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a b s t r a c t

Papillary renal cell carcinoma (pRCC), which accounts for 10–15% of renal cell carcinomas, is the second
most frequent renal cell carcinoma. pRCC patient classification is difficult because of disease heterogene-
ity, histologic subtypes, and variations in both disease progression and patient outcomes. Nevertheless,
symptom-based patient classification is indispensable in deciding treatment options. Here we introduce
a prediction method for distinguishing pRCC pathological tumour stages using deep learning and
similarity-based hierarchical clustering approaches. Differentially expressed genes (DEGs) were identi-
fied from gene expression data of pRCC patients retrieved from TCGA. Thirty-three of these genes were
distinguished based on expression in early or late stage pRCC using the Wilcoxon rank sum test, confi-
dence interval, and LASSO regression. Then, a deep learning model was constructed to predict tumour
progression with an accuracy of 0.942 and area under curve of 0.933. Furthermore, pathological sub-
stage information with an accuracy of 0.857 was obtained via similarity-based hierarchical clustering
using 18 DEGs between stages I and II, and 11 DEGs between stages III and IV, identified through
Wilcoxon rank sum test and quantile approach. Additionally, we offer this classification process as an
R function. This is the first report of a model distinguishing the pathological tumour stages of pRCC using
deep learning and similarity-based hierarchical clustering methods. Our findings are potentially applica-
ble for improving early detection and treatment of pRCC and establishing a clearer classification of the
pathological stages in other tumours.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The development of next generation sequencing techniques
(NGS) has enabled analysis and modeling using information from
cancer patients. The Cancer Genome Atlas (TCGA) projects have
RNA-seq data with various tissue types and clinical information
for patients [1]. Cancer data largely varies with each patient, mak-
ing patient classification based on specific properties difficult as
this does not often show a clear and definite difference in disease
status [2]. Therefore, results vary greatly depending on which vari-
able is selected and which analysis method is used. In other words,
when constructing a classification model, the outcome could vary
greatly depending on the markers, patient groups, and model algo-
rithms used.

There are various forms of kidney cancer, the most common
being renal cell carcinoma (RCC), which also has various types
based on histological differences [3]. RCCs include clear cells, pap-
illary, chromophobe, cystic-solid, and collecting ducts renal cell
carcinoma. Cancers classified according to their form and charac-
teristics are treated differently according to their types [4,5].
Among these, papillary renal cell carcinoma (pRCC), which
accounts for 10–15% of RCCs is the secondmost prevalent RCC after
clear cell renal cell carcinoma (ccRCC) [6]. pRCC has the form of a
papilla and is divided into two types, type 1 and type 2, depending
on the size, appearance, prognosis, and biological differences [7].
Although most RCCs, including pRCC, exhibit characteristic mor-
phologies that enable easy categorisation, they can show consider-
able morphological heterogeneity, and it is not uncommon for
there to be difficulty in assigning a tumour type [8]. According to
recent report, 12% of pRCC patients remain unclassified [9].
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Kidney cancer is often free of symptoms for a considerable per-
iod after tumour development. When the cancer is small, there are
very few symptoms until it grows and becomes large enough to
push surrounding organs. Consequently, diagnosis is often delayed,
and it may be found in an already metastasized state [10]. As the
disease progresses, the size of the cancerous tumour grows and
the chances of metamorphosis increase; according to the tumour,
node and metastasis (TNM) staging system, which was revised in
2009, there are cases of lymph node transfer from stage III
[7,11,12]. Cancer stage prediction is a process for estimating the
likelihood that the disease has spread before treatment is adminis-
tered to the patient. Fewer studies exist on genetic markers and
therapeutic agents for the relatively recently defined pRCCs than
for ccRCC, which has been extensively studied. Although pRCC
has a relatively better prognosis than ccRCC, genetic studies for
treatment are essential because of the high risk of recurrence
[13]. Therefore, diagnosis using molecular markers is imperative
at preoperative biopsy to allow clinicians to determine the best
approach for treating and managing the disease.

