, X-ray 
crystallography or an integration of both and through compu-
tational approaches (MD simulations, homology modeling). 
According this, Tarcsay et al. [66] carried out explicit sol-
vent membrane dynamics simulations of four protein ligand 
complexes from the X-ray structures and homology models 
of the GPCR family (CXCR4, D3, H4 and 5HT6) to create 
discrete protein conformations representing the intrinsic 
flexibility of the binding site. They investigated the capabil-
ity of utilizing multiple receptor conformations for structure 
based drug design purposes. So, receptor conformations re-
trieved form molecular dynamics trajectories were used for 
docking. According to the results, retrieved frames from the 
MD trajectory outperformed X-ray structures and homology 
models in terms of enrichment factor. These conformations 
were beneficial for the determination of a “consensus” bind-
ing site with enhanced applicability in VS. 

 Synaptic vesicle protein 2A (SV2A) is an integral mem-
brane protein necessary for the proper function of the CNS 
and is the molecular target of the anti-epileptic drug 
levetiracetam and its racetam analogs. Correa-Basurto et al. 
[67] performed an in silico study to explore the racetam 
binding site in SV2A and the ligand-receptor interactions 
between racetams and SV2A. A 3D model was built and 
refined by performing a MD simulation. Moreover, the inter-
actions of SV2A with the racetams were determined by 
docking studies. Docking studies employing different SV2A 
snapshots suggested a consensus binding site for racetam 
ligands within SV2A constituted by five residues: Thr456, 
Ser665, Trp666, Asp670 and Leu689. Additionally, knowing 
the racetam binding site within SV2A could facilitate the 
synthesis of suitable radio-ligands to study treatment re-
sponse and possibly epilepsy progression. 

 Deb et al. [68] constructed new receptor-specific predic-
tion models using the stepwise-multiple linear regression 
(SW-MLR) based on consensus of various docking and their 
scoring functions (GOLD, Ligand Fit and GLIDE). A dataset 
of 91 compounds composed of 9 diverse groups of AChEIs, 
like tacrine-8-hydroxyquinoline hybrids, tacripyrines, done-
pezil-tacrine hybrids derivatives, tetrahydroacridine, benzo-
furan-based hybrids, rivastigmine analogs, tacrine-melatonin 
hybrids, carbamates of tetrahydro-furobenzofuran and 
methanobenzodioxepine, and diamine diamides, with an ac-
tivity range of 0.008 - 281,000 nM were considered for re-
ceptor-specific 3D-QSAR models development. To construct 
the consensus models and perform the QSAR studies, 11 
scoring functions and 24 docking descriptors were investi-
gated. Based on statistical results, the model developed using 
consensus of docking scores of scoring functions, namely, 
Glide score, Gold score, Chem score, ASP score, PMF score, 
and DOCK score performed well in terms of accuracy. 
Summary of the other docking studies used in NDDs drug 
discovery was reported in Table 3. 

5. VIRTUAL SCREENING 

 VS is commonly employed to predict the binding of large 
libraries of drug-like compounds that are commercially 
available, to a particular target with the aim of identifying 
the most promising compounds from the database for further 

study. There are two VS methodology widely employed in 
CADD which are categorized as Ligand-Based Virtual 
Screening (LBVS) and SBVS. LBVS techniques utilize just 
ligand data for anticipating activity based on its similarity or 
dissimilarity to previous known active ligands. LBVS de-
pends on the exploration of molecular descriptors collected 
from a set of known active compounds to describe the simi-
larity between molecules. These 2D or 3D-similarity search 
are employed to choose compounds for experimental as-
sessment and decrease the chemical space to be investigated 
in further screening steps [77, 78]. Another LBVS method is 
the use of structural features gathered from 3D structures of 
a set of known ligands to develop pharmacophore models 
which is normally utilized when some active compounds 
have been recognised however the 3D structure of the target 
protein is obscure. These ligand-based 3D pharmacophore 
models are the 3D-arrangement of main chemical function-
alities that are identified by a receptor and are thus responsi-
ble for ligand-receptor interaction [78]. Producing a 3D 
pharmacophore model includs the following typical steps: (i) 
exploring the conformational space of a series of compounds 
with known activity; (ii) identifying reciprocal features; (iii) 
aligning the molecules according to the calculated features; 
and (iv) creating the pharmacophore model. On the contrary, 
the SBVS method utilizes different modeling approaches, 
often using a docking screening, to simulate the binding in-
teraction of ligands to a biomolecular target. As a whole, 
SBVS involves the following steps: (i) receptor preparation; 
(ii) compound database selection; (iii) molecular docking of 
a small-database of known actives; and (iv) post-docking 
analysis. Rather than the individual utilization of ligand- or 
structure-based strategies, integrated techniques have also 
been suggested. It has been hypothesized that utilizing both 
ligand- and structure-based techniques against the same bio-
logical target can improve the strengths and diminish the 
disadvantages of every individual technique, in this manner 
bringing about more effective CADD. The integration of 
structure- and ligand-based techniques either in a consecu-
tive, parallel or hybrid manner considers all available chemi-
cal and biological data. In the sequential method, ligand- and 
structure-based strategies are employed in the VS experiment 
to gradually screen the large databases until the number of 
retrieved hits is small enough for extensive biological 
evaluation. In the parallel approach, top-ranked hits retrieved 
with each strategy are chosen for biological testing. Hybrid 
methods include the combination of structural and ligand 
information into an independent strategy [79]. A few effec-
tive instances of reported VS studies used to recognize po-
tential hits for NDDs have been reported in this section. 

 GSK-3 is a regulatory serine/threonine kinase which has 
been implicated in the pathogenesis of several diseases such 
as type-2 diabetics, AD, cancer, and chronic inflammation. 
With the aim of elucidating new biologically-active mole-
cules with potent GSK-3β inhibitory profiles, Kim and co-
workers [80] applied ligand-based sequential virtual screen-
ing, in which the first step of VS was the Catalyst/HipHop 
pharmacophore based VS and was followed by filtration by 
recursive partitioning model, docking pose and synthetic 
accessibility. HipHop hypothesis finds essential 3D common 
chemical feature present among a set of compounds for  
interacting with a specific biological target to generate a 
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Table 3. Docking studies employed to identify potential inhibitors for neurodegenerative diseases. 

Author (Year 
of Publica-

tion) 

Neurodegenerative 
Diseases 

Method Chemical Scaffold 
Under Study 

Target Significance of Study 

Azam et al. 
(2011) [69] 

PD, antiparkin-
sonism 

Docking studies by 
using AutoDock 

a set of 30 1-
(substituted 
phenyl)-3-

(naphtha[1,2-
d]thiazol-2-yl) 
urea/thiourea 

Adenosine A2A 
receptors 
(AA2AR) 

The docking results signified that, molecules 
with methoxy group in the phenyl ring in-

creased antiparkinsonian activity through H-
bond interaction with Phe-168, Glu-169 and 
His-278 residues and hydrophilic and lipo-

philic interactions with AA2AR. 

Sivaraman et 
al. (2016) [70] 

AD 
In silico docking 
screening using 
docking server 

herbal leads such as 
arecoline, apigenin, 
chlorogenic acid, 

curcumin, 
kaempferol, luteo-
lin, quercetin along 
with standard drug 
rasagiline and se-

legiline 

MAO-B 

Results revealed that all the seven compounds 
bound to the active site of enzyme with lower 

docking (D energy) when compared with 
standard drug rasagiline and selegiline. Com-
pound luteolin exhibited quite tight binding 

against MAO-B enzyme with binding energy 
of -7.12 kcal.mol-1 and ranked first in the 

compound series. 

Jayaraj et al. 
(2014) [71] 

PD 

Molecular docking 
simulations using 

FlexX docking 
approach 

5 different com-
pounds namely (a) 
stimovul, (b) 7,8-

dihydroxycoumarin, 
(c) etorphine, (d) 

propoxyphene and 
(e) pentazocine 

α-synuclein  
(α-syn) 

Results indicated that stimovul had the higher 
binding capacity against the active site of α-

syn with a docking score of -4.5122 and 
formed hydrogen bonds with Ser87 and Val95 

amino acids of the active site. 

Sehga et al. 
(2016) [72] 

Depression, neu-
rodegenerative 

disorder, and Char-
cot–Marie–Tooth 

(CMT) 

Homology model-
ing molecular dock-

ing studies using 
AutoDock and 

AutoDock Vina, 
and pharma-

cophore-based 
virtual screening 

fluoxetine, paroxet-
ine, fluvoxamine, 

and ethacrynic acid 

Heat Shock 
Protein Family 

B (HSPB8) 

Docking analysis elucidated that Met37, 
Ser57, Ser58, Trp60, Thr63, Thr114, Lys115, 
Asp116, Gly117, Val152, Val154, Leu186, 
Asp189, Ser190, Gln191, and Glu192 are 

critical residues for ligand–receptor interac-
tions. 

Ray et al. 
(2005) [73] 

FALS 
Docking using glide 

v2.5 and in vitro 
screening 

a library of about 
1.5 million drug-
like compounds 

from commercial 
data-bases 

SOD1 

Docking study revealed that the aromatic 
group occupied the space between the two 

Val148 residues has favorable effect on stabi-
lizing the dimer of A4V against aggregation. 

Nagappan et 
al. (2015) [74] 

PD Docking studies 
using AutoDock 4.2 

hesperidin, biofla-
vonoid, and dopa-

mine precursor 
levodopa (L-Dopa) 

α- syn, MAO-
B, COMT and 

UCHL-1 

The in silico results clearly demonstrated that 
the flavonoid hesperidin has similar binding 
sites and interactions with α- syn, MAO-B, 
COMT, UCHL-1 as that of the L-Dopa the 

standard drug. 

Markandeyan 
et al. (2015) 

[75] 

autoimmune dis-
eases, heart failure, 

AD, and PD 

Molegro virtual 
docker software 

22 phytochemicals 
extracted from 

Morinda citrifolia 
fruit including 

isoprincepin and 
balanophonin 

 p38α MAPK 

The comparison between the docking scores 
of phytochemicals with the scores of native 

reference ligands, MW181 and GG5, indicated 
that isoprincepin and balanophonin (phyto-
chemicals) display better docking scores. 

Klein-Júnior et 
al. (2014) [76] 

AD Dock software 

synthetic indole 
derivatives and 
indole alkaloids 
from the genus 

Psychotria (italic) 
L. Genus 

AChE, butyryl-
cholinesterase 

(BChE), MAO-
A and MAO-B 

The findings indicated that the indolyl-
hydantoin and 

indolylmethyl-thiohydantoin rings might con-
sists of good scaffolds for the development of 
new MAO-A inhibitors possessing neuropro-

tective properties. 
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qualitative model without the use of activity data. For this 
study, all known inhibitor antagonists were collected and 
Hip-Hop pharmacophore model was developed from small 
sets of known inhibitors with considering the activity, struc-
tural rigidity, and diversity. The best model comprised of 
five pharmacophore features namely, three hydrogen bond 
acceptors, one hydrogen bond donor, and one hydrophobic 
feature. Then, the recursive partitioning (RP) model was 
built using the two-dimensional (2D) topological descriptors 
implying molecular shape information by comparing the 
known inhibitors against a set of decoys. In the next step, to 
identify potential new GSK-3β inhibitors, the authors applied 
VS with the models and an external library: ChemDiv library 
(600,970 compounds). The drug-likeness and ADME filter-
ing were performed to reduce the time-consuming conforma-
tion generation step of pharmacophore-based virtual screen-
ing. Fifty six hit compounds were finally selected on the 
basis of predicted docking mode, structural diversity, and 
synthetic accessibility. The ultimate hit compounds were 
proposed for biological testing out of which a total of three 
compounds exhibited micromolar inhibitory activity. The 
best hit compound 7 (IC50=1.56 µM) fulfilled the best phar-
macophore, by matching perfectly three hydrogen bond ac-
ceptors and one donor. The docking pose (Fig. 16) and con-
formation of the compound showed good alignment with the 
results from the ligand-based approach. 

 Natarajan and co-workers [81] applied pharmacophore-
based VS in combination with molecular docking and MD 
simulations to identify novel scaffolds which may bind to 
GSK-3β and thus play a role in the treatment of AD. The 
energy-based pharmacophore models were validated using 
enrichment analysis, and the four common e-pharmacophore 
models thus developed which had four features such as hy-
drogen bond acceptors (A), hydrogen bond donors (D), aro-
matic ring (R) and hydrophobic group (H). The four com-
mon e-pharmacophore models were employed for high-
throughput VS against nine established small molecule data-

bases using Phase v3 which had resulted in 1800 com-
pounds. Rigid receptor docking (RRD) was carried out for 
1800 molecules and the obtained leads were compared to 20 
co-crystal ligands resulting in 18 leads among them, lead1 
(2-amino-4(1-(carboxymethylcarbamoyl)-2-(9-hydroxy-7,8-
dioxo-7,8,9,10-tetrahydro-benzo (cherysen-10-yl-sulfonyl)-
ethyl carbamoyl-butyric acid)) had the lowest docking score, 
highest binding affinity (ΔG value of -91.398 kcal.mol-1) and 
better binding orientation toward GSK-3β. Further ligands 
obtained from RRD approach were taken for quantum polar-
ized ligand docking (QPLD), where quantum mechanical 
(QM) and molecular mechanical calculations were calcu-
lated. Then, the flexibility of GSK-3β binding site consid-
ered for induced fit docking (IFD) protocol in Schrödinger 
was employed to the best docking complex obtained from 
QPLD. According to the docking results, Lead1 formed 
seven hydrogen bonds with ATP binding site residues such 
as Asn64, Ser66, Phe67 and Lys85 as well as with allosteric 
residues like Arg141, Asp181 and Asp200 of GSK-3β (Fig. 
17). The 50 ns MD simulations run was used to assess the 
stability of GSK-3β-lead1 docking complex. The results 
from RRD, QPLD, IFD and MD simulations showed similar 
bonding pattern with better binding affinity in a stable orien-
tation. The findings emphasized that the lead1 would have 
potential for treatment of GSK-3β -mediated AD. 

 Reports from the literature provided evidences that tar-
geting Aβ clearance by stimulating P-glycoprotein (Pgp) 
could be a useful strategy to prevent Alzheimer’s advance-
ment. Shinde et al. [82] applied pharmacophore based virtual 
screening, molecular docking and MD studies to identify 
natural product based Pgp activators which can act as leads 
for developing drugs against AD. 37 molecules belonging to 
oleocanthal, benzopyrane, imidazobenzothiazole and tetra-
hydroisoquinoline class which were reported in the literature 
for their Pgp activating or inducing property were used to 
generate the common pharmacophore using Phase (Phase, 
version 4.3). The best pharmacophore was subjected as a 3D 
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Fig. (16). Chemical structure of compound 7 and docking pose. 
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query for VS of around 103 bioactives which were mainly 
the phytoconstituents from 500 Indian Medicinal plants and 
are traditionally known for their ethanopharmacological bio-
logical activities. One hydrogen bond acceptor (A), one lipo-
philic/hydrophobic group (H) and two aromatic rings (R) 
were found as pharmacophoric features. Moreover, the Inter-
bioscreen (IBS) library of natural products comprising of 
approximately 51,644 natural compounds was also used for 
VS using the generated best pharmacophore that resulted 
into 1,312 ligands based on the fitness score. Then, the dock-
ing study was carried out using Glide to find out which of 
the virtually screened hits interact with the protein (PDB ID: 
3G60). The top 20 hits showed docking scores which were 
comparable to that of the reference ligand i.e. rifampicin. 
Amongst the hits obtained, the ligand BA_3691 showed 
strong interactions with all the sites, while STOCK1N-61426 
and STOCK1N-59071 showed strong interactions with Msite 
only. The hits were further subjected to molecular dynamics 
simulation studies to understand the binding mechanism. The 
MD simulation results revealed that the ligands BA_3691, 
STOCK1N-61426 and STOCK1N-59071 are the most prom-
ising leads which can be evaluated further experimentally. 
The ligand BA_3691 showed three prominent H-bond inter-
actions with residues Gln191, Glu871 and Ser948 and weak 

hydrophobic interactions with Met945. STOCK1N_59071 
revealed H-bond interaction with Gln191 and Gln343 and 
strong hydrophobic interactions with Phe339. The ligand 
STOCK1N-61426 exhibited H-bond interaction with 
Gln191, strong hydrophobic interactions with Tyr303, 
Phe339 and weak hydrophobic interactions with Phe299 and 
Phe979 (Fig. 18). The scaffolds of the obtained leads can be 
further utilized to design around new synthetic derivatives 
which can effectively bind to Pgp and hence prevent the ac-
cumulation of the amyloid. 

 BACE1 is the aspartic protease that initiates the genera-
tion of the neurotoxic Aβ peptide and is widely considered as 
a drug therapy target for AD. The active site of BACE1 con-
tains two conserved aspartate residues that form the catalytic 
dyad. An N-terminal 11 residue long fragment antiparallel 
hairpin-loop known as flap is sheiding the catalytic Asp dyad 
at the active site. To identify the potent BACE1 inhibitors 
interacting with both Asp dyad and flap residues, Kumar and 
coworkers [83] applied SBVS of natural molecules from IBS 
database, followed by using a series of in silico methods 
such as 3D QSAR pharmacophore modeling using known 29 
pyridinium inhibitors, ADME profiling, and MD simulation. 
Firstly, molecular docking was utilized for the docking of 

 
Fig. (17). Quantum polarized ligand docking interactions of lead1 with GSK-3β. 
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twenty six known inhibitors of BACE1 retrieved from  
the drug bank which DB02378 (-232.24) with the highest 
ranked MolDock score between them was selected out as 
control. Then, SBVS of IBS (Koelsch, 2008) database which 
composed of 50,536 natural compounds was performed 
against BACE1 (PDB ID 2VKM) active site and twenty six 
compounds showed promising docking scores lower than -
250 (as control). The Hypo 1 including two hydrogen bond 
donor and three hydrophobic features maped on top hit com-
pounds retrieved from VS IBS database to predict the activ-
ity and essential pharmacophoric region. The mapping iden-
tified 7 candidate compounds out of 26 which fitted well 
with the 3D spatial arrangement of 3D QSAR pharma-
cophore model and predicted IC50 value. According to dock-
ing study, 3D QSAR pharmacophore and ADME, ligands 2 
(pIC50= 5.83) and 3 (pIC50= 5.64) were chosen as the poten-
tial leads to design novel BACE1 inhibitors. Furthermore, 
binding and interaction of ligand 2 with the BACE1 was also 
investigated using molecular docking and MD which re-
vealed hydrophobic interaction as well as hydrogen bond 
interaction with flap region amino acid Pro70, Thr72, Gln73 
and Asp dyad (Asp32 & Asp228) (Fig. 19). 

 Sphingosine-1-phosphate (S1P) is a bioactive plasma-
membrane lysophospholipid that decrease in its concentra-
tion stimulates T cells migration from the peripheral lym-
phoid organs to the blood circulation which disrupts the CNS 
and leads to diseases, including MS, brain ischemic stroke, 
schizophrenia and AD. The microsomal enzyme sphingos-
ine-1-phosphate lyase (S1PL) degrades intracellular S1P and 
therefore, inhibition of S1PL activity is a promising thera-
peutic option against MS and AD. Deniz et al. [84] intro-
duced an incorporated computational technique comprised of 
VS, molecular docking, substructure search and MD simula-
tion in order to obtain more potent inhibitors against S1PL. 
Fourteen active ((4-benzylphthalazin-1-yl)-2-methylpiperazin-
1-yl) nicotinonitrile derivatives with half maximal inhibitory 
concentration (IC50) in the range of 0.024 and 30 µM were 
employed to develope ligand-based pharmacophore models. 
Receptor-ligand pharmacophore model was generated based 
on unconstrained docking of 661 conformers of 441 unique 
fragments to the binding site of S1PL receptor (PDBcode 
:4Q6R) using the e-pharmacophores script. Ligand-based 
and structure-based pharmacophore models were used to 
screen 500,000 drug-like compounds from the ZINC databas 

  

 

Fig. (18). Docking interactions for, Rifampicin, BA_3691, STOCK1N-59071 and STOCK1N-61426 with Pgp M binding site. 
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and after filtering the database with the pharmacophore 
models, 10,000 ligands were subjected to molecular docking 
using Glide. The high-ranking poses obtained from docking 
were assessed in light of ligand-protein interactions, molecu-
lar weight, fitness values to the hypothesis, ADME proper-
ties and ligand strain energy. By using the hierarchical clus-
tering tool and by performing scaffold decomposition, the 
similarity between compounds with GlideGscores higher 
than -7.0 kcal.mol-1 was resolved to obtain a diverse chemi-
cal scaffolds. The binding conformations of the 33 selected 
ligands were evaluated by treating the flexibility of protein 
side chain as well as ligand flexibility upon docking by in-
duced filt docking algorithm. Fifteen compounds from dif-
ferent chemotypes with high IFD scores and favorable 
brain/blood partition coefficient (QPlogBB) values were 
chosen in the final hits set. MD simulations were performed 
on the ligand-protein complex using Desmond module, 
which showed that the ligand binds to S1PL around the inter-
twined dimer in a stable mode and the hydrogen bonding 
interactions, pi-stacking interactions and favorable contacts 
occur mostly with Asn473, Gln476, Tyr526, Gly384 and 
Ile386 residues. Furthermore, positive relationship between 
binding free energies of the proposed compounds which as-
sessed through the Prime MM-GBSA panel and IFD scores 
was obtained. The best candidates for potential S1PL inhibi-
tors had scaffolds including benzimidazole, tetrahydrofuran, 
and dihydropyrimidine, which have significant biological 
functions. 

