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ABSTRACT

With widespread availability of omics profiling techniques, the analysis and interpretation of
high-dimensional omics data, for example, for biomarkers, is becoming an increasingly impor-
tant part of clinical medicine because such datasets constitute a promising resource for predicting
survival outcomes. However, early experience has shown that biomarkers often generalize
poorly. Thus, it is crucial that models are not overfitted and give accurate results with new data. In
addition, reliable detection of multivariate biomarkers with high predictive power (feature se-
lection) is of particular interest in clinical settings. We present an approach that addresses both
aspects in high-dimensional survival models. Within a nested cross-validation (CV), we fit a
survival model, evaluate a dataset in an unbiased fashion, and select features with the best
predictive power by applying a weighted combination of CV runs. We evaluate our approach
using simulated toy data, as well as three breast cancer datasets, to predict the survival of breast
cancer patients after treatment. In all datasets, we achieve more reliable estimation of predictive
power for unseen cases and better predictive performance compared to the standard CoxLasso
model. Taken together, we present a comprehensive and flexible framework for survival models,
including performance estimation, final feature selection, and final model construction. The
proposed algorithm is implemented in an open source R package (SurvRank) available on CRAN.
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1. INTRODUCTION

In past years, new experimental technologies that allow measurement of tens of thousands of SNPs,

transcripts, peptides, and metabolites in a cost-effective, high-throughput fashion have been developed.

Consequently, omics measurements in patient samples are increasingly becoming part of clinical trials

(McShane et al., 2013), because they promise to serve diagnostic purposes and accurately model patient
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survival times. However, for such survival models to be adopted in clinical practice and diagnosis, it is crucial to

accurately estimate the generalizability of these models (i.e., how well they perform with new patient cohorts).

In addition, identification of a small set of highly predictive features in a high-dimensional survival setting is of

particular clinical interest as it can facilitate large-scale screening of large patient cohorts. Example applications

include identification of genetic marker sets to predict survival times after surgery in cancer research (Desmedt

et al., 2007; van de Vijver et al., 2002) and the prediction of time to diabetes onset (Abbasi et al., 2012).

In high-dimensional medical datasets, the number of features p usually far exceeds the number of

observations n (n << p). Several previous studies have addressed the n << p problem in survival settings

using regularization or feature selection approaches. Some authors have combined test statistics from

univariate analyses into risk scores, for example, for lung cancer (Beer et al., 2002) and colorectal cancer

(Eschrich et al., 2005). A drawback of these approaches is that each feature is individually associated with

survival; however, joint information across features is not used. With polygenic risk scores or multivariate

biomarkers, interest in full multivariable models has increased. As standard regression-based models are

prone to overfitting in the n << p scenario, shrinkage-based models, which regularize the effect estimates,

are commonly used (Gui and Li, 2005; Wu et al., 2011; Gong et al., 2014; Datta et al., 2007). Alternatively,

dimensionality reduction (e.g., PCA or clustering) can be performed prior to survival modeling (Alizadeh

et al., 2000; Takamizawa et al., 2004; Zhao et al., 2005).

Here, we propose an approach that tackles two major challenges for predictive survival models in a

single unified algorithm. TASK 1: A predictor must show good generalizability, that is it must correctly

predict an outcome using unseen observations. Here, we aim to obtain unbiased predictions using only

training data, that is in the absence of a validation dataset. The generalizability of this type of prediction

model can be quantified using measures such as the concordance index (C-index) within a cross-validation

(CV) framework for survival data (Harrell et al., 1982). For applicability in clinical settings, it is crucial to

estimate this predictive power for new, unseen patients in an unbiased fashion. TASK 2: We aim to select a

reduced set of informative features that retains high predictive accuracy. While different approaches to

address these tasks in binary classification settings exist, to the best of our knowledge, there is no unified

framework for high-dimensional survival settings.