In this study, we established a method for predicting the patho-
logical stage of pRCC for early diagnosis and proper therapy of
pRCC. This is based on the concept of a deep learning prediction
model and similarity-based hierarchical clustering using TCGA
transcriptome dataset. In addition, we designed an automated
pathological tumour stage prediction R function consisting of two
key modules; a deep learning prediction model module to distin-
guish early and late stage pRCC, and a similarity calculation mod-
ule to classifying pathological sub-stage information.
2. Materials and methods

2.1. Data description

We extracted the transcriptome (‘HTSeq-FPKM’) and associated
clinical data of TCGA Kidney Renal Papillary Cell Carcinoma (TCGA-
KIRP) via the ‘GDC-client’ from the Genomic Data Commons (GDC)
data portal (https://portal.gdc.cancer.gov/) and then assembled it
using TCGAbiolinks R package. ‘‘Solid Tissue Normal” and ‘‘Primary
Solid Tumour” data were selected from the datasets. Clinical
tumour stage data were retrieved from clinical data files, and data
for 29 tumour patients without tumour stage information were
excluded from a total of 288 patients. We selected 259 patients
which had both gene expression and tumour stage clinical data
to screen for genes involved in tumour progression. Group labels
were applied to the initial dataset to distinguish early from late
stage samples. Among the 259 transcriptomes with tumour stage
information for pRCC, there were 172 stage I, 21 stage II, 51 stage
III, and 15 stage IV samples. In stages I and II, the tumour is still
confined to the papillary renal cell and has not spread to the cen-
tral lymph node compartment, increasing the chances of survival.
Whereas stages III and IV have more lymphatic metastasis, and
decreased survival indices [14]. Therefore, we combined stages I
and II as early stage, and stages III and IV as late stage.

Next, the patients were divided into training and validation
datasets to build and fit the prediction model. In the past, various
Table 1
Summary of datasets.

Status Sample Size

Solid Tissue Normal
Primary Solid Tumor Stage I Early

Stage II
Stage III Late
Stage IV
Unknown

Total
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studies employed the 80:20 ratio for the partitioning of a dataset
into training and validation datasets [1,15,16]. Therefore, we also
applied this standard protocol using 80% data as the training data-
set for model training and the remaining 20% data as validation
dataset for final model validation. The validation dataset was not
included in downstream analyses. The distribution of patients
across training and validation datasets based on the clinical
tumour stage is presented in Table 1. We generated a multidimen-
sional scaling (MDS) plot with normal and tumour samples using
whole genes (pre-processed), showing a clear separation between
normal and tumour samples (Fig. S1a). However, samples at differ-
ent stages of tumour development (stages I, II, III, and IV) formed
an ensemble without clear separation (Fig. 1a, Fig. S1b).
2.2. Normalization of RNA expression

We used FPKM (fragments per kilobase of transcript per million
mapped reads) values of expression quantification for 57,035 RNA
transcripts. We normalized the wide range of variation in FPKM
values using log2-transformation after adding 1 as a constant num-
ber to each FPKM value. Before normalizing the data, we removed
the low expression genes to ensure the reliability of the gene sets
and reduce the possibility of false positives. Genes with FPKM = 0
for >75% of the patients or with a maximum expression of <1 in all
patients were considered low expression.
2.3. Identification of differentially expressed genes

To identify DEGs, we first performed differential expression
analysis by comparing tumour and normal samples. Although the
RNA expression values were normalized, the large number of
patients used in this study may have resulted in one-sided bias
due to outliers. Therefore, we determined whether the difference
in gene expression values in early and late stage samples was sta-
tistically significant or not using the Wilcoxon rank sum test rather
than the t-test. This is because the t-test uses the mean value and is
affected by a few large outliers, whereas the Wilcoxon test mini-
mizes the impact of outliers and compares the distributions of both
groups to address the threshold of the t-test. Only genes with p-
value of 0.05 or less are selected, and we compared early and late
stages using the same method. Secondly, we computed the CI
based on a Wilcoxon rank sum test to improve the performance
of the gene sets. It is common to use the mean or the median to
obtain a fold-change, but to reflect the difference in overall distri-
bution, the CIs were computed and compared. The CI determines a
range of expression values from the statistics of the observed data.
The range has an associated confidence level that the true param-
eter is in the proposed interval. After determining gene expression
intervals (CIs), genes showing differences in expression between
the early and late stage samples were extracted by selecting genes
that differed from normal samples and did not overlap with each
other. Since the 95% confidence level is most commonly used
[17], we selected the genes whose 95% CIs in the early and late
stage samples were distinct from each other.
Training set Validation set

32
172 139 33
21 15 6
51 42 9
15 11 4
29
288 207 52

https://portal.gdc.cancer.gov/


Fig. 1. MDS plot for pRCC patients with (A) whole genes, (B) DEGs filtered by confidence interval, and (C) the 33-feature gene expression. MDS, multidimensional scaling;
TCGA-KIRP, The Cancer Genome Atlas – kidney renal papillary cell carcinoma; pRCC, papillary renal cell carcinoma; DEGs, differentially expressed genes.