 Kumalo and coworkers [85] introduced an enhanced 
pharmacophore model in which per-residue interaction en-
ergy decomposition footprints derived from MD simulations 
were used to account for receptor flexibility to determine 
new BACE1 inhibitors. The reliability of computational ap-
proach was assessed through a set of compounds with ex-
perimentally determined inhibitory activity towards BACE1. 

First, the per-residue free energy decomposition analysis was 
applied to highlight the most important protein residues in-
volved in inhibitor binding. Then, all the pharmacophoric 
moieties were chosen based on the extent of energy contribu-
tion from interaction between the functional active residues 
of the BACE1 and the ligands to construct per-residue en-
ergy decomposition based pharmacophore model. The model 
was further utilized as a query to search 3D chemical data-
bases like ZincPharmer to retrieve novel classes of lead 
compounds. Lipinski’s rule of five and ADME properties 
were applied as primary and secondary filters to eliminate 
undesirable molecules, which yielded a total of 530 hits. In 
order to reduce the number of false positives and to further 
refine the hit compounds, a molecular docking study was 
performed using AutoDock Vina with the crystal structure 
(PDB: 2VKM). Then, the top two protein–ligand docked 
complexes were introduced to molecular dynamics studies to 
assess the plausibility of the binding mode and determine  
the ligand–receptor interactions. In conclusion, the post  
MD analysis has shown that ZINC30028065 (ΔG= -10.3 kcal. 
mol-1) and ZINC29797869 (ΔG= -10.3 kcal.mol-1) (Fig. 20) are 
suitable inhibitors for further computational and experimental 
research to identify hits with higher anti-AD activity.  

 Caulerpin is a bisindole alkaloid extracted from the Sea-
weeds of the genus Caulerpa, possesses potential inhibitory 
activity against monoamine oxidaseB, and has displayed 
considerable antinociceptive and anti- inflammatory activi-
ties. Lorenzo et al. [86] generated a database of 108 cauler-
pin and its analogs and assessed it with a ligand-based model 
that included Volsurf and Molegro descriptors and the ma-
chine learning Random Forest algorithm, as well as with a 
structure-based VS that included docking studies of MAO-B 
inhibitors. Molecular interaction fields (MIF) and non-MIF-
derived descriptors were calculated totalizing 128 descrip-
tors, which along with the class variables that classified the 

(a) 

 
 

Fig. (19). a) Hydrophobic residues interacting with the ligand 2 and b) 2D view of ligand 3 and resi dues involved in hydrogen bond. 
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compound as active or inactive were employed to generate 
the random forest (RF) model. A structure-based methodol-
ogy using molecular docking were also performed which the 
analogs that had energy lower than a −151.87 Moldock score 
were selected as active and a RF model was generated. Using 
the integrated ligand-based and structure-based VS, authors 
observed a consensus of 56.9% between the methodologies, 
and selected nine active analogs of caulerpin. The results 
indicated that the presence of an amide or acyl halide polar 
group in R and a short nonpolar allyl or butyl chain in R1 
generate lower docking energies and higher predicted prob-
ability (Fig. 21). 

 Zhang et al. [87] carried out in silico study including 
pharmacophore modeling, VS, molecular docking simulation 
and in vitro bioassays to discover a promising class of 
AChEI for the treatment of AD. Six types of AChEI with 
IC50 values in the range of 1.1 – 10 nm were selected to gen-
erate common features in pharmacophore models within the 
HipHop module in Discovery Studio 4.0. Using the HipHop 
module, 10 hypotheses (Hypo) were generated with different 
combination of features and scores and Hypo 10, which was 
the best model, was then used to analyze the activity of the 
active compounds. Crystal complex of AChE (PDB ID: 
4M0E) and ligand (dihydrotanshinone I, DHI) were respec-
tively chosen as the receptor and ligand to generate the com-
plex based pharmacophores. Two Hypo were generated, and 
Hypo 1 with desired Quality (0.712, Fair) was used to 
screening the library subsequently. Two hydrogen bond ac-
ceptor (HBA), one aromatic ring (RA) and one hydrophobic 
(HY) were figured out to be the critical features of the Hypo 
1 model. About 220,000 small molecules were downloaded 

from SPECS database (www.specs.net), optimized and were 
then used as VS library. All the compounds were screened 
by the Lipinski’s “Rule of five” and Veber rules to build a 
drug-like library and 75,671 compounds were used in the 
subsequent VS and docking simulation. Hypo 1 of complex 
based pharmacophore was used to screen the drug-like data-
base. Thus, top 500 (pharmacophore) molecules were used to 
compare with docking simulation using GOLD (Genetic 
Optimization of Ligand Docking) version 5.2.2. Clustering 
and comprehensive analysis of the top 500 (pharmacophore) 
molecules and top 500 (docking) molecules were carried out 
and 15 molecules with different skeletons were manually 
chosen, and purchased from SPECS to detect their bioactiv-
ities. SARs analyses showed that ZYQ1 (2-((3-cyano-4-(4-
methoxyphenyl)-7,7- dimethyl-5-oxo-1,4,5,6,7,8-hexahydro- 
quinolin-2-yl)thio)-N-(4-isopropylphenyl)acetamide)) can bind 
with the structure of AChE stably through five hydrogen 
bonds, seven π bonds and multiple non-bonding interactions 
(IC50= 33.620 ± 1.862 µM). Four residues (Tyr133, Tyr124, 
Ser203 and Trp86) were suggested to be crucial for they can 
form hydrogen bonds with the ligand. Finally, ZYQ1 (Fig. 22) 
and its derivatives represented a promising starting point 
towards high-potent lead compounds in the treatment of AD.  
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Fig. (22). 2D structure of ZYQ1. 

 
 Dighe and coworkers [88] applied in silico docking-
based VS on 567,981 compounds, obtained from an integra-
tion of CoCoCo-SC Asinex database and ChemBridge CNS-
Set™ library, using the Glide module of the Schrödinger 
software suite to find more potent and highly selective BChE 
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Fig. (20). 3D structures for a) ZINC30028065 and b) ZINC29797869. 
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Fig. (21). Chemical structure of analogs of caulerpin. 
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inhibitors. Giving preference to compounds with significant 
binding interactions with the human BChE binding site resi-
dues, a set of 66 molecules were chosen for cross-docking 
studies with human AChE (hAChE) to anticipate selectivity 
towards human BChE (hBChE). Then, a set of 13 molecules 
retrived from in silico studies was evaluated in vitro for their 
inhibitory potentials against equine BChE (eqBChE) and 
EeAChE using Ellman’s assay. Four compounds (2, 5, 7, and 
8) displayed significant micromolar inhibition of eqBChE, 
which compound 7 was the most potent hit among them with 
an IC50 value of 9.72 µM. Docking model of compound 7 
into the binding site of hBChE proposed that the carbazole 
ring of molecule 7 has π-π interactions with the aromatic 
rings of Trp231 and Phe329 and the NH group of the hexa-
hydroquinoline ring of 7 is H-bonded with His438. With the 
purpose of acquiring highly selective submicromolar inhibi-
tor of BChE, substructure similarity search was conducted 
on compound 7 and seven analogs of 7 (compounds 14-20) 
were obtained (Fig. 23), which compound 16 was the most 
potent analog among them with IC50 value of 0.763 µM. In 
fact, cyclization of the methoxy ester of compound 7 to a 
tetrahydrofuran ring enhanced the activity by 13-fold and 
converted a micromolar inhibitor (7) into a submicromolar 
inhibitor (16). In vitro assay indicated that compound 16 was 
two-fold more potent in inhibiting hBChE, and it did not 
inhibit hAChE even at 10 µM, so, compound 16 was 
emerged as a promising submicromolar inhibitor of hBChE. 

 The major hallmark pathology needed for a diagnosis of 
AD is the extracellular deposits composed of Aβ, result from 
sequential cleavage of the AβPP by BACE-1 during the 
amyloidogenic pathway, which its inhibition is considered 
one of the most promising therapeutic methods in patients 
with AD. Semighini [89] applied a set of computational 
methods including LBVS, SBVS and combination of ligand-
based and structure-based VS to find new inhibitors of 
BACE-1. First, X-ray crystallographic data of BACE-1 in 
complex with nine inhibitors were used to generate the 
pharmacophore model, which divided in three subpharma-
cophores. The subpharmacophore 1 had four chemical fea-
tures, consisting of one hydrogen bond acceptor, one hydro-
gen bond donor, one hydrophobic aromatic, and one hydro-
phobic. The subpharmacophore 2 was comprised of five fea-
tures including one hydrogen bond acceptor, one hydrogen 
bond donor, one hydrophobic aromatic, one hydrophobic, 
and one aromatic ring. The subpharmacophore 3 was com-
posed of four features comprising of one hydrogen bond 
acceptor, one hydrogen bond donor, one hydrophobic, and 
one aromatic ring feature. Three subpharmacophores were 

employed in two different methodologies. The first one was 
a pure pharmacophore-based VS using the compound librar-
ies CNS ZINC, CNS Chembridge, Diverset Chembridge, and 
Maybridge. The second approach mixed the SBVS and 
pharmacophore-based virtual screening, with a first run 
made with GLIDE5.5c on the CNS ZINC database and se-
lected the best 10,000 results, and then, screened these 
10,000 molecules by DISCOVERY STUDIO 2.5 and the 
three subpharmacophores without ligand flexibility. The best 
scored molecules obtained from two different VS method-
ologies were then evaluated due to its molecular interactions. 
Interaction with at least one of the catalytic aspartates (93 
and 289) and one residue from the flap loop (Tyr132, Thr133 
and Glu134), ensured the proper blockage of the catalytic 
site. The remaining molecules were then analyzed by MIF 
and ADME predictions. Finally, similarity search by 
PharmMappe was utilized to identify new inhibitors of 
BACE-1, which resulted in 10 promising structures. The 10 
best structures were further evaluated by enzymatic assays, 
and, three of them exhibited inhibitory activity of BACE-1 at 
the submicromolar range. 

 The proteasome is a large multicatalytic protease that 
degrades polyubiquitinated proteins to small peptides and 
has been involved in many diseases including AD, HD, in-
flammatory bowel diseases, autoimmune diseases, multiple 
myeloma (MM) and other cancers. It is composed of two 
subtypes: the constitutive proteasome which is expressed in 
all eukaryotic cells and the immunoproteasome which is ex-
pressed in immune cells and can be stimulated in other cell 
types. Kasam and coworkers [90] used a VS approach com-
bined with experimental assay to design and discovery of 
new, potent and selective inhibitors with diverse non-peptide 
scaffolds against the catalytic subunit β5i of immunoprotea-
some. First of all, the VS procedure was utilized to screen 
the UC/GRI compound library comprised of structural in-
formation for approximately 300,000 molecules by employ-
ing RRD using FRED, resulted in identification of top-
25,000 compounds. Then, the subsequent binding free en-
ergy calculations between the protein and the compounds 
using Molecular Mechanics/Generalized Born SurfaceArea 
(MM/GBSA) method implemented in Amber9 software 
along with inspection of interactions with key amino acid 
residues (including Thr1, Ser21, Ser27, Gly47, Ala49, and 
Asp324) led to identification of top- 90 compounds. The 
obtained 90 compounds by in silico studies were further 
evaluated as inhibitors of the CT-like active site of the im-
munoproteasome, and nine of the tested compounds (Fig. 24) 
showed efficient inhibitory activity against the immunopro-
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Fig. (23). Parent compound 7 and its analogs (14-20). 
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teasome. Compounds 1 and 2 at 5 µM inhibited the immuno-
proteasome by 85-62%, respectively. Furthermore, to exam-
ine the stability and conformational flexibility of compound 
1 and 2, 1 ns molecular dynamics (MD) simulation was per-
formed, and the results indicated that, residues Ser21 and 
Ser27 were common amino acids of the immunoproteasome 
that had favorable interactions with both compounds 1 and 2. 
These new inhibitors had significant selectivity for the im-
munoproteasome over the constitutive proteasome which 
was likely related with the favorable interaction between the 
inhibitors and the hydroxyl group of Ser27 side chain in the 

immunoproteasome. So, enhancement of the favorable inter-
action with Ser27 of the immunoproteasome was expected to 
enhance both the potency and selectivity of the immunopro-
teasome inhibitors. 

 Hajjo and coworkers [91] developed binary QSAR mod-
els of 194 compounds (102 actives and 92 nonactives) that 
were predicted to be active at serotonin-6 receptor (5-HT6R), 
a known target for the treatment of neurocognitive dysfunc-
tion in AD, and subsequently used these models for VS of 
the World Drug Index database (WDI) and Drug Bank to 
find putative 5-HT6R ligands among known drugs. Further-
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Fig. (24). Molecular structures of the identified new inhibitors of the immunoproteasome. 
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more, they were interested in compounds whose chemoge-
nomics data from the connectivity map were negatively cor-
relate with the gene expression profile signatures of AD pa-
tients. A total of 13 common hits with the highest confidence 
level were examined in 5-HT6R radioligand binding charac-
terization and ten of these hit compounds were experimen-
tally confirmed as 5-HT6R ligands. 

 A rational computational-based strategy included MD 
stimulation, structure-based pharmacophore modeling, VS, 
molecular docking, and prediction of physicochemical and 
ADME properties were applied by Chen et al. [92] to iden-
tify new potent AChEI scaffolds. A structure-based pharma-
cophore was generated from the binding models obtained 
from the molecular docking and dynamics stimulation of 
AChE with the most prominent compounds by Discovery 
Studio platform. The structure-based pharmacophore model 
was then used to virtually screen a compounds library re-
trieved from ZINC commercial database with shape con-
straints. The hit compounds were scored through their mo-
lecular binding energies calculated by means of MM-PBSA. 
Fifteen compounds were selected and purchased in order to 
test their anti-AChE effects and seven of them showed in-
hibitory effects with IC50 values ranging from 1.5 to 9.8 µM. 

 Santos and coworkers [93] carried out a VS study for 
discovery of new AChEI with ability to interact with both 
the ‘catalytic’ and ‘peripherical’ anionic sites from the 
CERMN (Centre d’Etudes et de Recherche sur le Médica-
ment de Normandie) Chemical Library. Two complementary 
screening approaches were conducted: first, using a 3D 
pharmacophore as LBVS, and second, based on the active-
site topology as SBVS. The overlap of the resulting com-
pounds of both screenings revealed that compounds 3 and 5 
are in common in the two screening sets (Fig. 25). In vitro 
analysis on AChE indicated that compound 3 presented a 
very good inhibition activity (IC50 of 45 ± 10 nM), of the 
same order as donepezil. These findings showed the real 
complementary of both methods for the development of 
novel inhibitors. 

 Patil et al. [94] performed a combination of computa-
tional and bioassay methodologies to identify potent and 
selective AChEI. Dual binding site 3D-HipHop pharma-
cophore models were developed using six crystal structures 
of AChE bound with different inhibitors at its dual binding 
sites to understand the structural requirement for the design 
of improved anti-cholinesterase activity. The best HipHop 

AChEI pharmacophore (Hypo-1) model consisted of two 
ring aromatic features at 15 Å apart (RA), hydrophobe (HP), 
and aliphatic hydrophobe (AH) features. Then, sequential 
VS strategy was done using this model from the small mole-
cule databases, which selected 61,208 molecules from 
4,500,000 compounds. The filtered 125 molecules after 
ADME profiling of the molecules retrieved from pharma-
cophore based VS were subjected to molecular docking in 
order to understand their binding mode as well as the mode 
of interactions at the dual binding sites of the enzyme. At the 
result, five lead molecules were proposed showing good 
Glide docking scores at the AChE dual binding sites. These 
potential hits obtained from the final stages of VS were fur-
ther evaluated by in vitro analysis by Ellman’s assay which 
indicated less AChE inhibitory activity compared to that of 
donepezil (a FDA approved drug). 

 Bottegoni et al. [95] applied a hit discovery strategy per-
formed by a virtual ligand screening protocol to detect dual-
acting fragments that possess simultaneous activities in the 
low- micromolar range at BACE-1 and GSK-3β, which is 
linked through different pathways to the pathogenesis of AD. 
Docking simulations and Tanimoto similarity assessment 
were conducted for VS in ZINC databases which topmost-
ranking compounds determined by VS were submitted to in 
vitro study and one with reasonably balanced activities in the 
low-micromolar range at two structurally unrelated enzymes 
was identified as a hit. 

 Prolyl oligopeptidase (POP) is an endopeptidase with 
serine protease activity that cleaves peptides at the C-
terminal side of L-proline residues, which has been found to 
be associated with several NDDs, including PD, AD, and 
MS. Literature reports claimed that inhibitors bearing a reac-
tive functional group such as aldehyde, hydroxyacetyl or 
nitrile are predicted to form a covalent bond with the cata-
lytic serine of the active site. For the discovery of covalent 
POP inhibitors, Cesco et al. [96] performed automated VS in 
lead-like compounds present in ZINC databases, containing 
either an aldehyde or a nitrile group with the software 
FITTED. This program was appropriately adjusted to auto-
matically distinguish the presence of aldehydes, ketones, 
boronates, and nitriles reactive functional groups for cova-
lent inhibition and then, the inhibitor will most likely cova-
lently bind when the catalytic serine and reactive groups 
were properly positioned. To predict whether a compound is 
active or inactive, the RankScore scoring function imple-
mented in Fitted was then utilized to assess the strength of 
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enzyme/inhibitor binding in the covalent complex, revealing 
that nine known inhibitors were ranked highest in the list 
(within the top 1.5%), validating the VS protocol. A virtual 
hit molecule together with four analogues were selected for 
synthesis after visual inspection. The most active compounds 
exhibited high nanomolar inhibitory activities with IC50 = 
200-890 nM in intact living human cells and acceptable 
metabolic stability. The success of the work can be ascribed 
to an “ad hoc” modification of the scoring function used to 
screen the compounds library, demonstrating that covalent 
binding and/or geometrical constraints to the ligand/protein 
complex may lead to an increase in bioactivity. 

 Chen et al. [97] conducted fragment-based ligand dis-
covery by performing two prospective docking screens 
against a crystal structure of the AA2AR (PDB accession: 
3EML), a drug target for inflammation and PD. Firstly, par-
allel NMR-based biophysical screening and molecular dock-
ing screening of an in-house library of 500 chemically di-
verse fragments against the AA2AR were carried out. The 
fragment library was computationally docked to the orthos-
teric site of an antagonist-bound crystal structure of the 
AA2AR7 using the program DOCK3.6. Then, every library 
molecule binding to the AA2AR was used in the NMR-based 
screen to assess the ability of molecular docking to discrimi-
nate between fragment ligands and experimentally verified 
nonbinders. The target immobilized NMR screening (TINS) 
was used to screen five hundred fragment that resulted in 94 
primary hits, which were further pharmacologically charac-
terized in radioligand displacement assay. Five fragments 
showed more than 30% displacement of the radioligand at 
500 µM, which four of those fragments were among the top 
50 fragments predicted in silico. While the computational 
method found most of the pharmacologically relevant frag-
ments, it also predicted similar or better binding energies for 
46 top-ranked inactive compounds. Twenty two top-ranked 
compounds were tested in radioligand binding assay which 
14 molecules were subsequently shown to be AA2AR ligands 
with Ki values ranging from 2 to 240 µM. The structure–
activity relationship (SAR) was explored to refine the lead 
fragments, guided by molecular docking and MD simula-
tions. 

