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Abstract. This paper introduces the Dendrite Spherical Neuron (DSN)
as an alternative to the Dendrite Ellipsoidal Neuron (DEN), in which
hyperspheres group the patterns from different classes instead of hyperel-
lipses. The reasoning behind DSN is simplifying the computation of DEN
architecture, where a centroid and covariance matrix are two dendritic
parameters,whereas, inDSN, the covariancematrix is replaced by a radius.
This modification is useful to avoid singular covariance matrices since
DEN requires measuring the Mahalanobis distance to classify patterns.
The DSN training consists of determining the centroids of dendrites with
the k-means algorithm, followed by calculating the radius of dendrites as
the mean distance to the two nearest centroids, and finally determining
the weights of a softmax function, with Stochastic Gradient Descent, at
the output of the neuron. Besides, the Simulated Annealing automatically
determines the number of dendrites that maximizes the classification accu-
racy. The DSN is applied to synthetic and real-world datasets. The experi-
mental results reveal that DSN is competitive with Multilayer Perceptron
(MLP) networks, with less complex architectures. Also, DSN tends to out-
perform the Dendrite Morphological Neuron (DMN), which uses hyper-
boxes. These findings suggest that the DSN is a potential alternative to
MLP and DMN for pattern classification tasks.

Keywords: Dendrite Morphological Neuron · Spherical dendrite ·
Simulated Annealing · Pattern classification

1 Introduction

Artificial Neural Networks (ANN) are mathematical models inspired by the bio-
logical neurons in the nervous system of the animals, which can be described
as mapping an input space to an output space [7]. Probably, the Multilayer
Perceptron (MLP) is the most common ANN used in practice for pattern clas-
sification tasks. MLP training requires adjusting the synaptic weights of each
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neuron by minimizing a loss function (e.g., cross-entropy), where the backprop-
agation algorithm is often used. The inner product between the neuron inputs
and the synaptic weights produces a linear combination that is modified by a
nonlinear activation function (e.g., the sigmoid function). Thus, the MLP divides
the input space with a hypersurface, which is built by combining the responses
of several neurons distributed in one or more hidden layers.

In nonlinear separability scenarios, the MLP could require a complex archi-
tecture to separate the input space accurately. The Dendrite Morphological Neu-
ron (DMN) is an alternative technique that reduces the complexity of the clas-
sification models since nonlinear classification problems can be solved by using
a single neuron. The morphological processing involves minimum and maximum
operations, which can generate complex nonlinear decision boundaries [8].

A typical DMN has dendrites defined as hyperboxes in R
D, where D is the

dimensionality of the input space. A set of hyperboxes can model each class
pattern, where the minimum and maximum operations determine if an input
pattern is inside of a hyperbox; therefore, the input pattern is assigned to the
class of the most active dendrite. The DMN training consists of distributing the
hyperboxes over the input space such that every class pattern is covered accu-
rately, where heuristic methods [8], evolutionary computation [3], and stochastic
gradient descent (SGD) [9] have been used for this purpose.

Because DMN uses hyperboxes, the produced decision boundaries are com-
plex piecewise linear functions. In order to obtain smoother decision boundaries,
it is feasible to replace the hyperboxes with other geometrical shapes. In this
context, Arce et al. [2] proposed a neuronal model called Dendrite Ellipsoidal
Neuron (DEN), where an input pattern is assigned to the class of the dendrite
(i.e., hyperellipse) with the minimum Mahalanobis distance. A hyperellipse is
defined by two parameters: centroid and covariance matrix. In DEN, the cen-
troid positions within the input space are defined by the k-means algorithm, in
which k is the number of dendrites within a class. Next, for obtaining rotated
hyperellipses, the covariance matrix of each cluster is calculated. Note that a
class is modeled by k dendrites, where a dendrite clusters only a fraction of
samples from the class. Therefore, as the value of k increases, the number of
samples in the dendrite decreases, so that there could be variables with zero
variance, generating a singular covariance matrix. Consequently, the calculation
of the Mahalanobis distance cannot be performed for that dendrite since it is
required to invert its covariance matrix.

To overcome this inconvenience, we propose a simplification of the DEN
model by using spheres instead of ellipses to get a new neuronal model called
Dendrite Spherical Neuron (DSN), in which the full covariance matrix of a den-
drite is replaced by a radius that depends on the closeness among centroids.
Moreover, the computation of the DNS response is more straightforward than
DEN because covariances and matrix inversions are no longer necessary.
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2 DSN Architecture

Fig. 1. Neural architecture for a DSN with softmax function at the output. The jth
class is modeled by the dendrite cluster with response dj , for j = 1, . . . , C classes.