Table 2
Activation function of deep learning method.

Function Formula Range

Tanh f xð Þ ¼ ex�e�x

exþe�x f �ð Þ 2 ½�1;1�
Rectified Linear f xð Þ ¼ maxð0;xÞ f �ð Þ 2 Rþ
Maxout f x1; x2ð Þ ¼ maxðx1; x2Þ f �ð Þ 2 R

S. Lee et al. Computational and Structural Biotechnology Journal 18 (2020) 2639–2646
2.4. Feature selection

Feature selection is an important task that determines the suc-
cess of deep learning classification. Feature selection reduces the
dimensionality of feature space by removing non-useful features
and helps in improving the accuracy of classifiers for learning
and prediction [15,18].

To reduce the dimensionality of the datasets and identifying rel-
evant features for building an efficient deep learning model, we
implemented the feature selection algorithm, LASSO, a regression
model for preventing the built model from being over-fitting by
minimizing the sum of the absolute values of the weights. When
the model is over-fitting, the size of the model coefficient tends
to increase excessively. Therefore, constraints are generally a way
to limit the size of the coefficients. LASSO selects only a few impor-
tant variables and features selection by reducing the other coeffi-
cients to zero. Finally, the gene is selected using a LASSO
regression model that minimizes error during cross-validation in
the R package, ’glmnet’ (version 4.0). The LASSO equation is:

XN
i¼1

yi �
1

1þ expð�xiTbÞ
� �

subject to
XP
j¼1

jbjj � t

where xi ¼ ðxi1; xi2; � � � ; xipÞ are covariates of the ith observation and
t > 0 is a tuning parameter.

When using LASSO, slight variations in the statistical data, such
as adding or removing a few observations, will lead to significant
changes in the coefficient estimates (bÞ [19]. To obtain reliable fea-
tures from different distributions of samples due to the hetero-
geneity of pRCC, ten sub-sample groups comprising 80% of the
training dataset were extracted randomly and tested 100 times
by LASSO under various conditions. We tried to select more stable
features not affected by variations in the samples through
iteration-like bootstrap. Accordingly, more than 20% of repetitive
genes in more than eight groups were finally selected.

2.5. Construction of the deep learning model

We applied the deep learning technique to build a model that
distinguishes the pathological stages (early and late stage) of pri-
mary tumours. Compared to other machine learning methods,
deep learning yields better outcomes with larger patient groups
and the data to be used for stage classification can be learned sep-
arately. Since each cancer has different characteristics, deep learn-
ing can be modelled to match the characteristics of various cancer
types, and adjusted by setting various hyperparameters, including
epochs, activation functions, and hidden layers. The optimal
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hyperparameters for each TCGA project’s prediction model are
not the same. Therefore, we interrogated the optimal hyperparam-
eters by applying these hyperparameters randomly with a grid
search. For epochs, 10, 50, and 100 were used, respectively. We
used ‘Rectified Linear’, ‘Maxout’ and ‘Tanh’ as the activation func-
tion, and the equations are stated in Table 2 [20]. The hidden layer
is composed of one or two layers. Using these hyperparameters
randomly or in combination, we built 400 Feedforward Neural Net-
works (FNNs) using the h2o package (version 3.26.0.2). FNNs are
the most fundamental part of artificial neural networks. In FNNs,
the neurons are arranged in the form of layers, primarily input,
hidden, and output layers. Connections also exist between the neu-
rons of one layer and those of the next layer [21]. Fig. 2a represents
the structure of single neuron and the equation of the neural net-
work is:

by ¼ f
X
i

wixi þ b

 !

where f �ð Þ is activation function and input xi, weight wi, and bias b
[20]. Fig. 2b shows a feedforward neural network. The performance
of the hyperparameters was evaluated via a grid search, the AUC
and accuracy values were assessed, and the best optimal model
was selected based on the AUC and accuracy values.

2.6. Classification of pathological stages using similarity

We attempted to develop an automated method for predicting
the pathological sub-stages of early and late stage pRCC patients
by evaluating the similarities among tumour samples using the -
DEGs in the different stages (stage I vs. II and stage III vs. IV).