 Artificial neural networks (ANNs) and integration of 
virtual and high throughput screening were employed by 
Mueller et al. [98] to identify potent mGlu5 negative allos-
teric modulators (NAMs) which are used for the treatment of 
various neurological disorders such as anxiety, PD, and 
schizophrenia. In this study, for establishing QSAR models 
data obtained from an high-throughput screening (HTS) ex-
periments including 345 confirmed NAMs and 155,774 inac-
tive compounds were used to train ANNs through supervised 
back-propagation of errors. Subsequently, the ANN model 
with the significant theoretical enrichment value for mGlu5 
NAMs (root mean square= 0.209) was utilized for VS of the 
ChemDiv discovery chemistry database of 708,416 mole-
cules in order to further preselect 749 best candidates. The 
best candidates were submitted for HTS which further se-
lected several new drug candidates of IC50 in the range of 75 
to 124 nM. 

 Lavecchia et al. [99] applied multi-step SBVS, Calu66 
cells-based assays and UF6-LC/MS based ligand binding 

assay for discovering new small molecule inhibitors target-
ing the frataxin/ubiquitin interaction for the treatment of 
FRDA. FRDA is an inherited recessive neurodegenerative 
disorder that causes progressive damage to the nervous sys-
tem. Decreased expression or deficiency of the mitochon-
drial protein frataxin leads to FRDA, for which there is cur-
rently no effective treatment available especially for neuro-
logical deficits. In this work, the authors first reported find-
ings that frataxin is degraded by means of the ubiquitin-
dependent mechanism and residue K147 within frataxin is 
responsible for its ubiquitination. Then, a theoretical model 
of the frataxin-K147/ubiquitin complex was built consider-
ing the formation of a covalent isopeptide bond between the 
carboxyl group of the C terminal G76 of ubiquitin and the -
NH2 group of frataxin K147 using the HADDOCK algo-
rithm. Two structure based prediction program, WHISCY 
and ProMate, were used to identify the amino acid residues 
interacting across the frataxin-K147/ubiquitin complex inter-
face for in silico targeting in VS. Afterwards, the authors 
went on to discover for small drug candidates with the ability 
to directly target the frataxin region that binds ubiquitin in 
order to prevent frataxin/ubiquitin association. So, a multi- 
step SBVS approach of a subset of approximately 65,000 
lead-like molecules retrieved from the NCI Diversity Set was 
performed by using two different methods: AutoDock and 
Glide. Thirteen consensus hits with favorable docking scores 
for frataxin Ub-binding site were chosen and tested experi-
mentally for their ability to prevent the frataxin ubiquitina-
tion. The most interesting molecule, compound (±)-11 (Fig. 
26), was found to be the most potent in blocking the frataxin 
ubiquitination. Because compound 11 was tested as a mix-
ture of equal amounts of both enantiomers, it was synthe-
sized and resolved in its optical isomers (+)-11 and (-)-11, 
which were assayed individually and compared to the race-
mate. Compared to the racemate, (+)-11 resulted the active 
isomer capable to block the frataxin ubiquitination and indi-
rectly incited a larger increment in the cellular concentration 
of mature frataxin by significantly restoring the endogenous 
level of frataxin precursor. Conversely, (-)-11 compound 
displayed no increase in the cellular concentration of  
frataxin, exhibiting a fine level of selectivity in the  
active site because of chiral geometry. The IC50 of 11 for 
prevention of frataxin ubiquitination was resolved to be 45 
µM. Additionally, compound 11 revealed interesting ADME 
properties (predicted log octanol-water partition coefficient 
(QPlogPo/w) = 2.4; predicted log aqueous solubility coeffi-
cient (QPlogS) = -1.5; predicted apparent Caco-2 permeabil-
ity in nm.sec-1 (QPPCaco-2) = 1,322; number of primary 
metabolites = 7). Similarity search on the basis of substruc-
ture on the most potent hit compound 11 resulted in a series 
of morpholino analogues with a key meta- and para-methoxy 
substituted phenyl ring that had activity in the micromolar 
range. 

 SOD1 mutations, which are associated to ALS disease, 
decrease protein stability and promote aggregation. To inves-
tigate the novel inhibitors of mutant SOD1 for inhibiting 
aggregation, Huang et al. [100] applied molecular docking to 
screen Chinese medicine (TCM) database against mutant 
SOD1 active site (PDB code: 4A7V). From scoring analysis, 
dopamine was regarded as control for comparing with TCM 
compounds. All docked ligands were ranked by Dock Score, 
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and the results showed that hesperidin and 2,3,5,4′-
tetrahydroxystilbene-2-O-β-D-glucoside (THSG) have high 
affinity to mutant SOD1. Docking poses of hesperidin dis-
played H bond with Glu21 and Glu100 which the surround-
ing residues included Trp32, Pro28, and Lys30. For THSG, 
there were three amino acids (Glu21, Lys30 and Glu100) 
generated H-bond interaction, and the surrounding residues 
were Lys23, Pro28, and Trp32. It is worth to know that 
Glu100 was the common residue for each ligand binding, 
and the Lys30 could be found in all binding residues of mu-
tant SOD1. Authors further utilized MD simulation to verify 
the stability between protein and ligands for binding assay. 
For MD simulation analysis, hesperidin and THSG displayed 
similar value of RMSD (Root Mean Square Deviation) with 
dopamine, and the migration analysis revealed stable fluctua-
tion at the end of MD simulation time. Moreover, RMSF 
(Root Mean Square Fluctuation) and DSSP (Define Secon-
dary Structure of Proteins) assay indicated that the secondary 
structure of mutant SOD1 did not change significantly dur-
ing MD simulation, suggesting that the docked ligands were 
not affected by protein structure. The result indicated that 
hesperidin and THSG might be potential lead compound to 
design inhibitors of mutant SOD1 for ALS therapy. 

 A large body of studies have shown that oxidative stress 
is involved in the pathophysiology of different neuropsy-
chiatric disorders and conditions, including stroke, AD, PD, 
HD, progressive multiple sclerosis (PMS), and ALS. In this 
regard, Kanno et al. [101] used a new LBVS method, an 
integration of in silico molecular filtering and QSAR, to-
gether with NAIP-based in vitro drug screening and discov-
ered a new small ligand, termed CPN-9 (Fig. 27), which se-
lectively suppressed cells death from oxidative stress-
induced damage through the upregulation of Nrf2– ARE 
(NF-E2-related factor 2- antioxidant responsive element) 
transcriptional pathway. CPN-9 was primarily examined for 
protection against pharmacologically induced oxidative 
stress and most strongly protected HeLa (human epithelial 
cells) cells from oxidative stress-induced damage. When 
tested against a number of cell-stress inducers, CPN-9 only 
protected against cellular death induced by oxidative stress 
pathways. To define the molecular basis for CPN-9-mediated 
antioxidative activities, the expression of stress-activated 
proteins HO-1 (Heme Oxygenase-1) and p21/CDKN1A (cy-
clin dependent kinase inhibitor 1A) was tested, which both 
stress-induced proteins showed increased expression, and 
activation of the Nrf2 transcription factor also increased. To 
analyze whether compound CPN-9 treatment induces ARE 
promoter activity in SH-SY5Y (Human SH-SY5Y cell line) 
cells, a luciferase reporter assay was performed. These data 
demonstrated that compound CPN-9 confers resistance to 

oxidative stress by upregulation of the Nrf2/ARE transcrip-
tional pathway and represent a potential drug candidate for 
the treatment of ALS and other neurodegenerative disorders. 

 Rao et al. [102] performed various computer based prem-
ises including ligand based pharmacophore, active site pre-
diction and VS to identify novel drugs to inhibit the abnor-
mal PrP which causes wide array of degenerative neurologi-
cal disorders that include Bovine Spongiform Encephalopa-
thy (mad cow) and CJD. 3D structures of prion having muta-
tions at E196K, V203I, and E211Q were designed by ho-
mology modelling using modeller and validated by 
Ramachandran plot. Amantidine, amphotericin, curcumin, 
ceparitin, pentosan sulphate, quinacrine, quinapyramine, 
tetracycline and thioflavine drugs which have been identified 
to work against the symptoms of the disease were used to 
generate pharmacophore model. Pharmacophore model was 
further proceeded for zinc pharmer and following VS and a 
collection of 27 drugs were obtained. Based on binding en-
ergy, two drugs were selected and subjected to toxicity pre-
diction, which ZINC3830922 popularly known as idarubicin 
(-7.3 kcal.mol-1) was determined as a potent inhibitor for 
mutant PrP. They concluded that ZINC03830922 shows 
good binding interactions and a very good bioavailability 
and there will be no signs of carcinogenic and irritation. 

 Hyeon and coworkers [103] developed an integrated 
structure- and ligand-based VS strategy to find new anti-
prion compounds which block the conversion of the physio-
logical form of cellular prion protein (PrPC) to the patho-
genic form PrPSc. Using the structure of PrPC-GN8 (a known 
anti-prion compound), a 3D pharmacophore model was gen-
erated and compounds were docked into the prion hotspot to 
determine their potential binding mode, which enabled the 
selection of a small number of molecules for in vitro testing. 
VS of in-house chemical database with the selected pharma-
cophore model yielded 1110 compounds, followed by cluster 
analysis, identified 37 compounds. All compounds were 
docked into the PrPC hotspot residues identified in a previous 
study of PrPC interaction with a known anti-prion compound 
(GN8). The compounds showed strong hydrogen bonds at 
Asn159 (stand S1) and Glu196 (helix B) within PrPC. These 
compounds were tested in vitro using a multimer detection 
system, cell-based assays, and SPR. The BMD42-29 (benox-
azole compound) was most active (−7.87  kcal.mol-1) in the 
cell-based assay, interacted with conserved PrPC hotspot 
residues, indicating the importance of the two hydrogen 
bonds and the hydrophobic environment in prevent of the 
conversion of PrPC to PrPSc. 
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Fig. (27). Chemical structure of CPN-9 (N-(4-(2-pyridyl)(1,3-
thiazol-2-yl))-2-(2,4,6-trimethylphenoxy) acetamide). 
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 One ligand-based approach is the selection of new com-
pounds based on chemical similarity of known active ones. 
This can be done using several fingerprint methods, which 
allow the representation of a molecule in a way that can be 
effectively compared against other molecules. These meth-
ods rely on the chemical information of compounds, giving a 
highly qualitative approach in the search of new more potent 
ligands. Ijjaali and co-workers [104] applied LBVS using 
bidimensional fingerprints to determine a novel series of T-
type calcium channel blockers (TCCBs), which are impli-
cated in epilepsy and neuropathic pain. A LBVS incorporat-

ing different bidimensional chemical and pharmacophoric 
fingerprints was made on a two million compound database 
using ChemAxon's PF (Pharmacophoric Fingerprints) and 
CCG's GpiDAPH3 fingerprints to test 38 molecules for their 
ability to affect the functional activity of recombinant human 
CaV3.2 (T-type calcium channels). Sixteen out of the 38 
molecules were active hits as they displayed more than 50% 
blockade of the CaV3.2 mediated T-type current. Summary 
of the other reported virtual screening studies used to iden-
tify promising hits for NDDs has been listed in Table 4. 

Table 4. Virtual screening studies employed to identify potential inhibitors for neurodegenerative diseases. 

Author (Year of 
Publication) 

Neurodegenerative 
Diseases 

Method Chemical Scaffold 
Under Study 

Target Significance of Study 

Lin et al. (2016) 
[105] 

Sporadic and famil-
ial forms of AD 

VS by utilizing docking 
studies with the GOLD 

docking program 

1.1 million com-
pounds in the ZINC 
and in-house data-

bases 

GSK-3β The results revealed that among the 
tested compounds, VB-008 (anan-
damide transport inhibitor) with a 
polar head and a long nonpolar tail 
and one h-bond in the hinge region 
with Asp133, exerted the strongest 

overall effect on the examined GSK-
3β activity, tau aggregation, and neu-

roprotection. 

Noeske et al. 
(2007) [106] 

PD and multiple 
sclerosis 

2D-pharmacophore-
based VS 

Six known mGluR1 
antagonists 

Metabotropic 
glutamate 
receptor 1 
(mGluR1) 

The most potent compound yielded an 
IC50 of 362 nM based on a coumarine 
scaffold which was further subjected 
to a hit optimization program, and a 

compound with an IC50 of 123 nM was 
obtained. 

Daidone et al. 
(2012) [107] 

PD and hyperten-
sion 

VS of the ZINC data-
base, docking-based 

screening and in vitro 
assay 

In-house built data-
base of known active 

and inactive DDC 
inhibitors 

DOPA decar-
boxylase 
(DDC) 

Authors found several competitive 
inhibitors of human DDC with Ki 

values in the low micromolar range. 
The most potent inhibitor with a Ki 

value of 500 nM emerged as a promis-
ing candidate for further lead optimi-

zation. 

Lepailleur et al. 
(2014) [108] 

AD Common feature-based 
pharmacophore model 
to VS in combination 
with similarity based 

clustering method and 
molecular docking 

17,194 compounds of 
the CERMN chemical 

library 

Histamine 
H3-receptor 
(H3R) and 

serotonin 4-
receptor 
(5HT4R) 

Results from the binding experiments 
confirmed that benzo[h]-

[1,6]naphthyridine derivative retrieved 
by this VS method exerts high affinity 

for both H3R and 5HT4R. 

Ferreira et al. 
(2011) [109] 

AD, PD Four-point pharma-
cophore 

macrocycle diterpene 
derivatives with the 
greater number of 

compounds known to 
have multidrug resis-

tance (MDR) -
reversing activity 

Pgp The final 4-point pharmacophore 
model demonstrated the essential role 
of hydrophobic interactions and the 

presence of electron acceptor features 
for Pgp modulators which could be 

utilized for the development of novel 
multi-resistance modulators. 

Lu et al. (2011) 
[110] 

AD Pharmacophore-based 
virtual screening ap-

proach of NCI chemical 
databases followed by 

molecular docking 

known AChEI AChE The identified hits by VS were sub-
jected to molecular docking study 
using the LibDock program which 

obtained 9 hits with the highest scor-
ing structures that have ability to 

block simultaneously the catalytic and 
peripheral anionic sites of the enzyme. 
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6. QSAR STUDY 

 The core objective of any QSAR modeling is to develop 
a relationship between an observed activity/property and 
structural features of a molecule. The approach depends on 
being able to represent the structure of a molecule in quanti-
tative terms (descriptors) and then to develop a relationship 
between the quantitative values representing each structure 
and experimental activity/property value [111]. QSAR 
methods can be categorized into following groups, based on 
the way by which the descriptor values are computed. Zero-
dimensional (0D)-QSAR model is developed based on de-
scriptors extracted from molecular formula information in-
cluding molecular weight, atom counts, number of individual 
types, sum of atomic properties; 1D-QSAR model correlates 
the activity/property with global molecular properties such 
as pKa, solubility, logP, functional groups; 2D-QSAR corre-
lates the activity with structural patterns such as connectivity 
indices, Wiener index; 3D-QSAR considers the position and 
orientation of the molecule relative to the other molecules in 
3D space, and correlates activity/property with non-covalent 
interaction fields (steric and electrostatic field) surrounding 
the molecules; four-dimensional (4D)-QSAR additionally 
incorporates the ligand conformational flexibility in 3D-
QSAR, by representing each molecule in different conforma-
tions, stereoisomers, orientations, tautomers or protonation 
states; the fifth dimension (5D) in QSAR explicitly repre-
sents different induced-fit protocols in 4D-QSAR; sixth di-
mension (6D)-QSAR takes into consideration the simultane-
ous evaluation of various solvation models in 5D-QSAR; 
hierarchical technology for quantitative structure-activity 
relationship (HiT QSAR) depends on the simplex representa-
tion of molecular structure and its application allows one to 
derive a set of distinct QSAR models which complement 
each other. The spirit of HiT QSAR technology is a sequen-
tial solution to the QSAR problem by the series of enhanced 
models of molecular structure description from 1D to 4D 
[112]. Regression and classification are frequently applied in 
cheminformatics as pattern recognition algorithms which 
involve finding similarities and differences between chemi-
cal samples. Usually, regression analysis is used with natu-
rally-occurring and continuous variables; however, many 
structural descriptors are scattered or Boolean variables, 
which have to be considered by classification approaches, 
such as supervised or non-supervised learning algorithms. In 
light of the sort of chemometric methods utilized, QSAR 
methods are classified as linear and non-linear. Linear meth-
ods include linear regression (LR), multiple LR (MLR), SW-
MLR, principal component analysis, partial least-squares 
(PLS) and genetic function approximation (GFA) [113]. 
However, newer developments in the chemometric field 
have also created several new methods of building predictive 
models, which include non-LR and algorithmic techniques 
like support vector machine (SVM), ANN, k-nearest neigh-
bors (kNN) and Bayesian neural nets [114,115]. 

 Luan et al. [116] developed multiplexing quantitative 
structure–property relationship (mx-QSAR) model for  
multiplexing assays outcomes reported in chemical database 
of bioactive molecules (CHEMBL) for neurotoxicity/ 
neuroprotective effects of drugs (Fig. 28). The data was ex-
tracted from public databases like CHEMBL. Authors re-

ported the first mx-QSAR model capable of predicting 
whether a drug with a determined molecular structure could 
possibly give a positive result in various multiplexing assay 
conditions. The best reported model was found to correctly 
classify 4,393 out of 4,915 compounds comprising of both 
training and validation set compounds. The overall parame-
ters accuracy, sensitivity and specificity were found to be 90, 
98 and 80%, respectively. 

 
Fig. (28). Workflow of the mx-QSAR study. 

 
 With the aim of looking for improved multi-target de-
signed ligands, Bautista-Aguilera et al. [117] applied phar-
macophore and 3D-QSAR studies to design a series of new 
structurally derived compounds from ASS234 as donepezil-
indolyl hybrids which are able to inhibit both MAO A/B, 
AChE and BChE enzymes to provide additional benefits  
in AD therapy (Fig. 29). Authors have identified that N-((5-
(3-(1-benzylpiperidin-4-yl)propoxy)-1-methyl-1H-indol-2-
yl)methyl)prop-2-yn-1-amine (donepezile-indolyl hybrid 15, 
Fig. 30) as a potent, in the nanomolar range, exhibited the 
most interesting profile as a potent MAO A inhibitor (IC50 = 
5.5 nM) moderately able to inhibit MAO B (IC50 = 150 nM), 
AChE (IC50 = 190 nM), and BChE (IC50 = 830 nM). Molecu-
lar modeling analysis suggested that donepezile-indolyl  
hybrid 15 is a mixed-type eel AChE (EeAChE) inhibitor 
which its linear conformation allows to span both the cata-
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lytic and peripheral sites (CAS and PAS) of this enzyme. 
The results indicated that propargylamine group, that bears a 
N-benzylpiperidine moiety from donepezil and a 8-
hydroxyquinoline group, is probably going to be a critical 
feature for these derivatives to display both AChE and BChE 
inhibitory activities. Based on the best observed drug-like 
characteristics and ADME properties, donepezile-indolyl 
hybrid 15 exhibited proper drug-likeness properties and good 
brain penetration that deserves further analysis as a potential 
drug for the prevention and treatment of AD. 

 For the designing of multi-target inhibitors as versatile 
inhibitors against five proteins targets associated with AD, 
Speck-Planche et al. [118] developed the fragment-based 

approach by exploring QSAR. Their approach was centered 
around the development of a multi-target QSAR (mt-QSAR) 
discriminant model, which allowed the simultaneous classi-
fication and prediction of inhibitors against the targets. Fur-
ther, the mt-QSAR discriminant model was utilized for the 
automatic and quick extraction of fragments in charge of the 
inhibitory action against the five targets, and new molecular 
entities were proposed. 