We use a repeated nested CV strategy to tackle both tasks (Fig. 1). Specifically, we use a feature ranking-

based approach to perform model selection followed by determination of the optimal number of features in

the inner CV loop. The outer CV is used to estimate the prediction accuracy with the C-index with unseen

data. By repeating the entire procedure, we quantify the intrinsic variation in the prediction accuracy. As

FIG. 1. Overview of the repeated nested Cross-validation scheme. In the inner CV, the optimal number of parameters

is determined. The outer CV loop estimates unbiased prediction accuracy. The variance of the prediction accuracy is

estimated by repeating the entire procedure.
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different CV folds will produce different lists of feature rankings, we propose an algorithm to combine

results. We weight the features according to their performance in the CV. TASK 1 is addressed by our

method due to the strict separation of the training and test sets. We solve TASK 2 using our proposed

approach to aggregate CV information into a final set of features.

We evaluate our approach with simulated data with a fixed set of features and show that existing methods

(a regularized survival Cox model) exhibit strong bias. In addition, we test performance with three publicly

available breast cancer datasets. These microarray-based datasets contain gene expression data from pa-

tients with lymph node-negative breast cancer after surgery or radiotherapy. Our pipeline is available as an

R package (R Core, Team, 2014) SurvRank online.

2. METHODS

A survival dataset is defined by the triple (Ti, di, xi) i = 1,.,n subjects, where Ti is the observed time

(either failure time or censoring time), di˛{0, 1} denotes the censoring indicator for a failure event (e.g.,

di = 1 in the case of relapse or death) or censoring information (di = 0), and the p-dimensional vector xi

defines the observed covariates of subject i. A subject is at risk if it undergoes an event or is censored. With

t1 < . < tm being the ordered unique event times (with di = 1), at time tj, all at-risk individuals constitute the

risk set R(tj), which is defined as the set of all observations with longer observation time Ti > tj.

In order to relate survival and observed covariates in our algorithm, we use the Cox proportional hazards

model (Cox, 1972). In this model, the hazard for subject i is defined in semi-parametric form:

hi(tjxi) = h0(t) exp
Xp

k = 1

xi‚ kbk

 !
(2:1)

where h0 is a common baseline hazard and b is a vector of regression coefficients of length p. Inference on

b is performed by maximizing the partial likelihood, defined as

L(b) =
Ym
i = 1

exp (
Pp

k = 1 xi‚ kbk)P
j2Ri

exp (
Pp

k = 1 xj‚ kbk)
(2:2)

where the baseline hazard h0(t) cancels out. The estimated risk score per subject is summarized by

ĝi =
Pp

k = 1 xk‚ ib̂k, which expresses the linear combination of covariates with an estimated vector of coefficientsb̂.

Investigation of the prediction accuracy and feature selection in our framework is performed with the C-

index definition (Uno et al., 2011), denoted as CUno. The C-index of Uno for a prespecified point in time s is

defined as follows:

CUno‚ s =
P

j‚ k Ĝ(Tj)
- 2I(Tj<Tk)I(ĝj< ĝk)djP

j‚ k Ĝ(Tj)
- 2I(Tj<Tk)dj

2 [0‚ 1] (2:3)

where I () is an indicator function. Here, Ĝ(Tj) is estimated from the training data and is defined as the

Kaplan–Meier estimator of the unconditional survival function:

Ĝ(t) =
Y
tjpt

1 -
dj

R(tj)
(2:4)

with di being the number of events at tj. The CUno index is estimated nonparametrically, thereby adjusting

for the censoring bias via inverse probability weighting. A risk score gi is estimated for the selected features

with new data xtest for each individual in the test set. This score is used as input for the CUno function. To

obtain the variation in CUno with an independent test set, we calculated prediction performance with

different random subsamples (of 90%).