Fig. 1 shows the neural architecture for a DSN, in which each class is represented
by a cluster of dendrites, that is, a set of hyperspheres in R

D. The DSN output
is performed the linear combination of dendrite responses dj , for j = 1, . . . , C
classes, and the softmax function gives the probability of the input pattern x =
[x1, . . . , xD]T belongs to the jth class. Thus, the assigned class is given by the
maximum probability rule [6]:

t̂j = arg max
j=1,...,C

(zj(x)) , (1)

where zj is the response of the jth output node defined as

zj(x) = σ

(
w0j +

C∑
k=1

wk,jdj(x)

)
, j = 1, . . . , C, (2)

where σ(·) is the softmax function, wk,j is a weight value to connect the kth
cluster to the jth output node, w0j is the bias, and dj is the output of the jth
dendrite cluster:

dj(x) = max
i=1,...,lj

(hi,j(x)) , (3)

where hi,j is the output of the ith dendrite for the jth class:

hi,j(x) = ri,j − ‖x − ci,j‖2, (4)
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where ‖·‖ is the Euclidean norm, ci,j ∈ R
D is the centroid of the dendrite, and

ri,j > 0 is its corresponding radius.
Figure 2 illustrates the three possible responses of a dendrite given in Eq. 4.

A dendrite obtains its maximum response when x = c, that is, h(x) = r. As
x moves away from the centroid, the dendrite response decreases to zero on its
boundary, and becomes negative outside of the dendrite region. Thus, the most
active dendrite cluster can be identified with Eq. 3.

Fig. 2. A hypersphere in 2D generated by its dendrite parameters c and r. The response
is positive when the pattern x is inside of the hypersphere, it is zero when x is on the
hypershpere boundary, and it is negative when x is outside of the hypersphere.

3 DSN Training

Let X = {x1, . . . ,xN} be a training set with N observations, where the ith
sample is a D-dimensional vector xi = [xi,1, . . . , xi,D]T , which is associated to a
class label ti ∈ {1, . . . , C}.

Algorithm 1 shows the pseudocode for training a DSN based on the k-means
algorithm and SDG. First, the centroids of dendrites are calculated with the
k-means algorithm (lines 3–8), where the parameter k = lj is the number of
hyperspheres in a class. Next, to reduce the overlap between dendrite regions, the
mean distance to the two nearest centroids determines the radius of a dendrite
(lines 9–10). Finally, the cluster dendrite responses are calculated from the entire
training set (Eqs. 3 and 4), which are used to obtain the weights of the softmax
function by minimizing the cross-entropy loss function with SDG (lines 12–13).

Notice that Algorithm 1 requires the number of dendrites per class, which
is problem-dependent and is typically not known a priori. It is desirable a DSN
configuration with a reduced number of dendrites and a high classification rate.
This goal can be achieved by using an optimization procedure to maximize the
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Algorithm 1: DSN training based on k-means and SDG.
Input: Training patterns X = {x1, . . . ,xN}; targets t = [t1, . . . , tN ];
number of classes C; number of dendrites per class [l1, . . . , lC ]
Output: A structure DSN

1 DSN ← ∅ // initialize dendrite structure
2 C ← ∅ // initialize temporal array of centroids
3 for j = 1, . . . , C do
4 Get patterns of the jth class from X to obtain the subset Xj

5 Obtain lj centroids with k-means from Xj to get Cj = [c1,j , . . . , clj ,j ]
6 Concatenate centroids C ← [C + Cj ]
7 Save centroids: DSN.ci,j ← ci,j , ∀i = 1, . . . , lj
8 end for
9 Measure the pairwise distance between centroids in C

10 Calculate the mean distance of ci,j to the 2-nearest centroids to get its
corresponding radius ri,j , ∀i, j

11 Save radii: DSN.ri,j ← ri,j , ∀i, j
12 Obtain the cluster dendrite responses dj(x), j = 1, . . . , C, for all samples

in X to obtain Y = {y1, . . . ,yN}
13 Calculate the softmax weights W = [w1, . . . ,wC ] with SDG and

cross-entropy from the tuple (Y, t)
14 Save weights: DSN.W ← W
15 return DSN

classification accuracy with few dendrites. Herein, the Simulated Annealing (SA)
algorithm is employed to tune the DSN configuration automatically.

SA is a stochastic local search method for global combinatorial optimization,
which allows gradual convergence to a near-optimal solution. SA performs a
sequence of moves from a current solution to a better one according to specific
transition rules while occasionally accepting some uphill solutions in order to
guarantee diversity in the domain exploration and to avoid getting caught at
local optima. The optimization process is managed by a cooling schedule that
controls the number of iterations [1]. Thus, SA is useful to find the combination
of the number of dendrites per class that results in the best classification rate in
a finite number of iterations.