 Prado-Prado et al. [119] developed 3D-mt-QSAR models 
for the prediction of AChE and its inhibitors using the 3D 
MI-DRAGON technique based on two different software, 
namely MARCH-INSIDE (MI) and DRAGON to carry out a 
rational Drug-Protein Interactions (DPIs) prediction. MI and 
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Fig. (30). Chemical structure and binding mode of inhibitor 15. 
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DRAGON softwares were used to compute 3D structural 
descriptor for targets and 3D parameters of all DPIs present 
in the DrugBank database (US FDA benchmark dataset), 
respectively. Both groups of descriptors were utilized as in-
put of different ANN algorithms using as benchmark dataset 
to identify a better model using a non-linear approach. The 
developed mt-QSAR classifier predicted the binding of 
ligands to more than 500 diverse biological targets covered 
by the FDA approved drugs with accuracy 85%, and can be 
used for the prediction of the affinity of new compounds 
against different targets. 

 Makhaeva et al. [120] applied different QSAR ap-
proaches to study bioactivity of 58 O- phosphorylated oxi-
mes against four serine esterases, namely, AChE, BChE, 
carboxylesterase and neuropathy target esterase. QSAR 
techniques were performed using linear regression and back-
propagation neural networks in combination with fragmental 
descriptors containing labeled atoms, molecular field topol-
ogy analysis (2D QSAR), and comparative molecular simi-
larity indices analysis (CoMSIA) (3D QSAR). All methods 
provided mutually consistent and complementary insights 
into structural features controlling the anti-EOH (Oxime 
reactivation of serine esterases) activity and selectivity of 
POXs (O-phosphorylated oximes). In conclusion, QSAR 
models were utilized to design a library of compounds hav-
ing a cognition-enhancement esterase profile suitable for 
potential application to the treatment of AD. 

 Ambure and Roy [121] developed 2D-QSAR, group-
based QSAR (G-QSAR) and quantitative activity-activity 
relationship (QAAR) models based on a congeneric series of 
224 cyclin-dependant kinase 5/p25 (CDK5/p25) inhibitors 
(Fig. 31) to explore structural features needed for CDK5/p25 
inhibition considering activity against CDK5/p25 and selec-
tivity over CDK2. The structural features needed for improv-
ing activity was studied using 2D-QSAR and G-QSAR mod-
els, while the QAAR model facilitated the better understand-
ing of features needed for selectivity of the inhibitors. Fur-
thermore, docking analysis was carried out using GLIDE to 
predict the main active site residues and structural features 
essential for correct binding in the active site of the 
CDK5/p25 complex (PDB id: 4AU8). The results suggested 
that: i ) presence of branching or ring structure at R2 position 
affects the activity as well as selectivity; ii) presence of –
NH2 group at R2 position is important for the activity; iii) a 
chlorine atom at R3 is found to be essential for the activity as 
well as selectivity; iv) presence of a ring structure like 4-
chloro-benzyl group at R1 position is required for the activ-
ity; v) presence of a –NH– fragment is found to be essential, 
since it interacts with an active site residue (Ile10) which 
was identified to be an important residue responsible for 
biological activity. 

 Araújo et al. [122] constructed receptor-dependent 3D-
QSAR (RD-3D-QSAR) models based on a series of 60 ben-
zylpiperidine inhibitors of hAChE to identify the relationship 
between the chemical structure and the biological activity of 
compounds that inhibit the hAChE. These models were re-
trieved from 12 databases (DBs) derived from three main 
groups, which were submitted to a combined Genetic Func-
tion Approximation (GFA) and partial least square tech-
niques to construct the QSAR equations. The best two mod-
els suggested that the hydrophobic residues of the active site 
of hAChE were more important in the interaction with this 
series of inhibitors when compared to polar residues. Resi-
dues of the aromatic gorge (Tyr341 and Trp439) and cata-
lytic triad (His447) in AChE were related to both equations 
displaying the consistency of these models with the SAR. 
Based on those models, four new benzylpiperidine deriva-
tives were proposed and then, the inhibitory concentration at 
50% predicted for each molecule. The good predicted po-
tency of the benzylpiperidine derivative, IIa (IC50 around 
sub-picomolar order), indicated that it could be a potential 
candidate as a new AChEI (Fig. 32). 

 Saracoglu and Kandemirli [123] have carried out QSAR 
analyses of AChEIs by means of the Electron-Topological 
Method (ETM) related to tacrine and 11 H-indeno-[1,2-b]-
quinolin-10-yl-amine tetracyclic tacrine analogues, a drug 
currently in use for the treatment of the AD. The ETM was 
implemented with the ETM software on a training set of 44 
molecules, which considered both structural and electronic 
characteristics of compounds. All conformational and quan-
tum-chemical data were retrieved by means of the MMP2 
method of the molecular mechanics (MM) and a semi-
empirical quantum-chemistry method known as AM1. Struc-
tural fragments being specific for active and inactive com-
pounds were revealed by using ETM. Based on pharma-
cophores and anti-pharmacophores calculated as sub-matrices 
including spatial and quantum chemistry characteristics, a 
system for the activity prognostication was developed. 
 It has been suggested that the histamine H3-receptor 
(H3R) antagonists may play a role in the treatment of several 
neurological diseases such as epilepsy, obesity, arousal, at-
tention-deficit hyperactivity disorder (ADHD), schizophre-
nia, AD and PD. Dastmalchi and coworkers [124] conducted 
the QSAR studies on a set of arylbenzofuran H3R antago-
nists using both 2D (MLR and ANN) and 3D (hypothetical 
active site lattice (HASL) QSAR methods to compare the 
predictive powers of three different QSAR methods. GA 
coupled partial least square in addition to stepwise multiple 
regression methods were employed to choose the minimum 
number of molecular descriptors to be used in MLR and 
ANN-based QSAR studies. The results demonstrated that the 
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Fig. (32). 2D representation of benzylpiperidine derivative IIa. 
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both MLR and ANN methods performed equally well in 
predicting the receptor binding affinities of the arylbenzo-
furan derived histamine H3R antagonists. Both of these  
2D-QSAR methods were superior to HASL, a 3D-QSAR 
method, in predicting the activity of the arylbenzofuran H3R 
antagonists. 

 Gupta et al. [125] identified the dual binding AChEIs via 
in vitro HTS of library consisting of 56,000 compounds and 
then their comparative 2D-QSAR models were developed 
using linear (GFA and G/PLS), and non-linear (SVM and 
ANN) techniques. SVM, a non-linear model, was found to 
be superior to the corresponding linear models. Among the 
eight descriptors that were utilized in QSAR models devel-
opment, four descriptors, namely, electrotopological descrip-
tor (S_ssS), two thermodynamic descriptors (Atype_H_46, 
Atype_C_3) and an electronic descriptor (LUMO - lowest 
unoccupied molecular orbital), were found common for both 
the models. LUMO and electrotopological index descriptors 
were found to be decisive in determining the AChE inhibi-
tory activity. It was suggested that the energy contribution 
must be taken into consideration while designing new dual 
binding site AChEIs. 

 Ajmani et al. [126] reported QSAR studies on diverse 
chemical classes as Gamma secretase (GS) inhibitors com-
prising 233 compounds (arylsulfones, aryl sulfonamide, ben-
zobicyclononane, cyclosulfamide, cyclohexenone, cyclo-
hexyl sulfones, fused cyclohexylsulfones), which were col-
lected from the ChEMBL database. Continuous (PLS regres-
sion and neural network (NN)) and categorical QSAR mod-
els (NN and linear discriminant analysis (LDA)) were built 
to find the most important descriptors. This study indicated 
the importance of electronegative substitutions on aryl rings 
(Partial equalization of orbital electronegativity (PEOE3)) in 
determining variation of GS inhibitor potency. Moreover, 
substitution of acyclic amines with N-substituted cyclic amines 
contributed to inhibitor potency by increasing the values of 
sssN_Cnt (count of atom-type) and number of aliphatic rings. 

 H3R are expressed in the CNS and to a lesser extent the 
peripheral nervous system (PNS) of many species and sug-
gest a potential therapeutic role for their inhibitors in treat-
ment of several neurological disorders such as AD, epilepsy, 
schizophrenia and PD. Dastmalchi and coworkers [127] 
identified the structural requirements for H3R antagonistic 
activity via QSAR studies and docking techniques on a se-
ries of 58 arylbenzofuran derivatives as H3R antagonists. A 
combination of PLS and GA was used in the QSAR ap-
proach to select the structural descriptors. The 3D model of 
human H3R was built based on bovine rhodopsin structure 
and evaluated by MD to investigate the stability of the 
model. QSAR models suggested the role of charge transfer 
interactions in the ligand-receptor interaction, which was 
verified using the molecular docking analysis. 

 Nicolotti et al. [128] explored SAR of a wide series of 
270 nicotinic agonists from diverse chemical classes. Within 
each congeneric series, 2D-QSAR equations indicated det-
rimental steric effects for the response as modeled by molar 
refractivity (MR), whereas comparative molecular field 
analysis (CoMFA) allowed authors to merge progressive 
models obtained for each congeneric class into a general 

model. In 2004, Nicolotti et al. [129] again explored about 
300 nicotinic agonists via 2D-QSAR, CoMFA and Multi-
objective Genetic QSAR (MoQSAR) analysis with similar 
conclusion. MoQSAR was used to analyze a dataset of 58 
highly active nicotinoids characterized by the descriptors, 
namely, logP, MR and low inter-correlated weighted holistic 
invariant molecular indices. 

 Asadabadi et al. [130] developed quantitative models to 
describe the SAR in dual binding site inhibitors of AChE, as 
well as to introduce the structural determinants of their bio-
activity as the future potent drugs of AD. The study was de-
voted to extract the most significant descriptors of these in-
hibitors from among a large number of quantitative descrip-
tors. An efficient feature selection method was emphasized 
to find out what structural properties of dual binding site 
inhibitors determine their inhibition potency against AChE, 
utilizing the results of different routine and novel feature 
selection methods, for example, using LDA, binary logistic 
regression (BLR), genetic algorithm-based neural networks, 
ANN. The selected descriptors were reported and discussed 
accordingly. 

 In the multivariate image analysis-quantitative structure–
activity relationship (MIA-QSAR) methodology, the descrip-
tors are pixels of 2D images corresponding to chemical 
structures with biological activities and it can easily handle a 
large amount of information, being effective for the predic-
tion of new molecules that might present biological activity. 
Bitencourt et al. [131] performed MIA-QSAR on a set of 34 
compounds, including quaternary amines and carbamates 
with known anti-AChE activity. Structural analysis sug-
gested the importance of a phenol group together with a car-
bamate scaffold in meta position of the benzene ring, to im-
prove the AChE inhibitory activity. 

 To explore the mechanism of inhibition of BACE1 in-
hibitors, Liu et al. [132] employed 46 X-ray crystallographic 
BACE1/inhibitor complexes to derive QSAR models. The 
COMparative BINding Energy (COMBINE) software was 
utilized to perform COMBINE analysis on these 46 com-
plexes. The major benefit of the COMBINE analysis is that 
it can quantitatively extract key residues involved in ligand 
binding and also identify the nature of the interactions be-
tween the ligand and receptor. The QSAR models provided 
some vital insights into the design of novel inhibitors via the 
optimization of the interactions between ligands and key 
residues of BACE1. 

 To extend the boundaries of the QSAR paradigm, and to 
rationalize fragment-based drug design using in silico ap-
proach, Manoharan et al. [133] proposed a fragment-based 
QSAR (FB-QSAR) methodology. The FB-QSAR methodol-
ogy was carried on a dataset consisting of 52 hydroxyethy-
lamine derivatives as BACE1 inhibitors, disclosed by GSK 
as potential anti-AD agents. A heat map constructed (based 
on the activity and selectivity profile of the individual R- 
group fragments) was used to identify superior R-group 
fragments. Further, they also performed multi-objective 
QSPR (Quantitative Structure-Property Relationship) using 
Derringer and Suich desirability algorithm to identify the 
best descriptors that can confer a trade-off between selectiv-
ity and activity. 
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 The low BBB permeability of most of the tau aggregation 
inhibitors is the key issue that needs to be resolved for future 
development of new generation of aggregation inhibitors. In 
this regard, as most potent inhibitors including meth-
ylthionium chloride are negatively or positively charged, the 
neutral phenylthiazolylhydrazides (PTH) were used by Park 
et al. [134] to develop a 3D- QSAR model to provide in-
sights into designing of novel tau aggregation inhibitors with 
improved activity and reduced cytotoxicity. The CoMFA 
3D-QSAR model which was constructed by using 22 PTH 
derivatives along with the information gathered from the 3D 
contour maps revealed that the relative orientation of the two 
aromatic rings attached to both ends of the tweezer-like 
structure of the PTH plays an essential role in its biological 
activity. 

 Fang et al. [135] proposed a new lead identification pro-
tocol that combines ligand and structure-based approaches to 
predict new GSK-3b ATP (adenosine triphosphate) competi-
tive inhibitors with topologically diverse scaffolds. Accord-
ing to this protocol, first the 3D-QSAR models were built and 
validated utilizing benzofuran-3-yl-(indol-3-yl) maleimides 
derivatives as GSK-3β inhibitors. Second, maleimide deriva-
tives from thePubChem database were filtrated via Lipin-
ski’s rule. Third, the FlexX-dock program was employed to 
virtually screen the remaining compounds against GSK-3β. 
Fourth, the 3D-QSAR models were used to predict the GSK-
3β inhibition values. Finally, from the 93 predicted active 
hits, 23compounds were confirmed as GSK-3β inhibitors 
from the literatures and their GSK-3β inhibition ranged from 
1.3 to 480 nM. 

 Zheng et al. [136] contructed ANN, MLR, and docking-
QSAR models using a set of 91 BChE inhibitors divided into 
training (62 compounds) and test sets (31compounds). An 
ANN model of 10-2-1 architecture was optimized using 10 
molecular descriptors describing topological and topographi-
cal features of BChE inhibitors. The same descriptors were 
used to develop the MLR model. Further, these BChE inhibi-
tors were docked at the catalytic site of BChE, and their 
binding free energy and torsional energy were calculated. 
The docking-QSAR model was developed by using binding 
free energy and torsional energy as independent variables 
and BChE inhibitory activity as the dependent variable. The 
ANN model showed the highest correlation coefficient and 
the cross-validated coefficient along with lower root-mean-
square deviation (RMSD) and leave-one-out root mean 
square deviation (LOORMSD) than MLR and docking-
QSAR models. The study clearly demonstrated that the 
ANN-QSAR model is much robust than MLR and docking-
QSAR models. 

 Fernández et al. [137] have modeled the AChE inhibitory 
activity of a set of tacrine analogues includes 136 com-
pounds with the biological activity reported as IC50 values by 
using Bayesian-Regularized Genetic Neural Networks 
(BRGNNs). The Bayesian-regularization avoided overtrain-
ing, while the GA approach allowed exploring an ample pool 
of 3D-descriptors generated by the Dragon software. In addi-
tion, the capacity of the selected variables for discriminating 
the data was assessed by means of the unsupervised training 
of Kohonen Self-Organizing Maps (SOMs). The resulted 
model was evaluated by averaging multiple validation sets 

generated as members of diverse-training set neural network 
ensembles (NNEs). When considering 40 assembled mem-
bers, the NNE provided reliable statistics. 

 Simeon et al. [138] investigated QSAR studies of a large 
deta set of 2,570 compounds with inhibitory activity towards 
AChE using 12 sets of molecular fingerprints and RF learn-
ing method with 100 different data splits. Furthermore, in 
order to identify the structural requirement for AChE inhibi-
tion molecular docking as structure-based approach was car-
ried out on a chemically diverse set of compounds selected 
from active AChEIs using the Kennard–Stone algorithm. Y-
scrambling was also applied to further verify the predictive 
performance of the selected model and assess the possibility 
of chance correlation. QSAR models identified “C ONS 
bond,” “secondary mixed amine,” “heterocyclic” and “hetero 
N non-basic” as the important features for AChE inhibition. 
According to molecular docking and QSAR models, authors 
concluded that the aromatic, heteroaromatic and heterocyclic 
rings are preferable moieties for interacting with the hydro-
phobic pocket of AChE and this information could be em-
ployed as guidelines for the development of new and robust 
AChEIs. 

 Subramanian et al. [139] applied multiple in silico ligand 
based modeling approaches starting from simple Bayesian 
methods to sophisticated machine-learning methods to model 
the binding affinities (IC50) reported for diverse structural 
and chemical classes of human BACE-1 inhibitors in litera-
ture. The affinities were modeled using qualitative classifica-
tion or quantitative regression schemes involving linear, non-
linear, and deep neural network (DNN) machine-learning 
methods which linear, radial, dendritic, and MolPrint2D fin-
gerprints were used to develop qualitative classification 
models while the constitutional, physicochemical and topo-
logical descriptors computed using Canvas were used to 
build quantitative regression models. The results indicated 
that DNN and RF machine learning methods with Canvas 
descriptors resulted in robust classification accuracy and are 
shown to exhibit superior performance compared to tradi-
tional Bayesian techniques. Qualitative classification models 
identified ECFP6 and MolPrint2D to be better fingerprint 
schemes among the ones considered. The success of the 2D 
descriptor based machine learning approach when compared 
against the 3D field based techniques (CoMFA,CoMSIA, 
atom based QSAR modeling (ABM), FQSAR_gau (Field 
QSAR using gaussian approximation), and QSAR_ff (Field 
QSAR using forcefields) suggested that 2D descriptor based 
statistical techniques such as DNNs or RFs using Canvas 
descriptors can achieve statistical accuracy similar to 3D 
field based techniques that often require molecular alignment 
of diverse chemical scaffolds. This study provided a strong 
impetus for systematically applying such methods during the 
lead identification and optimization efforts for other protein 
families as well. 

 Salum and Andricopulo [140] presented a methodology 
that incorporates ligand-based method with structural infor-
mation derived from the receptor to derive consistent 3D-
QSAR models. They selected about 128 hydroxyethylamines 
derivatives as BACE1 inhibitors recently disclosed by 
GlaxoSmithKline R&D. A new fragment guided approach 
including HQSAR was designed to integrate the structural 
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information from multiple crystal structures into a CoMFA 
study. The methodology was systematically compared to 
other popular approaches, such as docking, for performing 
molecular alignment. The models derived from the fragment-
guided approach indicated substantially better external vali-
dation power (R2 

pred= 0.72) than best docking derived mod-
els. Finally, the contour maps further provided required in-
formation for the development of analogs with improved 
potency. 

 Dual specificity tyrosine-phosphorylation-regulated 
kinase-1A (DYRK1A) is a proline- and arginine-directed 
Ser/Thr kinase which is associated with AD, since increased 
expression of this enzyme leads to hyper-phosphorylation of 
Tau protein and amyloid precursor protein, which results in 
β-amyloidosis and microtubule instability and subsequent 
NFT formation. Leal et al. [141] developed local HQSAR 
models of a series of 46 6-arylquinazolin-4-amine DYRK1A 
inhibitors using the commercial SYBYL software to find 
structural fragments with favorable contribution to the in-
hibitory activity. The color of each molecular fragment pro-
vided information about contribution of each molecular 
fragments to the inhibitory activity of this series where the 
yellow-to-green color exhibited the positive contribution and 
orange-to-red colors indicated negative contributions of the 
fragments of the molecules under study. The developed 
HQSAR model recommended that the DYRK1A inhibitors 
should possess the following features to increase the activity 
(Fig. 33): i) a phenyl ring substituted with a hydrophilic and 
electron-withdrawing group in R1 position; ii) heterocyclic 
ring substituted with a hydrophobic group in R3 position; and 
iii) the nitrogen atom of the amine group is substituted with a 
bulky hydrophobic group. 