An advantage of the CUno approach compared to other C-index definitions (Heagerty and Zheng, 2005;

Antolini et al., 2005) lies in its independence of the Cox proportional hazard assumption. The C-index can be

interpreted as the probability of concordance between the predicted and observed survival times over all pairs of

observations at a given time point. Similar to the standard binary AUC, a value of 0.5 indicates that the marker is

not better than random guessing and a value of 1 represents perfect separation. In contrast to the standard area

under the ROC curve, models with C-index of relatively low values (between 0.6 and 0.7) are often considered as

UNBIASED PREDICTION AND FEATURE SELECTION 281



having satisfactory predictive power. For example, a C-index of 0.67 was achieved (Tice et al., 2005) in a model

predicting breast cancer based on genetic information, known as the Gail model (Gail et al., 1989). In cancer

research, the absolute discrimination power is often not required; however, separation and classification of

patients into groups of high and low risk is the primary goal. Therefore, this C-index is a favorable choice.

2.1. SurvRank

A schematic overview of the algorithm is shown in Figure 1, and further details are given in Algorithm 1.

To fit a survival model and estimate generalizability, a repeated nested CV approach is used to first estimate

the best number of features within an inner CV loop and then to estimate the performance of the model

containing these features in an outer CV loop. Note that the identification of important features within the

CV is based on different ranking methods.

2.1.1. Feature ranking methods. Three approaches to generate ranked output lists of features were

considered, that is, an approach based on the log-rank statistic (survCox), a Lasso-based approach for

survival data (survLasso), and a randomized Cox model (survRand).

Cox score ranking - survCox The Cox-based ranking approach sorts covariates according to their

association with the survival response based on the Wald score test. For each feature, a univariate Cox

model is fitted, and the obtained log-rank statistic is used as the ranking criterion (Moeschberger and Klein,

2003). A high test statistic indicates stronger association with the outcome. Note that this Cox score ranking

is univariate in contrast to the other two approaches.

L1 norm (Lasso) ranking - survLasso In this approach, ranking is generated using a penalized L1 Cox

regression (Tibshirani and others, 1997). Briefly, the L1 penalty (Lasso) in the Cox regression case seeks to

find a solution for the following:

b̂ = arg min
b

2

n
(
Xm

i = 1

xT
j(i)b - log

�X
j2Ri

exp (xT
j b)

�
- k
Xp

i = 1

jbij
 !

: (2:5)

An efficient implementation of the regularization path has been demonstrated (Simon et al., 2011). The

complextity parameter k determines the amount of shrinkage. The ranks of features are then obtained

according to their appearance in the regularization path. All covariates not selected in the model obtain a

rank that corresponds to the number of features p.

Randomized Cox ranking - survRand This ranking method consists of a two-step procedure. In the first

step, L1 penalization is used to preselect a smaller number of features ( ppre < p). The cut-off criterion in the Lasso

is defined such that at least 95% of the deviance is explained at the end of the lambda sequence. In the second step,

a sub-sampling approach (500 times) randomly chooses without replacement a smaller number of features and

estimates a multivariate Cox model. To avoid convergence issues in the fitting procedure of the multivariate Cox

model, the number of features in each subsampling step nsub is limited to the number of observations (nsub = n/3).

Each feature in one subsampled Cox model yields a Z-statistic. The number of selections per feature is controlled

by ppre, thereby leading to ppre/3 number of Z-statistics for each feature on average. Finally, by calculating the

mean over all Z-score subsamples, a final feature score is derived and used for ranking in survRand.

2.1.2. Nested CV for estimating generalizability—TASK 1. The full dataset D : = Di with Di

:= (Ti, di, xi) is split into training set D - cvout and test set Dcvout with index set cvout and its complement.

Inner CV Inner CV is applied to only the training set D - cvout by performing a second CV stratification,

thereby yielding inner training D( - cvout‚ - cvin) and inner test set D( - cvout‚ cvin). Then, one of the described

ranking functions is applied to the inner training set. By adding one feature at a time (following the

ranking), a Cox model is estimated using the inner training data and evaluated with CUno for the inner test

data. This procedure is performed until a predefined maximum number of features is achieved and is

repeated for all inner CV folds. The best number of features is determined by averaging over all inner CVs

and selecting the number of features that corresponds to the maximum mean CUno.