Algorithm 2 shows the pseudocode for DSN tuning with the SA algorithm.
In line 3, the number of dendrites per class is randomly initialized in the range
[1,

√
Nj ], where Nj is the number of patterns in the jth class. In line 10, the

neighborhood structure generates a new solution by randomly moving (or not)
backward or forward the number of dendrites per class. In lines 13–16, a DSN
solution is accepted if its accuracy is higher than the previous solution; otherwise,
a probability of acceptance criterion is applied, which depends on the current
temperature. With this scheme, the current solution may be accepted even if
it is worse than the previous solution, which is useful to avoid local optima.
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Algorithm 2: DSN tuning based on simulated annealing.

Input: Training set (X, t); validation set (X̃, t̃); number of classes C
Output: Best solution z∗

1 Set initial temperature, T0

2 t ← 0
3 Create randomly an initial solution, z0 = [l1, . . . , lC ]
4 Train DSN with z0 and training set (X, t) // Algorithm 1

5 Evaluate the accuracy f(z0) with validation set (X̃, t̃)
6 Best solution, z∗ ← z0
7 do
8 t ← t + 1
9 Tt ← 0.9 · Tt−1

10 Generate random solution z from the neighborhood
N (zt−1) = zt−1 + rt, where rl ∈ {−1, 0, 1}

11 Train DSN with z and training set (X, t) // Algorithm 1

12 Evaluate the accuracy f(z) with validation set (X̃, t̃)
13 if f(z) > f(zt−1) then
14 zt ← z

15 else if U(0, 1) ≤ exp
(

f(z)−f(zt−1)
kTt

)
then

16 zt ← z
17 if (f(zt) > f(z∗)) ∨ ((f(zt) = f(z∗)) ∧ (

∑
c zt <

∑
c z

∗)) then
18 z∗ ← zt
19 until cooling condition is reached
20 return z∗

Finally, in lines 16–17, the best solution is updated if its accuracy is lower than
the current solution, or if both solutions have the same accuracy and the current
solution has less number of dendrites than the current best solution.

4 Experiments

For evaluating the classification performance of the DSN approach, synthetic
and real-world datasets are considered. The former comprises three didactic 2D
datasets for illustrating the nonlinear boundaries generated by a DSN trained
with Algorithm 2. On the other hand, ten real-world datasets were obtained from
the UCI Machine Learning Repository [5], whose characteristics are summarized
in Table 1. These datasets were also previously used to evaluate DMN, and DSN
approaches [2,9].

For comparison purposes, the real-world datasets are also classified by MLP
with one hidden layer, DMN initialized with the dHpC method and trained with
SGD [9], and DEN trained with a hill-climbing algorithm for determining the
number of dendrites per class [2]. In order to find statistical differences between
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Table 1. Real-world datasets and their characteristics: identifier (ID), number of
instances (N), number of classes (C), and dimensionality (D).

ID Dataset N C D

D1 Breast cancer wisconsin 569 2 30
D2 Glass identification 214 6 10
D3 Heart dIsease cleveland 297 2 13
D4 Hepatitis 112 2 18
D5 Iris data 150 3 4
D6 Page blocks 5409 5 10
D7 Pima Indians diabetes 768 2 8
D8 Seeds 199 3 7
D9 Thyroid gland data 215 3 5
D10 Wine recognition data 178 3 13

methods, the Kruskal–Wallis test (α = 0.05) is used to evaluate whether the
medians of the approaches compared differ under the assumption that the shapes
of the underlying distributions are the same. Also, the correction for multiple
testing on the basis of the same data is made by the Bonferroni method.

The k-fold cross-validation method (with k = 10) is used to built training
and test sets to measure the classification accuracy (i.e., the hit rate) of neural
models. Moreover, in Algorithm 2, the training set is partitioned again into two
parts to create the training (80%) and validation (20%) sets.

It is worth mentioning that a procedure of grid search and k-fold cross-
validation (with k = 5) determines the number of hidden neurons that maxi-
mizes the accuracy of the MLP network, where the number of hidden neurons
is increased from 5 to 100 neurons, in steps of 5 [4].