 Kumar et al. [142] performed molecular docking, 
HQSAR and lead optimization studies to design of novel 
Choline acetyltransferase (ChAT) ligands. Robust statistical 
fragment HQSAR models were developed based on 26 
known potent ChAT ligands. The models revealed the frag-
ments essential for the activity of these ChAT ligands (Fig. 
34) and indicated that a pyridine ring, which is one of the 
most common functional group among the parent com-
pounds, had major contribution towards the affinity for 
ChAT. Molecular docking was also performed to probe the 
mechanism of their interaction with the active site of ChAT 
using Surflex-Dock GeomX (SFXC) module of SYBYL-
X2.1.1 suit. The results indicated that the Tyr552 and His324 
amino acid residues were of outmost importance for stabili-
zation of an active conformation of ligands of ChAT by 
forming π-π and/or π-cation interactions with certain func-
tional moiety of the ChAT ligands. The results from the 
HQSAR and consequential molecular docking allowed 
authors to select sixteen most potent compounds for use as 
reference and seed structures to generate novel ligands based 
on the pharmacophoric and shape similarity scoring function. 

 Dual-targeting MAO-B and the adenosine A2A receptors 
(AA2AR) by multipotent ligands gives a promising strategy 
for the treatment of NDDs, such as AD and PD. Bhayye et 
al. [143] performed ligand-based and structure-based model-
ling using deazaxanthine and benzothiazine derivatives to 
describe the major pharmacophoric properties responsible 
for inhibitory activity against MAO-B and AA2AR. To gen-
erate robust QSAR models, pharmacophore-based alignment 
was employed to generate a 3D pharmacophore hypothesis, 
based on the atom-based QSAR and HQSAR models. The 
developed 3D-QSAR and HQSAR models and activity cliff 

a) b) 

N

N
R1

N
R3 R2

 

 

Fig. (33). a) 2D structure of common moiety for a series of 6-arylquinazolin-4-amine derivatives and b) The HQSAR contribution maps of 
the most (24, left) and least (6, right) active compounds, according to the two best HQSAR models. 
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studies for dual antagonists of AA2AR and MAO-B provided 
structural requirement that serve as building blocks in de-
signing drug-like molecules that could eventually help for 
treating NDDs. QSAR studies indicated that an electron 
withdrawing group on the heterocyclic ring of benzothiazine 
was essential to increase activity against both AA2AR and 
MAO-B and showed H-bond interaction with Tyr435 of 
MAO-B and Asn253 of AA2AR, which confirmed by dock-
ing and MD simulation studies. Authors designed new com-
pounds as dual inhibitors through modifying chemical struc-
tures from the dataset and evaluated their inhibitory activity 
via developed QSAR models and molecular docking. 

 NMDARs are a subclass of glutamate receptors that are 
associated with many of the primary functions and develop-
mental mechanisms of the nervous system, and implicated in 
various neurological conditions, AD, HD, and PD. 
NMDARs are heterotetramers composed of four subunits 
which the NR2 subunit of NMDARs plays an important role 
in the receptor regulation and can be further classified into 
four types, namely, NR2A, NR2B, NR2C and NR2D. NR2B 
subunit-selective antagonists are considered to have potential 
therapeutic benefit for the treatment of schizophrenia, PD, 
AD, cognitive disorders, depression, neuropathic pain, 
stroke, traumatic brain injury, and epilepsy. Zambre and co-
workers [144] built 2D- and 3D-QSAR models to explore 
the structural features needed for pyrazine and related ana-
logs as NR2B site antagonists of the NMDA. 2D-QSAR 
analyses using MLR and PLS revealed the major importance 
of Baumann's alignment independent topological descriptors, 
such as T_2_F_7,T_C_O_7 and T_T_T_6, in predicting 
pyrazine and related derivatives antagonistic activity against 
the NMDAR. Moreover, 3D-QSAR analyses using k-Nearest 

neighbor molecular field analysis, stepwise forward-
backward and simulated annealing methods have shown that 
steric and electrostatic features are playing essential roles in 
order to optimize the activity and selectivity of pyrazine and 
related lead compounds. According to 3D-QSAR study, the 
general structure of the pyrazine derivatives was classified 
into three regions (Fig. 35) including central scaffold, right 
hand side of the central scaffold, and left hand side of the 
central scaffold. More fused aromatic/hetero-aromatic rings 
at central scaffold were required for optimization of the 
NMDAR binding activity of the lead compounds, and the 
right hand side accommodated substitutions that hold elec-
tronegative atoms with less steric electropositive groups. The 
positive range for electrostatic interaction for left hand side 
substitutions indicated that the presence of electropositive 
groups on the phenyl ring is detrimental for the antagonistic 
activity. Furthermore, a 3D chemical feature based pharma-
cophore model was built using docking study, which con-
sisted of two aromatic rings, one hydrogen bond donor and 
one hydrogen bond acceptor. Authors concluded that the 
developed pharmacophore model could be used as a 3D 
structural query for VS of commercially available chemical 
databases of diverse chemical compounds to retrieve new 
potential drugs, and 2D- and 3D-QSAR models could be 
used to predict the activities of identified hits obtained from 
the VS. 

 Computational target finding approaches can predict pro-
tein targets and therapeutic activities of small molecules 
against the whole set of targets to be assessed. Application of 
these cheminformatic and 3D-QSAR approaches is needed 
to significantly decrease the animal or human experiments in 
the process of drug discovery. Nikolic et al. [145] studied 

 
Fig. (34). Fragment contribution map for the most potent and least potent compounds obtained using HQSAR. 

 
Fig. (35). Three regions of molecules considered in the study. 
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multi-potent ligands targeting MAO-A and B; AChE and 
BChE; and also histamine N-methyltransferase (HMT) and 
Histamine H3 receptor (H3R) which are promising novel 
drug candidates for treatment of neurological conditions, 
such as depression, AD, obsessive disorders, and PD. In this 
study, authors used cheminformatic approach to predict the 
pharmaceutical targets associated with the 134 novel multi-
target ligands able to interact with MAO-A and B; AChE 
and BChE; or with HMT and H3R. Data collected from three 
classes of novel multi-target ligands was used to build 3D-
QSAR models for activity evaluation at the selected targets 
and identify the main pharmacological groups of the com-
pounds. The first group of ligands contained of novel car-
bonitrile–aminoheterocyclic compounds, determined to have 
activity on both MAO-A and B. Amongst these, dicarboni-
trile aminofuran derivatives were found to be potent and 
selective MAO-A inhibitors. The second set consisted acety-
lene, indol, piperidine and pyridine derivatives that simulta-
neously exhibited strong inhibitory activity towards MAO-
A, MAO-B, AChE, and BChE which are putative multi-
target inhibitors for therapy of neurodegenerative AD. The 
third group of compounds included pyridine, quinoline and 
piperidine derivatives that possess possible inhibitory effects 
against H3R, HMT and AChE/BChE. The cheminformatics-
based target predictions were in good accordance with four 
3D-QSAR (H3R/D1R (dopamine receptor)/D2R/5-HT2aR (5-
hydroxytryptamine 2A receptor) models for the various re-
ceptors. As a result of this work, multi-target AChE/BChE 
/MAO-A/MAO-B, and also D1/D2/ 5-HT2a/H3R inhibitors, 
such as 63/Donz-D9 and 71/MBA-VEG8 (Ki for 5-HT1aR = 
108 nM and the Ki for 5-HT2aR = 14.2 nM) (Fig. 36), were 
identified as new drug candidates which could be selected 
for further investigation to facilitate the development of 
other new agents with enhanced activity. 

 For development of dual inhibitors which are able to 
cleavage the interactions between AβPP and BACE-1 and 
simultaneously can interact at the peripheral anionic site of 
AChE, Goyal and coworkers [146] peformed Group-based 
QSAR analysis on a series of 20 1,4-dihydropyridine (DHP) 
derivatives inhibiting BACE-1 to find out the essential struc-
tural requirements of the molecular fragments of these mole-
cules that are crucial for their biological activity. To perform 
G-QSAR analysis, each selected compounds was divided 
into 4 fragments based on four different R-groups namely, 
R1, R2, R3, and R4 on a common DHP moiety (Fig. 37). A 
total of 705 physicochemical descriptors including electro-

topological state index, element count, Merck molecular 
force field atom type count, and molecular topological index 
and alignment independent descriptors were generated using 
Vlife MDS. Then, simulated annealing as variable selection 
method along with PLS regression as model building method 
was used to build G-QSAR model. A combinatorial library 
of 86,400 compounds was generated and subjected to gener-
ated G-QSAR model to biological activity prediction. The 
3,405 molecules with highest activity values were introduced 
to docking studies and two top scoring compounds (XP score 
of −15.20 kcal.mol-1 for BACE-1 and −11.92 kcal.mol-1 for 
ACHE) were selected to investigate of their molecular inter-
action with the target proteins, which indicated significant 
binding affinity towards BACE-1 and AChE. 

 Polychronopoulos et al. [147] constructed a quantitative 
model correlated the IC50 activities of indirubins, a family of 
bis-indoles isolated from various natural sources, with calcu-
lated interaction energies extracted from molecular mechan-
ics docking-scoring calculations, utilizing recent co-crystal 
structures of various indirubins with GSK-3β, CDK2 and 
CDK5/p25. This modeling approach allowed them to under-
stand the molecular basis of indirubins' action and selectivity 
and to predict improvements of this family of bis-indoles as 
kinase inhibitors. The method contained two main steps: (a) 
correlation-coupled receptor minimization and (b) uncon-
strained ligand relaxation/Monte Carlo search. Based on the 
results for the main model, molecules including 6-substituted 
and 5,6-disubstituted indirubins were predicted and experi-
mentally evaluated as inhibitors. The authors suggested that 
the affinity of indirubins for GSK-3α/β depends principally 
on the hydrophobic van der Waals energy term, which con-
siders 66–92% of the sum of the three energy terms (VDW, 
electrostatics, and H-bonding). 

 The advantage of PCM over QSAR is the addition of 3D 
protein target information in which non-covalent interactions 
between protein and ligands are numerically encoded by the 
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Fig. (36). Chemical scaffolds of a) 63/Donz-D9 and b) 71/MBA-VEG8. 

HN

O

HN

O
H

H

H

O

R1

R2

R3 R4H  

Fig. (37). 2D structure of common moiety of DHP derivatives. 
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concatenation of ligand and target descriptors. As an exam-
ple, Ain et al. [148] used 12,625 distinct protease inhibitors 
and their bioactivity against 67 targets of the serine protease 
family (20 213 data point) to model the multi-target inhibi-
tory profiles of serine proteinase inhibitors. In order to 
evaluate whether the inclusion of explicit protein informa-
tion enhances model performance, authors built separate sets 
of RF models, some using only ligand descriptors, which 
they called “individual and global QSAR models”. The 
“PCM models” were also built using the inclusion of explicit 
target information. Authors found that the models including 
protein descriptors (PCM) performed substantially better 
than ligand-only ones, in terms of both R2 (0.64 v 0.35) and 
root mean squared error (0.66 v 1.05 log units). They antici-
pated that using the binding site amino acids and the protein 
sequence descriptors in their models contribute to increase 
model performance. 

 Caspase-3 is a key executioner member of the caspase 
family which inappropriate control of it has been implicated 
in many diseases, including neurodegenerative disorders, 
cancer, and autoimmune diseases. Firoozpour et al. [149] 
used linear (MLR), non-linear (ANN) methods as global 
models and an approach based on ‘Extended Classifier Sys-
tem in Function approximation (XCSF)’ as a local model to 
model the bioactivity of 658 caspase-3 inhibitors. In total 
1,481 descriptors were calculated which after feature selec-
tion 24 descriptors remained for the linear model and seven 
variables for the non-linear models. The results showed that 
the XCSF as a local modeling strategy estimate caspase-3 
inhibition activity better than the global models such as lin-
ear regression and ANN. The atom-centered fragments type 
CR2X2, electronegativity, polarizability, atomic radius and 
also the lipophilicity of the molecule were found to be the 
key features contributing to the caspase-3 inhibition activity, 
which can be exploited for further development of new 
caspase-3 inhibitors. 

 The dopamine receptors have been implicated in PD and 
schizophrenia. Unfortunately, no crystal structure is cur-
rently available and thus the search for new antagonists has 
used QSAR models. Oloff et al. [150] employed four differ-
ent QSAR methods (CoMFA, simulated annealing-partial 
least squares (SA-PLS), kNN, and SVM) on a set of 48 
compounds, and training as well as testing statistics were 
generated. With the exception of CoMFA, these approaches 
employed 2D topological descriptors generated with the 
MolConnZ software package. Each of the validated KNN 
and SVM models were also used to mine compound data-
bases of over 750 000 molecules that resulted in 54 consen-
sus hits with moderate to high predicted affinities. Five of 
these hits had experimentally confirmed binding to the do-
pamine D1 receptor (pKi= 5.6 - 8) and were not present in the 
training set, while other suggested hits did not contain the 
catechol group normally seen in most dopamine inhibitors. 

 Bolisetty et al. [151] performed QSAR and docking stud-
ies in order to find out the structural relationship with the 
activity and the interaction between aphorphine inhibitor 
(C17H17N), a heterocyclic quinoline compound, and Dopa-
mine Receptors (D2) which are the main drugs used in the 
treatment of PD. QSAR technique was applied to the twenty 

five aphorphine analogues that were varied at the positions 
of different substituent’s. Quantum chemical calculations at 
the DFT/RB3LYP/631G* (restricted B3LYP), RHF/6-31G* 
(restricted Hartree-Fock), AM1 (Austin Model 1) and PM3 
(Parameterized Model number 3) semi empirical theory lev-
els, were employed for full optimization of the selected neu-
tral compounds. The biological activity data and the phys-
icochemical properties IPV (vertical ionization potentials), 
IP (ionization potential), EA (electron affinity), EI (electro-
philic index), EN (electro negativity), Hardness, Softness, 
LogP (partition coefficient), HE (hydration energy) and POL 
(polarisability) of the aphorphine derivatives were subjected 
to regression analysis. The AM1 and PM3 semi-empirical 
methods have been used to estimate the predictive power of 
final QSAR equations. The results revealed that higher val-
ues of electron affinity (EA), Hardness and Softness were 
responsible for higher inhibitory activity nature for D2 en-
zyme. Moreover, QSAR coupled with molecular docking 
studies indicated that, [6aR]-6,10-dimethyl-5,6,6a,7-tetrahydro-
4H-dibenzo [de, g] quin derivative of aphorphine with the 
highest percentage of concentration can become a potential 
lead for treating PD. 

 A perfect example for the excellence of the ANNs and 
combination of VS and HTS was demonstrated by Mueller 
[152] to identify novel positive and negative allosteric modu-
lators of mGlu5 (Metabotropic Glutamate Receptor 5) used 
in the treatment of several CNS diseases as anxiety, PD, 
schizophrenia. Authors first performed a traditional HTS of 
approximately 144,000 compounds for the identification of 
positive allosteric modulators (PAMs). This screen yielded a 
total of 1,356 hits which was then used to develop a QSAR 
model that could be applied to a VS. To generate the QSAR 
model, a set of 1,252 different descriptors across 35 catego-
ries were calculated using the ADRIANA software package 
which comprised scalar, 2D and 3D descriptor categories. A 
statistical model was created with an ANN and the authors 
iteratively removed the least sensitive descriptors through 
several rounds in order to create the optimal set. This final 
set included 276 different descriptors, including scalar de-
scriptors such as molecular weight up to 3D descriptors in-
cluding the radial distribution function weighted by lone-pair 
electronegativity and pielectronegativity. A VS was per-
formed against approximately 450,000 commercially avail-
able compounds in the ChemBridge database. 824 com-
pounds were tested experimentally for the potentiation of 
mGlu5 signaling. Of these compounds, 232 were confirmed 
as potentiators or partial agonists. This hit rate of 28.2% was 
approximately thirty times greater than that of the traditional 
HTS and the VS took approximately one hour to complete 
once the model had been optimized. 

 NMDA receptor (NMDAR) belongs to the family of 
ionotropic glutamate receptors that requires both binding of 
glutamate and partial membrane depolarization for its activa-
tion. It has become increasingly clear that CNS disease can 
arise from both NMDAR hypofunction and NMDAR hyper-
activity in different pathways, which hypofunction of 
NMDAR occurs in schizophrenia and hyperactivity leads to 
neuronal death as in HD. Chtitaa et al. [153] carried out mul-
tiple linear and non-linear regression and an ANN to con-
struct a QSAR for non-competitive antagonists of NMDAR 
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by studying a series of 48 substituted dibenzo[a,d] 
cycloalkenimine derivatives. Geometrical optimization of 48 
antagonists of NMDARs was performed by Lee–Yang– Parr 
exchange correlation functional with the 6-31G (d) basic set. 
The quantum chemistry descriptors were obtained for the 
model from the density functional theory calculations as fol-
lows: total energy (E), EHOMO, ELUMO, HOMO-LUMO 
gap, µ, hardness, χ and the reactivity index. The results re-
vealed that the ANN had substantially better predictive ca-
pability than the other two models and showed good stability 
to data variation in leave-one-out cross-validation with 
greater predictive power. 

 The cyclic nucleotide phosphodiesterases (or PDE’s) are 
enzymes that control the cellular levels of the second mes-
sengers, cAMP (Cyclic adenosine monophosphate) and 
cGMP (Cyclic guanosine monophosphate), by regulating 
their rates of degradation. Inhibitors of other PDE enzymes 
are being explored for coronary heart disease, dementia, de-
pression, and schizophrenia. Dong and Zheng [154] utilized 
a novel structure-based QSAR strategy to investigate the 
SAR of 35 indole derivative-based PDE-4 inhibitors. This 
new formalism described molecular descriptors based on the 
matching of their pharmacophore feature pairs with those 
(the reference) of the target binding pocket. The reference 
was derived from the X-ray crystal structures of the target 
under study (1xon.pdb). The general process of Structure-
based Pharmacophore Key (SB-PPK) was as follows: first, 
the LigandScout program was employed to derive structure-
based pharmacophore centers from the target binding site, 
then, the LigandScout program was used to perceive the 
pharmacophoric groups on small organic molecules, finally, 
once the pharmacophore feature pairs for both the receptor 
and ligand molecules were generated, authors compared 
them to determine pattern matches. The descriptors of the 
PDE-4 inhibitors were then determined based on receptor’s 
pharmacophore feature pairs matching with small molecule’s 
pharmacophore pairs. PLS method with different number of 
principle components used in the regression model was em-
ployed to establish predictive QSAR models. The new struc-
ture-based descriptors could offer structural insights into the 
critical features responsible for the potency of the inhibitors 
and overcomed the drawbacks of traditional descriptors that 
ignore the binding pocket information. 

 Sinha et al. [155] carried out fragment based G-QSAR, 
molecular docking and MD simulations studies on HDAC 
inhibitors having hydroxamic moiety for elucidating its role 
towards ataxia. G-QSAR model was generated based on a set 
of 44 hydroxamate class of compounds that have pivotal role 
in inhibiting HDAC enzymes and was used to determine the 
structural modifications needed for hydroxamic derivatives 
as anti-ataxia compounds. In G-QSAR a variety of 2D de-
scriptors were employed in the QSAR model generation, 
which after removing of the invariable molecular descriptors 
288 descriptors were used. Two combinatorial libraries con-
stituted of 3,180 compounds with hydroxamate moiety as the 
template with the substitution site R1 were generated using 
the Leadgrow module in VLife MDS (Molecular Design 
Suite) and biological activity of these compounds were pre-
dicted using G-QSAR model. G-QSAR model prediction 
yielded 53 molecules with highest predicted activity ranging 

from 6.14 to 7.28 M, which were selected and docked at the 
His-Asp dyad active site of HDAC4. In order to gain insights 
into inhibitory roles of hydroxamic acid derivatives, molecu-
lar docking and 20 ns long MD simulations were performed 
to understand the mode of interaction for these inhibitors 
with regard to hydrogen bond and hydrophobic interaction 
with His802, Asp840, Pro942 and Gly975 residues of 
HDAC4. Furthermore, to capture the dominant modes of the 
protein motions dominant and collective modes of the pro-
tein, principal component analysis was performed using tra-
jectory data obtained from MD simulation. Overally, com-
pounds HIC (N-hydroxy-5-(1H- imidazole-4yl) thiopene-2-
carboxamide) and DHC ([(1r,4as,8aR) decahydronapthelene-
1yl-3'-N-hydroxy-thiopene-2-carboxamide]) with pIC50 (ac-
tivity) of 7.28 and 7.04 M were displayed good binding ac-
tivity which could be introduced as potent therapeutic leads 
against ataxia (Fig. 38). 