Outer CV For the outer CV, one feature ranking is performed for the whole training set. Then, using

the best number of features derived in the inner CV, a Cox model is estimated using the training set, thereby

yielding effect estimates for the selected features. Using these estimates, the unbiased prediction perfor-

mance with the unseen test set is quantified by CUno, corresponding to TASK 1. Note that the entire

procedure (including the inner CV) is applied to all outer CV folds.
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Repeated CV To obtain an estimate of the variance of prediction accuracy, this approach is repeated

t_times for different splits of the dataset.

2.1.3. Final model—TASK 2. The repeated nested CV combined with stepwise feature selection

based on the ranking function yields a ranked set of features for each CV run. In addition, the performance

on the test set for each run is recorded (number of runs K = cvout · t_times). As these ranked lists of selected

features are not necessarily the same, it is not clear how to aggregate them to a final set of features that

can be used for predicting risk scores for new patients. Here, we propose an approach that leverages

the information from all individual CV runs to determine a final set of features for which a final model

can be fit.

Our weighted approach uses information from the outer CV performance corresponding to each run,

thereby addressing TASK 2. The weight of run i is defined as follows:

wi =
1
K

exp ( log (2) devAUCi

0:1 )‚ if CUno‚ iq0:5

0‚ if CUno‚ i <0:5

(
: (2:6)

Here, devAUCi denotes the relative CUno of an individual CV run compared to the average performance of

all runs. The weights w0i are further normalized to sum to one (w0i¼wi=Swi). The final set of predictors is

determined by majority voting as follows:

I(pj) =

1 if pj>0:5

with pj =
PK
i = 1

I(j‚ i)w0i

0‚ if pjp0:5

8>><
>>: (2:7)

where I(j, i) is 1 if the feature pj was selected in run i.

Algorithm 1: SurvRank algorithm with repeated nested CV

Data: survival data set (Tj, dj, xj);

parameters of rep CV: repetition t_times, outer CV cv_out, inner CV cv_in;

maximum number of features max_var;

ranking_fct (survLasso, survCox, survRand);

coxmodel function estimates b̂ on a data set;

final_feature_fct (weighted);

Result: final set of selected features of the nested CV approach

for t = 1 : t_times do

for j = 1 : cvout do

train_outer ) (T
( - cvout)
j ‚ d( - cvout )

j ‚ Xj
( - cvout));

test_outer ) (T
(cvout )
j ‚ d(cvout )

j ‚ Xj
(cvout));

for k = 1 : cvin do

train_inner ) (T
( - cvout‚ - cvin)
j ‚ d( - cvout‚ - cvin)

j ‚ Xj
( - cvout‚ - cvin));

test_inner ) (T
( - cvout‚ cvin)
j ‚ d( - cvout‚ cvin)

j ‚ Xj
( - cvout‚ cvin));

ranking_in ) ranking_fct(train_inner);

for i = 1 : max_var do

coxmodel_in ) coxmodel(ranking_in[1 : i], train_inner);

surv_in[i, k] ) Cindex(coxmodel_in, test_inner);

end

end

meanCurve ) mean(surv_in,k);

maxFeature ) which_max(meanCurve);

ranking_out ) ranking_fct(train_outer)[1:maxFeature];

coxmodel_out ) coxmodel(ranking_out, train_outer);

surv_out[j,t] ) Cindex(coxmodel_out, test_outer);

end

end

sel_features ) final_feature_fct(surv_out, ranking_out);

final_model ) coxmodel(sel_features, (Tj, dj, xj));
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Finally, one survival model can be calculated with the selected features using the entire dataset, thereby

leading to effect estimates b̂train and risk scores for each subject. This is used to predict survival proba-

bilities with unseen data with similar predictive power as estimated in the nested CV.

2.2. Comparison method

To compare this approach to existing methods, a commonly used regularized survival model based on

Cox-Lasso was selected (coxLasso). For coxLasso, the same unbiased approach was performed to estimate

the prediction accuracy with CV by applying the same repeated CV parameters. One CV step consists of

separation into different folds and optimizing the penalization parameter k̂ by the inner CV of one fold.