5 Results

Figure 3 shows the distribution of hyperspheres per class (i.e., dendrites) for each
synthetic dataset. The SA algorithm determined the number of dendrites that
maximized accuracy. For instance, it is notable that only three dendrites (one per
class) are required for correctly classifying all the patterns of the Ring dataset
(Fig. 3(b)). The corresponding decision regions obtained by the DSN approach
are also illustrated in Fig. 3. Notice that nonlinear decision boundaries are built,
which are capable of modeling complex class distributions.
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Top row, the distribution of hyperspheres for the 2D synthetic datasets. The
number of dendrites is: (a) Horseshoes: 11, (b) Rings: 3 (with zoom to view hyper-
spheres), and (c) Two-spirals: 46. Bottom row, the decision regions generated by the
DSN approach. The classes are represented by ω1 (class 1), ω2 (class 2), and ω3 (class 3).
The accuracy measured on the validation set is: (d) Horseshoes: 100%, (e) Rings: 100%,
and (f) Two-spirals: 93%.

In the case of real-world datasets, Fig. 4 shows the accuracy results obtained
by MLP, DMN, DEN, and DSN neural models. It is remarkable that DSN out-
performed the DEN approach in eight of ten datasets, and obtained competitive
results in relation to DMN and MLP methods. Moreover, the multiple compar-
isons with the Kruskal–Wallis test and Bonferroni correction determined that
DSN did not present statistically significant differences with MLP (p = 0.7035)
and DMN (p = 0.3037), whereas DSN and DEN were statistically significantly
different (p < 0.0001).

In addition, for all the datasets, the DSN presented a simpler structure than
MLP and DEN. For instance, for the Thyroid Gland dataset (D9), MLP obtained
an accuracy of 97.2% with 41 hidden neurons, whereas DSN reached an accu-
racy of 96.8% with four dendrites. Also, for the Page Blocks dataset (D6), the
accuracy of DEN is 91.1% with 71 dendrites, whereas DSN used 59 dendrites to
attain an accuracy of 93.8%.
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Fig. 4. Accuracy results of neural models MLP, DMN, DEN, and DSN for real-world
datasets. The height of the bars represents the mean of 10-folds of cross-validation.
The error bars are the standard deviations. The numerical values in the top of bars
denote the average number of hidden neurons or dendrites for each neural model.

6 Discussion and Conclusions

In this paper, it was presented the theoretical basis of the Dendrite Spherical
Neurons (DSN) for pattern classification. The DSN can be categorized in the
family of neuronal models with dendritic processing, like Dendrite Morphological
Neurons (DMN) and Dendrite Ellipsoidal Neurons (DEN). These neural models
are an alternative to the Multilayer Perceptron (MLP) to solve classification
problems with a simple architecture. Moreover, the DSN model can be viewed
as a simplification of the DEN model, whose covariance matrix is diagonal with
all its elements equal. DSN can overcome potential issues found in DEN, such as
singular covariance matrices when a dendrite clusters a small number of patterns,
while maintaining the smoothness of decision boundaries.

The number of dendrites in DSN is a free parameter that should be tuned ade-
quately. Thus, we proposed an optimization procedure based on the Simulated
Annealing (SA) algorithm, in which the classification accuracy is maximized,
while the number of dendrites is used as a constraint. Notice that this scheme
does not guarantee the minimum number of dendrites, which represents a limita-
tion of the proposed method. Hence, the problem of DSN tuning can be further
extended to multiobjective optimization, in which the accuracy is maximized,
and the number of dendrites is minimized.

The experiments with real-world datasets revealed that DSN tended to reach
better accuracy results than DMN. This behavior is because the DMN strongly
depends on its initial solution (here was used the dHpC method) that is refined
by Stochastic Gradient Descent (SGD); therefore, the error obtained in the initial
solution will be carried to the final solution. Unlike to DMN, DSN does not refine
an initial solution but uses the k-means algorithm to distribute the dendrites
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over the input space, while the SGD is used to train the weights of the softmax
function at the output of the neuron.

On the other hand, DEN obtained the lowest classification performance. This
behavior is because dendrites are created independently for each class without
considering the interaction between dendrites of different classes, causing over-
laps in transition regions between classes. This drawback is addressed in the
DSN model by considering the closeness between dendrites for calculating the
radius of the hyperspheres.

DSN obtained competitive results concerning MLP for classifying real-world
datasets. However, MLP obtained more complex structures than DSN; that is,
MLP usually requires more hidden neurons than dendrites in DSN to model
the same classification problem. Therefore, DSN can be potentially used for
classification problems where computational resources are limited.

Future work involves a study of the effect of the number of dendrites on the
DSN classification performance. Also, an extensive study with larger datasets
and other kinds of classifiers is pending. Besides, the accuracy of DNS can be
improved by using other distance metrics to measure the closeness between pat-
terns as well as applying to SDG mechanisms of momentum and adaptive learn-
ing rate.
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