 The cytochrome P450 isoenzyme 2D6 (CYP2D6) in-
volved in the metabolism and elimination of about 20–25% 
of clinically used drugs. Ringsted et al. [156] developed 
QSAR models using a training set of 747 chemicals for the 
CYP2D6 utilizing the three modeling systems included Mul-
tiCASE, Leadscope Predictive Data Miner and MDL QSAR. 
Moreover, the constructed models were employed to screen a 
structure set of 57,014 discrete organic chemicals, including 
all discrete organic European Inventory of Existing Com-
mercial Chemical Substances (EINECS) chemicals for 
CYP2D6 substrates and non-substrates. The differences in 
models and applicability domains of models in MultiCASE, 
Leadscope and MDL QSAR were observed, which MDL 
QSAR model had the highest domain (90% of the screened 
EINECS), next was MultiCASE (47% of the screened 
EINECS) and last was Leadscope (22% of the screened 
EINECS). The percentages of the screened EINECS chemi-
cals that were identified positive as CYP2D6 substrate 
(among the EINECS chemicals set) varied from 8% for the 
MultiCASE model to 18% for the MDL QSAR model. The 
generated QSAR models for the CYP2D6 can be employed 
to screen CYP2D6 substrates in untested chemicals and rec-
ognize the potential risk associated with exposure to envi-
ronmental chemicals. 

 Gharaghani and coworkers [157] performed molecular 
docking, MD simulation and structure-based QSAR studies 
to explore structural features and binding mechanism of a 
series of naphthalene and non-naphthalene derivatives 
(n=38) as potent inhibitors of CYP2A6. A 6000 ps MD 
simulation was performed to generate the 3D structure of 
CYP2A6 in a water environment and 2-bromonaphthalene 
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Fig. (38). Graphical representation of (A) HIC, and (B) DHC. 
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(most potent inhibitor with pIC50= 6.26) was docked into the 
final structure derived from the MD trajectories of enzyme to 
obtain binding site of CYP2A6. Then, the docked configura-
tions of the inhibitors with the lowest free energy were used 
to calculate the most feasible descriptors to build a QSAR 
model using MLR and least squares support vector regres-
sion (LS-SVR). The results revealed that the performance of 
LS-SVR model in terms of root-mean-square error (RMSE), 
correlation coefficient, and predictive squared correlation 
coefficient (Q2) for the test set was better than the MLR 
model. The docking analysis showed that π–π interaction of 
the inhibitors with four phenylalanine residues at positions of 
107,111, 118, and 480 plays an important role in the activi-
ties of the inhibitors. Moreover, the complex of enzyme with 
2-bromonaphthalene (the most potent inhibitor) was used in 
6000 ps MD simulation to explore the conformation changes 
of the complex, which indicated that the structure of the 
CYP2A6 in the presence of 2- bromonaphthalene has not 
altered. 

 Mandi and coworkers [158] developed QSAR models of 
forty seven 2-aminothiazole derivatives with inhibitory ac-
tivity against PrP using machine learning approaches, which 
consisted of MLR, ANN and SVM. Molecular graphics were 
drawn using ChemAxon Marvin and the geometries were 
optimized at the density functional theory (DFT) level using 
hybrid functional (B3LYP) in combination with the 6-
31G(d) basis set. Then, a set of quantum chemical descrip-
tors was acquired from the low energy conformer of the 
structures which included the total energy of the molecule 
(Etotal), highest occupied molecular orbital energy 
(EHOMO), lowest unoccupied molecular orbital energy 
(ELUMO), dipole moment (µ) of the molecule, electron af-
finity (EA), ionization potential (IP), energy difference of 
HOMO and LUMO (HOMO-LUMOgap), Mulliken electro-
negativity (χ), Hardness, Softness, Electrophilicity (ω), EI, 
most negative atom in the molecule (Qneg), most positive 
atom in the molecule (Qpos) and the mean absolute atomic 
charge. Descriptors having invariable value and pairs of 
variables with correlation coefficient greater than 0.9 were 
removed using the Unsupervised Forward Selection algo-
rithm. The independent variables (e.g. quantum chemical and 
molecular descriptors) and the dependent variable (e.g. 
pEC50) were subjected to multivariate analysis using MLR 
and machine learning techniques, particularly SVM and 
ANN. Of the tested learning methods, SVM was demon-
strated to be the best learning approach for predicting the 
anti-prion activity while ANN and MLR gave similar level 
of performance. This study provided guideline for future 
structural modifications of 2-aminothiazoles as therapeutic 
agents against prion with potentially higher potency and less 
toxicity. 

 Tetracyclines are potentially effective drugs in the treat-
ment of human prion disease, a group of infectious fatal 
NDDs in which PrPC change in conformation to become an 
abnormal misfolded isoform (PrPSc). Base on antifibrillo-
genic tests on aggregates formed by PrP106–126 with tetra-
cycline and 14 derivatives, Cosentino et al. [159] performed 
a 3D-QSAR study to investigate the stereoelectronic features 
affecting the anti-fibrillogenic activity. Authors carried out a 
molecular descriptors selection step using statistical extrema 

technique (SESAME) to obtain a predictive QSAR models 
and then the best QSAR models was searched using the ge-
netic algorithm-variable subset selection (GA-VSS) method. 
Finally, a 6-variable model exhibited good statistical quality 
and the best predictability of the anti-fibrillogenic activity. 
The 3D-QSAR investigation highlighted that hydroxyl group 
introduction in positions 5 and 6, electrodonor substituents 
on the aromatic D-ring, alkylamine substituent at the  
amidic group in position 2 and non-epi configuration of the 
NMe2 group were the best tetracycline substitution patterns 
(Fig. 39). 

 Kynurenine monooxygenase (KMO) enzyme is a promis-
ing drug target to address the neurodegenerative disorders 
such as HD. Amin et al. [160] used regression and classifica-
tion based multi-QSAR modeling (such as multiple linear 
regression, ANN, SVM, LDA, Bayesian classification), 
pharmacophore mapping and molecular docking approaches 
to identify important physicochemical and structural features 
of fifty six arylpyrimidine KMO inhibitors. Pharmacophore 
mapping showed the importance of two hydrogen bond ac-
ceptors (HBA), one hydrophobic (HY) and one ring aromatic 
(RA) feature. The pharmacophore mapping results were in 
agreement with the molecular docking study. As the MLR 
model was found to be the best over the ANN and SVM 
model, it was used for predicting new molecules that may 
have better inhibitory properties compared to the observed 
molecules. Ten new compounds (IC50= 0.00015 - 0.00163 
µM) were proposed and validated through the pharma-
cophore mapping and docking analysis. 

 REST/NRSF, also known as Repressor Element 1/Neuron- 
restrictive silencer element (RE1/NRSE), is a multifunc-
tional transcription factor that regulates gene expression by 
binding to a DNA regulatory motif. An increase in 
RE1/NRSE genomic binding is found in HD, causing to the 
RE1/NRSE sites activation and represses transcription of 
several important neuronal genes. Leonea et al. [161] carried 
out SAR and 3D-QSAR pharmacophore studies on a library 
of commercially available 2-aminoisothiazoles, which vari-
ously substituted at the amino group or at position 4, as most 
active modulators of the RE1/NRSE silencing activity. To 
build a library of 2-aminothiazoles with differences in re-
gions 1 (in the amino group) and 2 (position 4) (Fig. 40), a 
similarity search was done using the Ligand-Info system, 
which searched similar compunds in a database and selected 
molecules with modified Tanimoto coefficient of > 0.72. The 
SAR analysis revealed that the para-position of aromatic ring 
in region 1 should be substituted by a lyophilicity and mod-
erate steric encumbrance, but H-bond acceptor capabilities 
were also favorable and region 2 should be characterised by 
an aromatic bicycle containing heteroatoms with H-bond 
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Fig. (39). Chemical structure of tetracycline with atom numbering 
and ring labels of the hydronaphthacene moiety. 
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acceptor capabilities. A 5-feature pharmacophore model 
were developed using Phase methodology based on a set of 
eight diversely substituted and active 2-aminothiazoles 
which additionally supported the observations based on the 
SAR analysis. This study could be useful for identifying 
novel closely related derivatives and the generated pharma-
cophore model could be also utilized as 3D query for VS of 
large chemical databases with the aim of discovering new 
classes of RE1/NRSE silencer modulators. 

 Ensemble methods (EMs) are computational algorithms 
that construct numerous base models using multiple machine 
learning algorithms and combine them into a generalizable 
model that predicts the properties of new compounds based 
on the combination of single classifiers predictions to obtain 
reliable and more accurate predictions. Helguera et al. [162] 
proposed a new EM, which uses a GA-based search to find 
the best ensemble combination providing the best VS per-
formance in the identification of dual target ligands for 
AA2AR binding and MAO-B inhibition, as potential thera-
peutics for PD. In this regard, two sets of QSAR models 
were independently developed for each target, in which three 
classes of base classifiers and three feature selection methods 
were utilized to generate 9 different classifier pairs. To train 
and validate the nine diverse classifier types, three modeling 
set partitions namely, 1M, 2M and 3M, obtained after apply-
ing the sphere exclusion algorithms were used . In outcome, 
27 distinctive classification experiments per target (hMAO-B 
inhibition and antagonism of the AA2AR) were carried out. 
The so-called external evaluation set is employed to verify 
the real predictive power of 27 best performing models per 
endpoint. The whole pool of classification models for 
AA2AR binding and MAO-B inhibition were first filtered to 
obtain the accurate, robust and predictive models as ensem-
ble members. For retrieving of dual-target ligands, authors 
selected a set of representative models for each target using 
EF and BEDROC to guarantee the diversity in the pool of 
base models for further ensemble generation. Subsequently, 
authors took into account the applicability domain for the 
final pool of models forming the ensemble, and then, the 
scores computed by each model for the compounds within 
model’s applicability domain were utilized to get a relative 
ranking of each sample. Immediately after the relative rank 
of every sample in each model was computed, the final ag-
gregated score was obtained by averaging these relative rank 
values over the models. At last, the final ensemble ranking 
was obtained by sorting the compounds in ascending order 
based on this aggregated score. The fundamental preferred 
standpoint of the proposed algorithm was that it was capable 
of finding the combination of models giving better perform-
ance for ligand-based drug discovery problem. Results indi-

cated that the obtained ensembles exhibit an improved pre-
dictive performance as compared to the best individual 
model based on the evaluated enrichment metrics. 

 MAO isoenzymes A and B present a significant pharma-
cological interest due to their role in the breakdorn of neuro-
transmitters like norepinephrine, epinephrine and dopamine, 
which have a key role in neurodegenerative and stress-
related disorders. Helguera et al. [163] presented ensemble 
methodology that successfully integrates a set of accurate 
and representative QSAR models to the classification of 
hMAO inhibitors. They first selected a large and diverse 
dataset of heterocyclic compounds for making QSAR mod-
els with a broad applicability, which included chromones, 
homoisoflavonoids, coumarins, chalcones, thiazolylhydra-
zones and pyrazole. The diverse base classifiers were gener-
ated by applying LDA to data extracted from different sub-
sets of molecular descriptors obtained from DRAGON, 
MOE and MODESLAB structural representation and differ-
ent feature selection algorithms. The final models predicted 
the inhibitory activity and selectivity toward hMAO with 
acceptable accuracy using a external set compounds, com-
prising 10 new chromones derivative and 15 coumarins with 
unknown activity. By considering different combination 
schemes, authors proved that the ensemble model can im-
prove performance over the base classifiers. Summary of the 
other reported QSAR studies employed to identify potential 
inhibitors for neurological targets has been listed in Table 5. 

7. QUANTUM MECHANICS STUDY 

 QM methods add an extra layer of detail to the classical 
potential descriptors, which account for the electronic 
changes that occur upon ligand binding to a receptor. These 
descriptors are useful in giving qualitative information re-
garding protein–ligand interactions, which can then be used 
to guide medicinal chemistry in ligand design [187]. QM 
methods have been applied for many CADD problems, such 
as: describing molecular interactions, providing estimates of 
binding affinities, determining ligand energies, refining mo-
lecular geometries, scoring of docked protein–ligand poses, 
describing molecular similarity, and deriving descriptors for 
QSAR. Divided into two sections, the first will examine QM 
methods in structure-based drug discovery (SBDD), particu-
larly in optimizing structures and calculating interaction en-
ergies. The second section will focus on ligand-based appli-
cations, particularly in the exploration of conformational 
space, similarity measurements and in the era of QM-based 
QSAR descriptors [188]. 

 Rahman et al. [189] employed density functional theory 
to design a series of halogen-directed donepezil drugs to 
repress AChE activity. Nonplanar piperidine rings can adopt 
either the chair or boat-like conformation, so according this, 
authors considered the chair as well as the boat conformation 
prior to halogen-directed modifications on donepezil. DFT 
employing B3LYP/MidiX and B3LYP/6-311G+(d,p) level 
of theory had been applied to optimize both the chair and 
boat conformers of the donepezil and halogenated ligands. 
Gibbs free energy, enthalpy, partial charge distribution, mo-
lecular µ and molecular orbitals calculations of these ligands 
were also explored to comprehend how halogenation affect 
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Fig. (40). Selected regions of interest for SAR evaluation. 
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Table 5. Reported QSAR studies used in neurodegenerative diseases drug discovery. 

Author (Year of 
Publication) 

Diseases 
QSAR Technique 

Performed 
Chemical Scaffold 

Under Study 
Target Significance of Study 

Rezaei Makhuri 
et al. (2015) [61] 

ALS 3D-QSAR using 
CoMFA, CoMSIA 

and Auto GPA 

A series of 47 N-
(benzothiazolyl)-2-
phenyl-acetamides 

CK-1δ The results of 3D-QSAR analyses revealed that hy-
drophobic and negatively charged groups at 6th posi-
tion of benzothiazole ring and positively charged and 

bulky groups at ortho position of phenyl ring in N-
(benzothiazolyl)-2-phenyl-acetamides were favorable 

for high bioactivity. 

Zhu et al. 
(2006) [164] 

PD, AD 3D-QSAR using 
CoMFA and CoM-

SIA techniques 

A set of 55 tripeptide 
aldehyde inhibitors 

20S protea-
some 

The contour maps corroborated with the structural 
features of the binding pocket of β5 subunit of 20S 
proteasome, which proposed that the built models 

could be applied to pre-screen compounds to expedite 
the development of lead-compounds with optimized 

pharmacokinetic properties.  

Fresqui et al. 
(2013) [165] 

anti-AD, 
antidepres-

sant and 
anti-PD 

3D-QSAR A set of 34 ampheta-
mine derivatives (the 
R and S configura-
tions of a series of 
MAO A inhibitors) 

MAO A Six descriptors, namely, CHELPG atomic charges 
C3, C4 and C5, electrophilicity, molecular surface 

area and logP were found to be significant, consider-
ing both the configurations. 

Bharate et al. 
(2013) [166] 

AD Descriptor based 
QSAR and phar-
macophore based 

QSAR studies 

A series of meridianin 
analogs 

Dyrk1A 
 

This study revealed that Kier Chi4 path/cluster (mo-
lecular connectivity index), total lipole (measure of 
the lipophilic distribution in a 3D space), VAMP 

polarization (polarizability coordinate), Dp and logP 
play vital role in Dyrk1A inhibition. 

Tong et al. 
(1996) [167] 

AD 3D-QSAR 
(CoMFA) study 

A series of 1-benzyl-
4-[2-(N- benzoy-

lamino)ethyl] 
piperidine derivatives 

and of N-
benzylpiperidine 
benzisoxazoles 

AChE i) Substitutions with bulky and/or lipophilic groups at 
the benzisoxazole and benzoyl moieties are important 

for the activity; 
ii) The oxygen in isoxazole ring, if replaced with less 
electronegative atom like nitrogen or sulfur, is found 

to diminish the potency; 
iii) The basicity of the nitrogen atom in N-piperidine 

ring is important in contributing to the activity; 
iv) Occupying the ortho position of the benzoyl moi-

ety with steric bulk negatively affects the activity. 

Ponmary et al. 
(2010) [168] 

PD SW-MLR method 
 

Compounds structur-
ally similar to glycerol 

Parkinson’s 
disease 
causing 
targets 

The results demonstrated the high robustness and real 
predictive power of IC50 model. 

Jung et al.(2007) 
[169] 

AD  (GA)-MLR and 
 (SA)-MLR 

Tacrine derivatives (a 
set of 80 structurally 
heterogeneous com-
pounds composed of 
11H-indeno-[1,2-b]-
quinolin-10-ylamine 
derivatives, thiopyra-
noquinolines, pyrano-
quinolines and ben-
zonaphthyridines, 
tacrine-E2020 hy-
brids, bis-tacrine 
congeners, and 

tacrine-hurprine het-
erodimers) 

AChE The best equation was obtained from SA MLR with 
greater explanatory and prediction capability. The 

results suggested the important roles of hydrophobic 
and electrostatic interactions on increasing the struc-

ture’s AChE activity.  

(Table 5) contd…. 
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Author (Year of 
Publication) Diseases QSAR Technique 

Performed 
Chemical Scaffold 

Under Study Target Significance of Study 

Chen et al. 
(2012) [170] 

Neuroprotect-
ive profile and 

a moderate 
Ca2+ channel 

blockade effect 

3D-QSAR models 
based on the flexible 
docking alignment 
using CoMFA and 

CoMSIA 

multi-target-directed 
AChEIs of tacrine-

nimodipine dihydro-
pyridine 

AChE The results indicated that the IC50 can be improved 
by means of increasing the electronegativity and 

introducing small volume substituent at 3-position 
of the DHP (1,4-dihydropyridines) and hydropho-

bic like methoxy group was favorable to the 4-
position of the benzene ring of DHP. 

Hoeglund et al. 
(2010) [171] 

Cancer pro-
gression, MS, 
obesity, diabe-
tes, AD, and 
chronic pain 

Integrated ligand-
based computational 

strategies (binary 
QSAR), medicinal 
chemistry, and ex-
perimental enzy-

matic assays 

Analogues of the 
most potent hit (H2L 
7905958, IC50 of 1.6 

± 0.4 µM) 

Autotaxin 
(ATX) 

Analogues of the lead compound were examined 
and four of the 30 indicated IC50 less than or equal 
to the lead. The most potent analog indicated an 

IC50 of 900 nM with respect to ATX-mediated FS-
3 hydrolysis with a Ki of 700 nM, making this 

compound approximately 3-fold more potent than 
the lead. 

Recanatini et al. 
(1997) [172] 

AD Comparative 2D-
QSAR studies 

Three classes of 
AChEIs, for example, 
physostigmine ana-

logs, 1,2,3,4-
tetrahydroacridines 

(tacrine analogs) and 
benzylamines 

AChE i) Hydrophobicity plays a crucial role in both the 
physostigmine and the benzylamine-derived 

classes; ii) electronic effects are vital for the inter-
actions shown by the variable portion of benzy-
lamine derivatives; and iii) steric factors are also 

important. 

Jain and Jadhav 
(2013) [173] 

AD 2D-QSAR using 
MLR 

Aminoimidazoles 
dataset 

β-Secretase 
(BACE-1) 

The study revealed that thermodynamic descrip-
tors (MR, logP, van der Waals energy, polar sur-

facearea) and steric descriptors (Harary index, 
Randic index) play important role in β-secretase 

inhibition. 

Debord et al. 
(1997) [174] 

AD 2D-QSAR Derivatives of 2-
amino-4,6-

dimethylpyridine, aryl 
(alkyl) carboxamides, 
thiocarbamides and 

amidrazones 

AChE and 
BChE 

The binding affinity was improved by the struc-
tural changes like: i) increase in molecular vol-

ume; ii) decrease in the energy of the LUMO; iii) 
insertion of a methylene group between the amide 
carbonyl and the aromatic ring; and iv) replace-

ment of the amide oxygen by sulfur. 

Huang et al. 
(2013) [175] 

AD 3D-QSAR using 
Topomer CoMFA 

125 
BACE-1 inhibitors 

BACE1 Topomer search was used for VS in lead-like 
compounds present in ZINC databases and as a 
result, they successfully designed 30 new mole-

cules with better activity than those present in the 
dataset. 