This optimized k̂ was used to predict the unseen test fold, thereby measuring performance with CUno. For

coxLasso, the final selection of covariates, which are used for prediction with the test set, was estimated by

applying CV to the entire training dataset once. By optimizing the partial likelihood in the Cox regression,

the number of features was obtained with cross-validated minimum deviance for coxLasso.

3. RESULTS

3.1. Simulation and validation setup

To evaluate our algorithm, we generated a high-dimensional, multivariate normally distributed dataset

with n = 100 observations and p = 500 features. The survival times Ti followed an exponential distribution

with mean gi = 1=(kT

P4
i1

xibi), which we set to kt = 0.5 and b1 = 1.5, b2 = -1.5, b3 = -1, and b4 = 1 for our

framework. An independent random censoring time Tcens was simulated such that it followed an expo-

nential distribution, which we fixed to mean 2. The observed survival times Tobs are expressed by Tobs =
min(Tcens, Ti), which leads to independent censoring of approximately 50%. The maximum number of

features was set to 30. Partitioning into training and test sets was applied in all configurations with the same

parameters (cvin = 10, cvout = 10, t_times = 10). To calculate CUno, we fixed s at the last observed survival

time.

We first used the simulated data to estimate generalizability accurately, which is directly related to

TASK 1. By applying a final model fit on the training set and estimating the performance with 10 simulated

test sets, we retrieved the performance of our model selection with new unseen data. Ideally, the perfor-

mance difference between the training and test data should be small. Otherwise, we would have a classical

overfitting situation with the training data, where generalization accuracy to new unseen test data is not

fulfilled. This procedure was repeated for 100 different training datasets. Furthermore, we calculated the

true CUno for the training set and the test sets using only the true effects b1,.,b4.

We then attempted to retrieve the correct set of features, thereby addressing TASK 2 (feature selection).

To achieve this, we calculated the F1 score, which is defined as the harmonic mean of precision and recall,

that is, F1 = 2 · precision�recall
precision + recall

: Here, the F1 score was calculated to compare the selected features with

respect to the four true features.

We then compared our approach with a commonly used regularized survival model. Here, we estimated a

penalized survival Cox model with Lasso (coxLasso based on the R package glmnet).

3.2. Simulated dataset results

We observed good performance with the test data and comparable results for accuracy with the training

set compared to the test sets (Fig. 2), thereby addressing TASK 1. The coxLasso approach performed

similarly with the training data compared to survLasso from our package; however, as expected, prediction

with unseen new data shows substantial overfitting. The survRand ranking function demonstrated higher

variance of CUno with the training set. survCox ranking performed worse with the training data; however,

the final feature selection results showed comparable prediction accuracy with new test data. The overall

worse performance of survCox illustrates the advantage of the multivariate ranking function of survLasso

and survRand compared to survCox with univariate ranking.

Compared to standard coxLasso, the sparser set of selected features represents an advantage of our

ranking and final feature selection approach (Fig. 3A), thereby addressing TASK 2. This illustrates that

selecting features according to the data fit (deviance), as used in the standard coxLasso approach, produces

too many selected features. In addition, we investigated whether the correct covariates were selected. We
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FIG. 2. Prediction performance with simulated data. A total of 100 training datasets were simulated, and unbiased

CUnos were obtained for each repetition of the nested CV. For each of the 100 training datasets, 10 test sets were created

to test prediction performance with new data. White dashed lines indicate the average of the true CUno with the

simulated datasets with an empirical 95% quantile range.

FIG. 3. (A) Number of selected features across simulated training datasets in the weighted approach. (B) F1 scores for

selected features to compare the selected features with the set of four true features.
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observed higher F1 scores (Fig. 3B) with our approach compared to coxLasso. These results illustrate the

overfitting of the coxLasso approach, that is, it selects several random, noninformative features (resulting in

a high FPR) and considerably overestimates predictive power with training sets (reduction of CUno on

average of 0.05 or 6% from training to test).