Hossain et al. 
(2013) [176] 

AD QSAR (3D-QSAR, 
HQSAR) and phar-
macophore mapping 

studies 

Structurally diverse 
BACE inhibitors 

BACE Both types of studies confirmed the importance of 
terminal meta-tolyl sulfonamide piperazine core 
and heterocyclic ring along with adjacent nucleo-
philic hydroxyl group and amide linkage. Finally, 
it was concluded from the findings that hydrogen 
bond donor and acceptor, hydrophobicity, electro-
static and steric properties of ligand are the impor-
tant features for interaction with receptor cavity. 

Dessalew et al. 
(2007) [177] 

cancer, chronic 
inflammation, 
bipolar disor-
ders and AD 

3D-QSAR studies 
using CoMFA and 

CoMSIA 

Novel class of pyra-
zolopyrimidine de-

rivatives 

GSK-3 Based on the contour analysis, authors deduced 
that improvement in GSK-3β binding affinity can 
be achieved through conformationally restricted 

substitution at N1 position near region A and 
keeping the electronegative group to the central 

core in region B. 

 
(Table 5) contd…. 
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Author (Year of 
Publication) Diseases QSAR Technique 

Performed 
Chemical Scaffold 

Under Study Target Significance of Study 

Garcı´a et al. 
(2010) [178] 

anti-AD, anti-
parasitic, anti-

fungi and 
antibacterial 

Multi-target LDA Heterogeneous struc-
tural GSK-3 inhibi-

tors 

GSK-3 The reported LDA model was significant, since 
one can use a single equation to predict the results 
of heterogeneous series of organic compounds in 
42 different experimental tests instead of develop-

ing and using 42 different QSAR models. 

Bhadoriya et al. 
(2014) [179] 

 AD 3D-QSAR using 
kNN-MFA 

A series of 34 fused 
5,6-bicyclic heterocy-

cles 

g-secretase The developed kNN-MFA model highlighted the 
importance of shape of the molecules, that is, 
hydrophobic and steric descriptors at the grid 

points His83 and Ser183, Ser227 for γ-secretase 
binding interaction. 

Barreca et al. 
(2003) [180] 

Anticonvulsa-
nts and neuro-

protectants 

A four-point Catalyst 
HIPHOP pharma-

cophore 

14 noncompetitive 
AMPA receptor an-

tagonists 

 AMPA 
 

This hypothesis, which consisted of two hydro-
phobic regions, one hydrogen bond acceptor and 
one aromatic region was employed to screen the 
Maybridge database and select eight compounds 
for testing of which six of these were found to be 

active in vivo as anticonvulsants. 

Valasani et al. 
(2013) [181] 

AD 2D-QSAR Frentizole, benzothia-
zole-urea derivatives 

 ABAD Based on QSAR studies of frentizole and ben-
zothiazole-urea derivatives, authors designed and 
synthesized novel small drug molecules as ben-

zothiazole-urea and frentizole phosphonate deriva-
tives, which might have the capacity to cross the 

BBB and inhibit ABAD interaction. 

Kaur et al. 
(2000) [182] 

AD 2D-QSAR Derivatives of 
physostigmine, 

tacrine, donepezil, 
huperzine A 

AChE It was concluded that all inhibitors were of hydro-
phobic nature as suggested by the presence of logP 
in the majority of QSAR models. Additionally, it 
was observed that all classes of inhibitors con-

tained ionizable nitrogen. 

Zhou et al. 
(2015) [183] 

AD 3D-QSAR (CoMFA 
and CoMSIA), mo-
lecular docking, and 

MD 

60 tacrine derivatives AChE The contour maps for five fields obtained from the 
optimal 3D-QSAR models revealed that the steric 
and H-bond fields of these compounds were es-

sential for their activities. Some key residues such 
as Tyr70, Trp84, Tyr121, Trp279, and Phe330 at 

the binding site of AChE were identified from 
molecular docking. 

Pourbasheer et 
al. (2015) [184] 

PD 3D-QSAR using 
CoMFA 

A series of pyrimidi-
nes such as AA2AR 

antagonists 

AA2AR Based on the derived results some novel potent 
AA2AR antagonists have been designed and the 
proposed models were used to predict the AA2AR 
antagonist activity of newly designed compounds. 

Dinata et al. 
(2013) [185] 

CJD QSAR using LR, a 
statistical model of 

parabolic regression 
and multiple regres-

sion. 

2-aminothiazole 
derivatives 

PrPSc The results indicated that steric and lipophilic 
were the parameter most closely related to im-

prove the biological activity of the compound 2-
aminothiazole derivatives.  

Hajimahdi et al. 
(2016) [186] 

AD, HD and 
PD 

SW-MLR A series of 53 potent 
1,2-benzisothiazol-3-

one derivatives 

Caspase-3 
(cysteine-
dependent 
aspartyl-
specific 

protease) 

The results indicated that atomic masses, atomic 
Sanderson electronegativities, atomic van der 

Waals volumes and atom-centered fragments had 
a key role in regulating the caspase-3 inhibitory 

activity. 

 
 

the ligand structure and control the non-bonding interactions 
with the acetyl cholinesterase. The HOMO-LUMO gap of 
these modified ligands were reasonably lower compared to 

that of donepezil, which revealed that these compounds were 
more chemically reactive. Moreover, with the aid of molecu-
lar docking calculation, they reported halogenated drugs in-
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teraction with different binding sites of AChE and indicated 
that donepezil and halogenated chair-formed ligands have 
non-covalent interactions mostly hydrophobic and π-stacking 
type with hydrophobic gorges and anionic subsites of AChE. 
Generally, modification with halogens remarkably enhanced 
the µ and polar nature of the modified ligands which made 
them thermodynamically more stable as apparent from en-
thalpy and Gibbs free energies. 

 Silva et al. [190] proposed two novel drug candidates 
with higher and selective inhibitory activity towards AChE 
using CADD techniques including MD simulations, molecu-
lar interaction field, density functional calculation, docking 
single calculations, VS along with ADME screening. In this 
study, the Density Functional method employing B3LYP/6-
31G* level of theory was utilized to obtain reliable initial 3D 
geometry of ligands. The Proposal 1 was gotten by altering 
donepezil through introduction of an amino group on the 
phenyl ring at the para position in regard to the piperidine 
ring, prompting to new extra hydrogen bond with AChE. 
Proposal 2 did not display good ADME parameters. The 
second potential AChEI presented in this study was the Pro-
posal 3, which had a familiar benzodiazepenic framework 
and was chosen by VS in a drug-like collection (Fig. 41). 
Through the interaction analysis of the AChE complexes of 
these new two proposed potential pharmaceuticals by dock-
ing studies using GOLD 3.1.1, authors acquired a GolsScore 
of 56.2, 63.2, and 62.0 for donepezil, Proposal 1, and the 
Proposal 3, respectively, suggested hypothetically that the 
proposed new potential pharmaceuticals could be promising 
AChEIs. Moreover, the potential of the proposals to cross 
the BBB was evaluated by polar surface area (PSA) and log 

P values proposed that the two new proposed molecules, 
Proposal 1 and 3, presented good ADME characteristics.  

 Small molecule inhibitors that bind tau protein-bearing 
NFT present the promising strategy for optimization of bind-
ing properties for the premortem differential diagnosis and 
staging of AD and other tauopathic NDDs. To investigate the 
correlation between ligand polarizability and site occupancy, 
Cisek et al. [191] examined the ability of two closely related 
benzothiazole derivatives ((E)-2-[[4-(dimethylamino)phenyl] 
azo]-6- methoxybenzothiazole) and ((E)-2-[2-[4(dimethylamino) 
phenyl]ethenyl]-6- methoxybenzothiazole)) in a different 
polarizability state to displace probes of high (thioflavin S) 
and low (radiolabeled (E,E)-1-iodo-2,5-bis(3-hydroxycarbonyl-
4-methoxy) styrylbenzene; IMSB) density sites. Quantum 
property calculations using hybrid density functional B3LYP 
and the 6-311++G(d,p) basis set were conducted to obtain 
electronic properties, as implemented in Gaussian 09 (G09) 
software package. QM computations indicated that highly 
delocalized electronic structure exhibited considerable π-
electron delocalization improved by the introduction of elec-
tron donating and accepting moieties. The findings suggested 
that electron delocalization stimulated the displacement of 
Thioflavin S and IMSB probes from tau lesions that exist  
at high density and that enhancing this property of ligand 
structure presented a strategy for optimization of binding 
properties for superior diagnostic and therapeutic perform-
ance (Table 6). 

8. QM/MM STUDY 

 The hybrid QM/MM computation is a compromise be-
tween the speed and accuracy, which allows for detailed 
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Fig. (41). Molecular structures of AChE inhibitors: (A) new proposed inhibitor by modifying Donepezil; (B) Donepezil; (D) hybrid; (E) 
inhibitor obtained by virtual screening. 
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analysis of ligand association for understanding or predicting 
their interactions. The QM/MM methods have been widely 
employed during the last decades to study chemical proc-
esses such as enzyme-inhibitor interactions [192]. 

 Da Cunha et al. [193] applied docking technique to study 
some piperidine derivative inhibitors of AChE and further 
proposed structures of six new AChEIs as potential new 
drugs against neurodegenerative disorders. Initially, the 3D 
structure of each piperidine derivatives was geometry-
optimized with no restriction in vacuum, and subsequently 
using the AM1 semiempirical method, in order to assign the 
partial atomic charges. Then, the compounds were docked 
into the AChE binding site using the Molegro Virtual 
Docker (MVD), and some relevant residues of the protein 
were considered flexible during the docking simulation. The 
relative binding energy was computed at the QM/MM level 
from the selected orientations obtained from docking calcu-
lations to investigate the influence of electronic effects on 
the relative binding energy. In this hybrid QM/MM strategy, 
a specified region around the active center was treated at an 
appropriate level of quantum chemistry theory, while the rest 
of the protein was described by a MM force field. The QM 
calculations were carried out with the B3LYP hybrid func-
tional, which consists of HF exchange, Slater exchange, 
Becke exchange, Vosko–Wilk–Nusair correlation and the 
correlation functional of Lee, Yang, and Parr (LYP). For the 
MM part of the QM/MM calculations, Amber force field was 
used. The relative binding energies at the QM/MM level 
showed a very good agreement with the docking energy cal-
culation. The best inhibitor proposed was submitted to addi-
tional MD simulations steps using the GROMACS 4.5.4 
package. The results indicated that compound G had pre-

sented better values than donepezil. Compounds D, E, J, K, 
and N showed theoretical inhibitory potencies better than 
experimentally tested drugs (Table 7). 

 HDACs are Zn2+-dependent metalloenzymes that cata-
lyze the hydrolysis of acetyl functional groups from the ε-N-
acetyl lysine amino acids of both histone and nonhistone 
proteins. It is much more challenging to simulate metallopro-
teins based on the empirical MM techniques, so, higher level 
theoretical models to investigate of protein–ligand binding, 
and also reactivity, are needed. Gleeson and Gleeson [194] 
employed hybrid QM/MM methods to study substrate bind-
ing and reactivity at HDAC8, which has a putative patho-
genic role in neurological conditions including AD and 
FRDA. The aim of this study was to develop and validate 
QM and QM/MM HDAC8 models for predicting new Zn 
binding moieties, and especially analyzing the interactions 
between new inhibitors and HDAC proteins that are subop-
timally described by traditional molecular mechanic meth-
ods. QM and QM/MM simulations were carried out using 
the Gaussian 09 program package, which the former used a 
polarizable continuum solvent model consisting of water 
while the latter employed the n-layered integrated molecular 
orbital molecular mechanics (ONIOM) method with the elec-
tronic embedding scheme. The calculations showed that the 
results obtained from relatively modest QM/MM methods 
for HDAC8 deacetylation are qualitatively similar to those 
obtained from higher basis set calculations or results where 
free energy effects have been incorporated. 

 Lucas et al. [195] used the combined QM/MM-QTAIM 
(Quantum Theory of Atoms in Molecules) analysis to de-
scribe the interactions between bapineuzumab and different 
forms Aβ peptide ((AβWT and AβN3 (pE)) which allowed 

Table 6. Compound structures and characteristics. 

Compound Structure MW λmax (nm) clogP Volume (Å3) 

Probes     

ThS 493 377 -4.3 427 
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to understand why the missing of two first residues (Asp1 
and Ala2) from the isoforms decreased the affinity between 
the antibody and peptides which begining with a pyrogluta-
mate residue. The ONIOM scheme permits a partition of the 
molecular system into high and low level layers, which in 
this study the paratope residues obtained from per residue 
energy decomposition, the Aβ peptide and the water mole-
cules were considered at he QM level, and rest of the system 
was in the low-level MM layer, using the AMBER force 
field. The binding energy of each Aβ–antibody complexes 
was computed as single-point energy calculations at 
B3LYP/6-31G (d) level of theory, with basis set superposi-
tion error (BSSE) corrections, using the geometries obtained 
by QM/MM calculations. 

9. MONTE CARLO STUDY 

 Search algorithms like quick explore (QXP) are based on 
Monte Carlo searching gotten from the strategy for Monte 
Carlo perturbation followed by energy minimization in Car-
tesian space which has been employed to design potent and 

selective inhibitors of hBACE1 for preventing AD by lessen-
ing the formation of neurotoxic Aβ aggregates [196]. In this 
study, flexible ligand docking calculations was carried out 
using the QXP Monte Carlo docking algorithm mcdock 
along with CombiDOCK. QXP optimized grid map energy 
and internal ligand energy to identify the structures of the 
receptor-ligand complex with minimum free energy. The 
search algorithm executed a rigid body alignment of ligand-
receptor complex with Monte Carlo minimization translation 
and rotation of ligand, which was coupled with another rigid 
body alignment and scoring using energy grid map. 

10. MD SIMULATION STUDY 

 In some cases, MD simulations of the protein target have 
been carried out before docking to explore the conforma-
tional space of the protein receptor, which differs from the 
available crystal structure(s). Moreover, MD simulations 
after docking could be performed to optimize the final struc-
tures, analyze the stability of different complexes, and ac-
count for solvent effects as final filter in silico or to guide 

Table 7. Proposed structure of new potential inhibitors. 
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P NO2 H CH3 H 6.07 

Q CHO H CHO H 6.18 
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chemical synthesis for hit optimization [197]. Identification 
of cryptic or allosteric binding sites, thermodynamics and 
kinetics of small molecules binding to proteins, generation of 
protein conformation ensembles for in silico drug design, 
validation of binding modes predicted by docking, elucida-
tion of mechanism of action of drugs and natural ligands are 
important applications of MD in drug discovery [198]. En-
hanced sampling methods are often coupled to MD to accel-
erate this process and to retrieve useful thermodynamic and 
kinetic data. Of the enhanced sampling techniques developed 
in recent years, we focus here on free-energy perturbation 
(FEP), steered MD, and metadynamics [199]. FEP calcula-
tions are based on MD simulations that explicitly consider 
conformational flexibility and entropy effects through the 
use of a physics-based force field to describe molecular in-
teractions and explicit solvent to model the real environment 
of the protein binding site. FEP calculations have demon-
strated astonishing potential for rational lead optimization 
[200]. Steered MD is a time-dependent external potential 
which is applied to the ligand to facilitate its unbinding from 
the target protein. Ligand undocking is therefore accelerated 
by acting on a descriptor (or CV), which is usually the pro-
tein−ligand distance or a vector describing the ligand exit 
pathway [201]. Metadynamics allows fast exploration of the 
underlying free-energy landscape of rare events using a set 
of order parameters, usually referred to as collective vari-
ables (CVs), that approximate the true reaction coordinate of 
the process [202]. Here, we provided an overview of recent 
applications of MD in drug design for NDDs. 

 As a valuable example describing FEP as a tool for drug 
design, Ciordia and coworkers [203] applied FEP/MD-
guided lead optimization to design of novel series of BACE1 
inhibitors. The authors explored FEP to design and prioritize 
molecules with substituents to fill the P1−P3 pockets. They 
first reported a retrospective application studied 32 mole-
cules and showed good correlation between predicted and 
experimental binding energies. Then they performed pro-
spective FEP binding energy predictions on a set of 18 mole-
cules from spiroaminodihydropyrrole scaffold and subse-
quently 9 examples were synthesized based on the results. 
The results indicated good correlation between predicted and 
experimental binding energies, providing further evidence 
that FEP can be used as a tool to assist lead optimization, 
even for BACE1. The FEP approach outperformed docking 
and MM-GBSA methods. 

 MAO is a flavoenzyme bound to the outer mitochondrial 
membrane in most cell types in the body, which exists in two 
subtypes, designated MAO-A and MAO-B, each having dif-
ferent substrate preference and inhibitor specificity. Defi-
ciency in the catabolism of monoaminergic neurotransmitters 
and oxidative damage by MAO play an important role in the 
physiology of NDDs including AD, anti-depressant and PD. 
So, Braun et al. [204] employed a wide range of computa-
tional approaches including VS simulations, flexible docking 
using GOLD 3.1.1 and MD to identify new inhibitors with 
higher selectivity against MAO-B enzyme. Selective and 
potent inhibitors of MAO-B, like rasagiline analogues as 
irreversible inhibitors and lazabemide as reversible one, with 
different structural features were taken from the published 
literature and four new therapeutic derivatives with higher 

activity than orginal ones were designed by molecular modi-
fications based on molecular hybridization of the pharma-
ceuticals rasagiline and lazabemide. Furthermore, two pro-
posals were derived from VS simulations using the Chem-
Bridge EXPRESS-Pick compound collection containing 
448,532 compounds. The proposed compounds (Fig. 42) 
were optimized at B3LYP/6-31G* level of theory using 
Gaussian 03 series of programs. The four proposals derived 
from molecular hybridization interacted with the MAO-B 
binding site through Tyr326, Tyr435, and Tyr398. Proposals 
1 and 2 made π-stacking interactions with MAO-B, while 
proposals 3 and 4 made both hydrophobic and hydrophilic 
interactions with the MAO-B active site. The main interac-
tions for two proposals derived from VS observed with the 
conserved tyrosine residues and Phe168. Computation of 
MIFs for Proposals 2 and 4 using water probe exhibited a 
good correlation with the water MIF, represented a favorable 
hydrogen bond interaction between active site of MAO-B 
and respective moieties of the proposed compounds. The 
results of MIF studies for the molecules (compounds 1 and 
2) retrieved from VS suggested a favorable hydrogen bonded 
interaction between the molecules of MAO-B and one of the 
aromatic rings of the compound 1 and also with the two side 
chains of the compound 2. Based on the docking studies and 
Lipinski's RO5 criteria, Proposal 3 was suggested as the 
most promising inhibitor and a 1500 ps MD simulation of 
Proposal 3 inside the MAO-B active site revealed that Pro-
posal 3 was stable after a long trajectory. Finally, the poten-
tial toxicity we also have investigated for the best molecule, 
Proposal 3. 

 Integrating an IFD method along with MD and/or 
QM/MM simulations can be useful for the efficient descrip-
tion of induced molecular flexibilities within the protein–
ligand complexes and also for accurate binding-mode analy-
sis of ligands. In this regard, Distinto and coworkers [205] 
used IFD and MD simulations to unravel the putative bind-
ing modes and activities of 1-aryliden-2-[4-(4-chlorophenyl) 
thiazol-2-yl]hydrazines against the MAO-B enzyme, a thera-
peutic target for the treating of neurodegenerative disorders. 
By structural alignment of twenty X-ray structures of MAO-
B co-crystallised with different inhibitors, it was found that 
the enzyme adopted induced-fit changes with respect to the 
bound ligands. Hence, the authors initially performed IFD 
using the Schrodinger drug discovery suite, during which the 
side chains near the inhibitor were kept flexible. The results 
from the IFD explained how ligand binding tended to induce 
structural changed in the protein. However, many of the 
compounds showing two binding modes were ranked high in 
IFD. To determine the best binding mode of the inhibitors, 
the authors performed 3–5 ns long MD simulations for both 
the binding modes of two of the top-ranking compounds 
from IFD. The MD results followed by the free energy cal-
culations highlighted the significance of the fluorine atom 
interacting with water near the cofactor and the influence of 
the steric bulkiness of substituents in the arylidene moiety. 
The authors proposed that the pharmacophore features of 
these experimentally synthesised compounds, developed 
using combined IFD, MD and free energy calculations, 
should be useful for achieving novel high-affinity MAO-B 
inhibitors for the treatment of NDDs. 



710    Current Neuropharmacology, 2018, Vol. 16, No. 6 Makhouri and Ghasemi 

 Recent experimental reports have shown Abelson tyro-
sine kinase (c-Abl), a non-receptor kinase, as a new target 
for NDDs including AD and PD. Palakurti and Vadrevu 
[206] applied energy optimized multiple pharmacophore 
modeling, VS and docking coupled with MD simulations to 
identify highly potent inhibitors against c-Abl. The e-
pharmacophore models generated from four c-Abl crystal 
structures bound with ligands in the inactive ATP binding 
conformation (DFG-out). The energy-based pharmacophore 
models were validated using the percentage of yields, en-
richment factor, false positives, false negatives and goodness 
of hit score. The developed models were then employed for 
high-throughput VS using the ChemBridge_CNS database 
and docking to identify leads which led to the identification 
of 10 top tanked molecules. MD simulations of the best three 
complexes indicated that compounds A and C (Fig. 43) were 
the most stable systems with persistent interactions with the 
active site residues, which were in very good agreement with 

the computed binding affinities for the top three hit com-
pounds. 

 In addition to using experimental techniques to structur-
ally characterize the receptor in ensemble docking, MD 
simulations are an obvious way to obtain multiple conforma-
tions of macromolecular targets. An example of using MD to 
incorporate target flexibility into standard docking calcula-
tions is the work by Pang and Kozikowski [207] which ex-
tracted multiple conformations of the AChE enzyme from a 
40 ps trajectory and used these to successfully predict, 
through rigid docking, the bound pose of huperzine A. Based 
on docking results, the authors predicted that huperzine A 
binds to the bottom of the binding cavity of AChE (the 
gorge) with its ammonium group interacting with Trp84, 
Phe330, Glu199 and Asp72 (catalytic site). 

 Cavalli et al. [208] performed combined docking and 
MD to provide an explanation of the molecular mechanism 
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of hAChE inhibition carried out by the small-molecule pe-
ripheral site ligand propidium. Initially, two different dock-
ing protocols followed by cluster analyses were carried out 
using the DOCK 4.0.1 package to identify several orienta-
tions of propidium within the PAS of hAChE and then these 
initial poses investigated using MD which eventually two 
alternative binding modes were identified. Both binding 
modes were compatible with the electron density map, with 
one resembling the crystallographic pose and the other being 
flipped by 180°. This study showed that even a few ns of 
MD simulations could discriminate good docking poses from 
bad, when surface solvent-exposed binding sites were con-
sidered. 

 Because of the high plasticity of the flap and loop regions 
of BACE1, the binding site of this enzyme exhibits remark-
able conformational flexibility, which explains the impor-
tance of considering multiple pocket rearrangements in struc-
ture-based hit discovery. Multiple receptor conformations 
(MRC) virtual ligand screening was indeed adopted by sev-
eral groups as a straightforward approach to consider the 
receptor flexibility, and it contributed to identify new hits in 
BACE-1 inhibitors drug discovery campaigns. To tackle 
multiple protonation states of the BACE-1 catalytic dyad and 
the conformational flexibility of the active site at the same 
time, Kacker et al. [209] used an integration of QM calcula-
tions, docking, MD, and conformational ensemble virtual 
ligand screening to define the protonation state of BACE-1’s 
catalytic machinery in complex with different ligands. The 
DFT study was performed on a representative structure from 
seven clusters, obtained based on the functional groups of 
the 47 inhibitors interacting with the BACE-1 catalytic dyad, 
to find the most energetically favorable dyad protonation 
state in presence of a certain interacting group. The MD 
simulation was used to remove the protonation states in 
which strong H-bond interactions with dyad and a stable 
binding of the substrate could not be kept up throughout the 
trajectories. Self-docking simulations were done on each 
receptor conformation considering independently the all five 
protonation states to evaluate the specific protonation states 
in ligand binding. After highlighting the contribution of dyad 
titration in complex formation by means of self-docking, 
cross-docking simulations were permored to explore the im-
pact of receptor plasticity upon inhibitor binding. Based on 
the information obtained from QM and MD simulations, two 
sets of BACE-1 variants were compiled and tested in an vir-
tual ligand screening protocol for hit discovery campaign. 

 HD is caused by an expanded CAG repeat in the 5’-end 
of the HTT mRNA. Discovering ligands with high affinity 
for mRNA transcripts of pathogenic length constitutes a po-

tential strategy against HD. Bochicchio and coworkers [210] 
used well-tempered metadynamics (WT-meta) to evaluate 
binding pose and free energies of two ligands, 4-
((diaminomethylene)amino)phenyl-4-((diaminomethylene) 
amino)benzoate (ligand1) with Kd=60(30) nM and 6-(4,5-
dihydro-1H-imidazol-2-yl)-2-(4-(4,5-dihydro-1H-imidazol-
2-yl)phenyl)-1H-indol-3-amine (ligand 2) with Kd=700(80) 
nM, for which the experimental affinities have been previ-
ously determined. The results reproduced the experimental 
affinities and uncovered the recognition pattern between 
ligands’ and their RNA target. 

 Biarne´s and coworkers [211] reported a new approach 
named enhanced molecular docking (EMD), which inte-
grates molecular docking calculations with metadynamics-
based free energy simulations, to investigate the association 
between PrPC and ligand GN8 (2-pyrrolidin-1-yl-N-[4-[4-(2-
pyrrolidin-1-yl-acetylamino)-benzyl]-phenyl]-acetamide), 
the main agent involved in prion diseases (Kd= 3.9 µM). To 
find multiple binding sites pattern of GN8 onto PrPC surface, 
ligand GN8 with three protonation states (0, +1, +2) was 
docked against PrPC. MD simulations were used initially to 
relax the structures and to explore the role of hydration. Sec-
ondly, representative PrPC structures were chosen by statisti-
cal analysis of the MD simulation. Standard docking calcula-
tions were then used to predict the formation of ligand-target 
complexes between the ligand GN8 and these protein struc-
tures, provided a first guess of putative binding regions. The 
CVs were selected from analysis of the standard molecular 
docking protocols outcomes. The results indicated that GN8 
may bind in opposite parts of the protein surface. The 
authors concluded that, this new protocol in which standard 
molecular docking protocols are extended with enhanced 
sampling simulations can be useful in the identification of 
small organic molecules that interfere with cavity-less pro-
teins such as PrPC. 

 Purine nucleoside phosphorylase (PNP) impairment 
raises d-guanosine concentrations in the blood, leading to 
apoptosis in both dividing and nondividing lymphoid cells 
due to the aggregation of dGTP, which can inhibit ribonu-
cleotide reductase activity. PNP inhibitors could potentially 
be employed to cure T-cell mediated diseases and autoim-
mune diseases such as transplant (allograft) rejection, ALS, 
rheumatoid arthritis, gout and MS. Decherchi et al. [212] ran 
extensive unbiased MD simulations (about 1µs each) with 
machine learning algorithms to capture the key structural and 
dynamical features of a transition state analog (DADMe-
immucilin H) inhibitor (Fig. 44) binding to PNP. Authors 
implemented k-medoids algorithm to find a set of interpret-
able and meaningful mesostates that were generated from 
13  µs of MD simulations. Consequently, three independent 
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binding paths were recognized, prompting to various PNP–
DADME binding configurations. They biased the simula-
tions by carrying out scaled MD runs to provide an estimate 
of the relative residence time of DADME in the three en-
sembles (A, B and C) retrieved from the clustering protocol. 
Despite observing spontaneous binding through different 
routes, the authors used the pathways obtained by MD simu-
lations to determine the free-energy profiles associated with 
the diverse binding mechanisms. To construct the free en-
ergy profile, authors employed Kernel-based Regularized 
Least Squares algorithm, a machine learning method, to non-
linearly interpolate the mean force and obtain smooth free 
energy curves. In general, by combining MD with machine 
learning and enhanced sampling methods, authors could ob-
serve the binding and estimate the associated kinetics (ko-
nandkoff) and thermodynamics which is in good agreement 
with available experimental data. In addition, they advanced 
a hypothesis for the slow-onset inhibition mechanism of 
DADMe–immucillin-H against PNP. 

 In a recent study, Srinivasan and Rajasekaran [213] pro-
posed a molecular mechanism for the inhibition of aggrega-
tion and destabilization in the Ala4Val mutant SOD1, with 
the natural polyphenolcurcumin using docking, MM-PBSA 
and SMD for providing insight into the cures for the pre-
dominant neurodegenerative disorders. In view of that, cur-
cumin was computationally docked with both the native and 
mutant SOD1, using Autodock and results elucidated that 
curcumin greatly binds to mutant SOD1 with increased hy-
drophobic interactions as compared to native SOD1. Further 
investigations were accomplished, using steered MD and 
conformational sampling on both the bound complexes of 
native and mutant SOD1 with curcumin to unravel the effect 
of disaggregation. Moreover, authors also elucidated the 
variations in the free energy landscape of native and mutant 
SOD1 in their unbound and bound states which indicated a 
reduction in the toxic aggregates formed in the mutant SOD1 
upon binding with the curcumin. 

 Padhi and coworkers [214] employed extensive MD 
simulations to gain insights into the molecular mechanisms 
of all known ALS-related angiogenin mutants and hence 
diseases pathogenesis. They indicated that the loss of ribo-
nucleolytic function is caused by conformational change of 
catalytic residue His114, while reduction in solvent-
accessible surface area (SASA) of 31RRR33 (signal residues) 
due to local misfolding resulted in loss of nuclear transloca-
tion activity. The results agreed very well with the reported 
experimental findings. 

 Niemann Pick C2 (NPC2) is a sterol transfer protein in 
late endosomes and lysosome of mammalian cells with broad 
sterol ligand specificity. Absence or dysfunction of this pro-
tein causes NPC2 diseases, a neurodegenerative disorder 
with endosomal accumulation of cholesterol and other lipids. 
Poongavanam and coworkers [215] employed MD simula-
tions based ligand binding free energy calculations (MM-
PBSA calculations) to obtain insight into the broad sterol 
ligand specificity of NPC2 and investigate the structural dy-
namics of the sterol -NPC2 complexes of the wild type 
NPC2 protein and of various NPC2 mutations. Using MD 
simulations and MM-PBSA calculations, authors overall 
ranked the various sterol ligands correctly compared to the 
experimentally determined binding affinity relative to the 
fluorescent sterol DHE (dehydroergosterol). They showed 
that a structural requirement of high affinity sterol ligands to 
NPC2 is an aliphatic side chain buried inside the NPC2 bind-
ing pocket. All sterols were docked into the NPC2 binding 
pocket to obtain an initial binding orientation (pose) and this 
was followed by MD simulations based free energy binding 
calculations i.e. MM-PBSA. From MD simulations, they 
proposed a general mechanism for NPC2 mediated sterol 
transfer, in which Phe66, Val96 and Tyr100 act as reversible 
gate keepers. These residues stabilize the sterol in the bind-
ing pose via π-π stacking but move transiently apart during 
sterol release. Furthermore, they found that an aliphatic side 
chain in the sterol ligand results in strong binding to NPC2, 
while side chain oxidized sterols gave weaker binding. 

 CB enzyme is one of the well-characterized lysosomal 
cysteine proteinase of the papain family which is involved in 
the pathogenesis of NDDs through neuronal apoptosis and 
activation of caspase 3. CA-074Me inhibitor is a cell-
permeable derivative of CA-074 selective for the CB as veri-
fied by in vivo investigations. Due to the lack of X- ray crys-
tal structure of this inhibitor with the hCB protein, 
Mashamba-Thompson and Soliman [216] employed a vari-
ety of computational approaches including MD simulations 
and MM-GBSA binding free energy calculations to explore 
the binding mode of CA-074Me to hCB. Furthermore, this 
study was also identified new CB inhibitors based on the 
structural features of CA-074Me, the most known prototype, 
using fragment-based scaffold hoping; structure-based VS 
and validation of docking protocol by MD simulations and 
binding free energy calculations. Mcule scaffold hopping 
tool was employed to generate novel structural scaffolds 
based on CA-074Me structural features and structure-based 
VS using Autodock Vina screening software was then per-
formed to rank the created compound library with respect to 
binding affinities towards CB protein. MD simulations and 
free energy calculations of binding were also carried out to 
assess the validity of docking simulations and ensure the 
binding stability of the compounds in the active site of the 
hCB. Per-residue energy decomposition revealed that amino 
acid residues Cys29, Gly196, His197, and Val174 contrib-
uted most to the total binding energy. Two new compounds, 
Hit1 (ΔG= -46.40 kcal.mol-1) and Hit2 (ΔG= -45.01 
kcal.mol-1) (Fig. 45), with better binding activities relative to 
prototype inhibitor, CA-074Me (ΔG= -44.38 kcal.mol-1), 
were identified in which the insertion of heterocyclic rings 
attached to the epoxy ring enhaned ligand binding.  
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Fig. (44). 2D structure of DADMe-immucillin-H. 
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 Proteins participate in biochemical interaction networks 
by switching among structural substates, which are induced 
by ligand binding and fine-tune their functions. Recently, 
Sattin and coworkers [217] designed a library of small mole-
cules that activate 90  kDa Heat Shock Protein (Hsp90) AT-
Pase by targeting an allosteric site, with the goal of exploring 
their biochemical and cellular effects. The Hsp90 molecular 
chaperone is hub protein that the disregulation of function is 
associated with its overexpression and has been shown to be 
at the basis of disease states, such as cancer and neurodegen-
eration. In the next study [218], through the use of docking 
calculations and comparative analyses of MD simulations of 
different complexes of Hsp90 with the allosteric ligand com-
pounds, and known inhibitors as controls, they provided mo-
lecular level insights into how ligand binding at an allosteric 
site can affect protein structure, dynamics and, consequently, 
enzymatic activity. They developed structure-dynamics-
activity relationship (SDAR) model that links the physico-
chemical properties of the small molecules to experimentally 
measured activation effects. To achieve this model, they per-
formed a Docking over Multiple Receptor Structures 
(DMRS) approach, originating from the ATP-only dynam-
ics: the 10 representatives of the most populated conforma-
tional clusters obtained from the ATP-only simulation were 
extracted from the MD trajectory and compounds 1, 4, 10, 
12, 16, 18 (Fig. 46) were re-docked into each of the 10 rep-
resentative structures. This study provided the stage for the 
use of computational approaches to rationally design chaper-
one activators with considering the conformational dialogue 
between allosteric ligands and protein conformations. 

 Bromodomains are protein modules found in chromatin-
associated proteins, that specifically read the acetylation 
marks of histones in the epigenetic regulation. Mounting 
evidences correlate the dysfunction of bromodomain con-
tained proteins with human diseases, such as neurodegenera-
tion, cardiovascular disease and cancers. Ran and coworkers 
[219] studied a series of 20 known bromodomain inhibitors 
(IC50=35-51200 nM) using an integration of computational 
methods, including molecular docking, interaction finger-
prints by protein-ligand interaction fingerprint (PLIF), MD 
simulation and binding free energy calculation to understand 
the interaction mechanism of bromodomain inhibitors which 
may facilitate the rational design of novel small molecule 
bromodomain inhibitors. To obtain detailed information of 
protein-ligand interaction, interaction fingerprints by PLIF was 
employed on bromodomain-inhibitor complexes acquired  
 

from crystallization and molecular docking, and five finger-
prints were present in twenty bromodomain-inhibitor com-
plexes, including surface contact interaction (C), backbone 
H:bond acceptor (a) and donor (d), and sidechain H:bond 
acceptor (A) and donor (D). MD simulations in aqueous so-
lution were done on all twenty bromodomain-inhibitor com-
plexes to investigate the residue flexibility and the hydrogen 
bonds in the bromodomain-inhibitor interaction. The binding 
free energy calculation using MM-PBSA and MM-GBSA 
was implemented on the ensemble conformation obtained by 
MD simulation, and then energy decomposition was per-
formed to compute the interaction in terms of energy contri-
bution from individual residues. These integrated results 
determined two hot spots in the active site of the bromodo-
main, where the hydrophobic hot spot formed by Trp81, 
Val87, Leu92 and Ile146 played a critical role in the interac-
tion, and the hydrogen-bond hot spot mediated by Asn140 
displayed moderate contribution to the binding affinity of the 
bromodomain inhibitors. 

 MD simulations can also be used to identify druggable 
allosteric sites. Activators can help identify and characterize 
allosteric sites and mechanisms for the discovery of novel 
drug candidates, overcoming the limits of classical active-
site oriented drug design. Morra et al. [220] developed a new 
methodology for computational design of allosteric inhibi-
tors of molecular chaperones, which has proven as a key 
target for cancer and neurodegeneration drug discovery. 
They integrated MD/dynamic pharmacophore approach for 
identifying and targeting allosteric hot spots on the NTD of 
the molecular chaperone Hsp90. For generating dynamic 
pharmacophore model, all protein conformations from the 
MD were overlaid, and local MIF minima were computed at 
the allosteric site with the GRID v22a with the probes DRY 
(hydrophobic), O (sp2 carbonyl oxygen) and N1 (neutral flat 
amide NH). The allosteric dynamic pharmacophore model 
composed of a 3D arrangement of six features (i.e., four hy-
drophobic regions and one each hydrogen-bond acceptor and 
donor) was used to screen NCI repository to obtain small 
molecules with the functional and conformational properties 
required to bind these “hot spot” allosteric sites. Autodock 
Tools v1.5 was employed to characterize the molecular in-
teractions of the newly discovered compounds with the 
Hsp90 C-terminal domain. Experimental tests indicated that 
fourteen of the selected compounds obtained from the VS 
displayed antiproliferative effects in various tumor cell lines, 
while not affecting proliferation of normal human cells. 
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 HtrA2 (High temperature requirement protease A2) is a 
mitochondrial serine protease protein with a single PDZ 
(post-synaptic density-95/discs large/zonula occludens-1) 
domain per monomer, which is involved in important bio-
logical functions and pathogenicity like cancer and neurode-
generative disorders. Bejugam et al. [221] applied an in 
silico and biochemical method to show that a new non-
canonical selective binding pocket in HtrA2 take part in the 
allosteric activation of HtrA2. To understand the conforma-
tional dynamics and structural plasticity during HtrA2 allos-
teric activation, MD simulation with a bound peptide activa-
tor was employed. Authors modelled the entire mature pro-
tease by completing in the missing residues using Prime and 
identified the putative binding site(s) on HtrA2 using Site-
Map 2.5. Site2 or selective binding pocket (SBP) that en-
compasses the groove created by SPD (serine protease do-
main)-PDZ linker, protease, and PDZ domains was selected 
based on optimum energy parameters among the five possi-
ble putative binding sites. Generated peptide library based on 
literature reports and structural complementarities were 
docked at SBP and MD simulation of the docked structures 
was employed by Desmond 2010, which yielded important 
information on loop and linker movements in HtrA2. These 
findings along with mutational and enzymology investiga-
tions suggested that during binding of the peptide activator at 
this alternative non-canonical PDZ binding site, the linker at 
the PDZ-protease interface and loops L1, LA and LD around 
the catalytic groove undergo conformational fluctuations in 
order to create an efficient active site pocket. 

CONCLUDING REMARKS 

 Computational techniques, for example, data mining, 
homology modeling, MD simulation, cheminformatics, VS, 
molecular docking and QSAR modeling have provided a 
powerful toolbox for target identification, discovery and op-
timization of drug candidate molecules. This review concen-
trates on different computational approaches effectively ap-
plied in NDDs drug discovery processes (years between 
1996 and 2016). Detailed analysis of recently published ex-
amples of case studies uncovered that the dominant part of 
them utilize a successive integration of ligand- and structure-

based methods in VS, with specific concentrate on pharma-
cophore and docking modeling. From this review, it is ob-
served that, most of the in silico studies performed have been 
for single biological targets, but as we have discussed the 
NDDs have a multifactorial pathoetiological origin, which 
involves concurrent malfunctioning of more than single tar-
get. Considering this fact, recently, scientists have become 
persuaded that a multi-target therapeutic strategy aimed at 
the simultaneous targeting of multiple proteins (and there-
fore etiologies) involved in the development of a disease are 
recommended in future. Thus, the rational design of new 
leads as versatile inhibitors for different targets associated 
with NDDs constitutes a major goal. 
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