3.2.1. Runtime evaluation. An important aspect for nested CV approaches is the required compu-

tation time. The SurvRank package inherently supports parallelization across multiple cores on the same

machine. Table 1 shows the runtimes for different variable settings for the three ranking functions using a

single core of an Intel Core i5 2.6 GHz CPU. Here, we observed that the number of features p scaled

approximately linearly with computation time for survLasso, survRand, and coxLasso. survLasso was

slower than coxLasso in the first two settings by a factor of approximately 2.5, taking the additional

stepwise selection into account. Doubling the number of observations n increased computation time by a

factor of 2.2 for survLasso and survRand and by a factor of 3.6 for coxLasso. In contrast, the computation

time of survCox scaled approximately linearly with the number of features due to the univariate ranking

procedure. For survCox, an increasing sample size increased computation time only slightly.

3.3. Application to three breast cancer gene expression datasets

To evaluate our approach with real clinical data, we applied the pipeline to microarray datasets from

breast cancer patients with survival information (relapse time) after surgery (mastectomy) or radiotherapy.

We used two independent datasets to estimate the prediction accuracy with unseen data to assess how well

our method performs with TASK 1. To identify a predictive subset of features, we used our approach with

different ranking functions, thereby addressing TASK 2. In addition, we compared the performance of our

approach to a standard CoxLasso model and a set of 76 marker genes identified in the primary publication

(referred to as geneMarker). This geneMarker was derived by ranking the features according to an averaged

Cox score (using bootstrap samples).

The first dataset contained 286 patients with lymph node-negative breast cancer. For each patient,

information about estrogen receptor status positive (ER+) and estrogen receptor status negative (ER-) was

recorded, assuming that disease progression differs for these subgroups. This first dataset served as the

training set [accession number GSE2034 (Wang et al., 2005)]. Wang et al. identified a predictive set of 76

genes (geneMarker) composed of 60 genes for the ER+ group and 16 genes for the ER- group. We

attempted to obtain an alternative sparse set of genes with better generalizability to evaluate the perfor-

mance of our approach with two independent validation sets, that is, accession numbers GSE7390 (Des-

medt et al., 2007) and GSE1456 (Pawitan et al., 2005). There was an overlap of 18,842 features across the

three datasets. In the training data, there were 209 patient samples in the ER+ group and 77 observations

with ER- status. The first test dataset (test set 1) consisted of 134 samples in the ER+ group and 64 in the

ER- group. The second test set (test set 2) contained 125 subjects in the ER+ group and 27 in the ER-

group. Due to the larger number of observations, we focused on the ER+ subgroup for our evaluation.

We applied our different ranking algorithms to the dedicated training set and obtained a final marker.

Furthermore, the selected genes were evaluated with the new and unseen test sets. The parameters of the

repeated nested CV were determined as t_times = 20, cvout = 10, and cvin = 10. The maximum number of

features was set to 75, and s in CUno was set to 10 years.

The geneMarker and the coxLasso approach served as comparison models for our ranking algorithms.

The results of geneMarker were calculated by applying ridge regression to the training data and then

Table 1. Computation Time in Minutes for Different p · n Setups

p 100 200 200 500

n 100 100 200 100

survLasso 9.00 9.43 20.33 19.00

survCox 10.03 16.43 16.48 27.58

survRand 77.07 82.70 186.57 86.28

coxLasso 3.70 3.98 14.38 5.42

Parameters set to t_times = 10, cvout = 10, and cvin = 10.
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evaluating performance with the two test sets. For coxLasso, we repeated the final feature selection ten

times to determine the optimal penalization parameter, because coxLasso depends on the sampling of CV

folds.

3.4. Breast cancer data results

For our approach, performance with the unseen test dataset showed similar prediction accuracy com-

pared to the training data (Fig. 4). This indicates that our nested CV strategy was able to estimate the

generalizability of the predictor correctly, thereby solving TASK 1. The number of selected features varied

slightly between the three approaches of our package (24, 19, and 29 for survLasso, survRand, and

survCox, respectively), thereby addressing TASK 2. survLasso and survCox showed larger overlap of

selected genes compared to survRand (Fig. 5). As in the simulation study, survLasso performed consid-

erably better than survCox (on average CUno decreased by 0.03 or 5%), again illustrating the advantages of

a multivariate ranking approach compared to univariate ranking. Similar to the results of the simulation

study, coxLasso selected 53 features with too many false positives, resulting in a reduced performance with

the test data sets. geneMarker resulted in clear overfitting of this marker set with the training dataset (as

expected), where geneMarker was derived. Therefore, these results can be interpreted as training perfor-

mance. Consequently, the predictive power decreased strongly with the test sets. Comparing the gene-

Marker set with the selected markers in survLasso, survRand, and survCox yielded a small overlap, that is,

survLasso 2 genes, survRand 0, and survCox 5 (details in Supplementary Fig. S1, available online at

www.liebertpub.com/cmb).

4. DISCUSSION

We have proposed a new framework to reliably estimate prediction accuracy and generalizability and to

select the most predictive features in a high-dimensional survival prediction setting. To avoid overfitting

FIG. 4. Prediction accuracy with three breast cancer data sets. The performance of the training data set was compared

to two independent test sets for the ER+ group. Feature selection was based on the weighted approach. Diamonds show

performance with the whole test set, whereas variation in the boxplots was obtained by subsampling the test data sets.
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while selecting features with high predictive power, the proposed approach estimates accuracy and per-

forms feature selection using repeated nested CV with novel feature combination heuristics.

Our approach differs from standard approaches, such as the CoxLasso approach, in two ways. First, the

selection of features is determined by the best predictive feature combination (using CUno) rather than the

best data fitting combination, thereby reducing the risk of overfitting. Second, for final feature selection, our

approach leverages information from different CV runs. The CoxLasso approach uses the minimum cross-

validated deviance of the whole dataset, while the proposed approach aggregates the results of different CV

runs and applies a weighting scheme to select only predictive features. This combination of aggregating CV

runs by weighting results in sparser feature selection with more accurate estimation of predictive power.

Using simulated data, we demonstrated that the proposed method can identify true features and can

correctly estimate prediction accuracy with new data without overfitting. By comparing the results of

different methods in this simulation setup, we observed that survLasso dominates survCox with training

and test data. This effect can be explained by the multivariable ranking procedure of survLasso (consid-

ering all features) in contrast to the univariate ranking of survCox, which treats features independently.

With breast cancer data, our pipeline based on two of our ranking approaches was able to estimate

similar prediction performance with the test datasets compared to the training data. However, the survRand

FIG. 5. Overlap of selected genes of the different ranking functions.
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approach showed a drop in prediction performance with the breast cancer test data. This effect is illustrated

in Figure 5, where we observe that this ranking approach has only small overlap compared to survLasso and

survCox. The 19 selected features in this approach lead to lower prediction performance. By comparing

coxLasso and survRand, we observed an overlap of six features that are only picked by these methods

(Supplementary Fig. S1), thereby introducing noise to the model. In addition, the sampling strategy of

survRand might introduce some noise to the selection process. This again confirms the robust performance

of survLasso compared to the other ranking methods.

Our approach can be extended in several directions. (1) In clinical applications, variables such as age,

gender, height, and BMI are collected routinely. Therefore, it would be desirable to force such features into

the model and evaluate the additional benefit of omics data. (2) Our framework uses the Cox proportional

hazards model. Extending the approach to accelerated failure time models or frailty models may improve

the baseline hazard estimation, such as time-varying hazards or random effects. (3) Applying repeated

nested CV to classification tasks may also be an interesting extension.

Importantly, our approach as a biomarker discovery method focuses on identifying a predictive bio-

marker combination and does not provide functional interpretation of the selected features (e.g., genes and

transcripts). Therefore, we recommend using the SurvRank package with the survLasso approach and

weighted final feature selection, due to the low computational demands and best results from both the

simulation study and the clinical data.

In summary, we provide a flexible, ready-to-use toolbox for survival data that allows for unbiased

estimation of prediction accuracy for survival models and extracts the most predictive features from high-

dimensional survival datasets.
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