We identified DEGs for each tumour stage using the Wilcoxon
rank sum test and quantile approach. In accordance with the pre-
method for identification of DEGs, we performed the Wilcoxon
rank sum test to obtain statistically significant differences between
stages I and II and between stages III and IV. To obtain the genes
which were clearly distinguished between stages, we used the
quantiles of gene expression. Although, CI approach is suitable
for groups with obvious discrepancies, such as early and late



Fig. 2. Feedforward artificial neural network. (A) Structure of a single neuron that obtains output by by input xi , weight wi , and bias b. (B) Feedforward artificial neural
network. Each circular node represents an artificial neuron and an arrow represents data flow from one neuron to another.
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stages, it is difficult to find enough differences between stages I
and II and between stages III and IV. The quantile approach is a
highly valuable complement to the mean approach for detecting
differential gene expressions [22]. Therefore, in the early stage,
we selected DEGs within the 30th percentile of stage I which was
larger than the 70th percentile of stage II or, the 30th percentile
of stage II was larger than the 70th percentile of stage I. Even
though the first and third quartiles are used generally, since stages
I and II were very similar, the 30th and 70th percentiles were used.
For the late stage, DEGs were selected in the same manner as above
using the first and third quartiles.

With DEGs of the pathological tumour stages, the correlation
between samples (early or late stage) was calculated, and the top
20% of samples were extracted to compute the Euclidian distance
among samples. To perform similarity-based hierarchical cluster-
ing, only the Euclidian distance values were necessary; however,
to overcome pRCC heterogeneity and to reduce noise during clus-
tering, we acquired a homogeneity set [23,24]. In other words,
for early stage cases, the correlation was calculated between all
154 samples (stage I and stage II patients from the training data-
set), and then the 30 most closely correlated samples were selected
to measure distance.

Then, these samples were hierarchically clustered using P-
Values via Multiscale Bootstrap (‘pvclust’ R package, version
2.2.0, https://github.com/shimo-lab/pvclust) with the Ward.D2
method. The numeric value (vector) of the number of bootstrap
replications was set as 1000 and the initialized seed was set as
20. Hierarchical clustering shows the samples with close patholog-
ical stages. Based on the hierarchical clustering plot, the patholog-
ical tumour stage was annotated as the stage information of the
nearest sample. All the analyses were performed in R (version
3.6.0).

In order to use this classification model, we have implemented
an R function which shows the final result in a hierarchical cluster-
ing plot with the correlation value, AU (approximately unbiased) p-
value, and BP (bootstrap probability) value for each cluster in a
dendrogram. A detailed code is provided in Supplementary File 2.
2.7. Evaluation of the deep learning model performance compared
with machine learning methods

In addition, early and late stage classifications were performed
using well-known machine learning techniques and the R caret
package. Multiple techniques, such as RF, SVM, cforest and GLM
were applied to generate appropriated classification models. The
hyperparameters of machine learning models were tuned through
the Randomised Grid Search Cross-Validation approach (Table S1).
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We computed AUC and accuracy through 10 cross validation pro-
cesses, and then compared the performances between four
machine and deep learning methods.
3. Results

3.1. Identification of differentially expressed genes

To identify the genes that distinguish the tumour stages, we
first extracted genes that differed from normal, then conducted a
Wilcoxon rank sum test on all genes to find differentially expressed
genes (DEGs) between normal and tumour samples, and 18,985
genes with p-values < 0.05 were selected. Among the normal and
tumour DEGs, 6,687 genes capable of distinguishing early and late
stage tumours were further selected (p-value � 0.05).

To improve effectiveness, genes with different expressions
between early and late stages were filtered through the 95% confi-
dence interval (CI). Use the 95% CI to distinguish the pattern as
shown in the Fig. S2, and the expression is as follows.

Earlyupper � Latelower and Lateupper � Normallower ð1Þ

or

Lateupper � Earlylower and Earlyupper � Normallower ð2Þ

or

Normalupper � Latelower and Lateupper � Earlylower ð3Þ

or

Normalupper � Earlylower and Earlyupper � Latelower: ð4Þ
The number of cases using CI is as shown above. Where, upper is

the upper boundary of the 95% CI and lower is lower boundary of
the 95% CI. To compare the datasets, the lower boundary of one
group should be larger than the upper boundary of the other group.
Above all, since entire tumour samples must be distinct with nor-
mal samples, equations (1) and (2) show patterns similar to
tumour-suppressed genes with the lower boundary of the normal
95% CI being higher than the upper boundary of the tumours. Equa-
tions (3) and (4) show patterns similar to tumour-derived genes
with the lower boundary of the tumour 95% CI being higher than
the upper boundary of the normal. Using equations (1) and (4),
we extracted genes that were more highly expressed in the late
stage than early stage samples. The opposite was the case for equa-
tions (2) and (3). Except for the above expression patterns, the

https://github.com/shimo-lab/pvclust


Table 3
Number of differentially expressed genes.

Wilcoxon rank sum test (p-value < 0.05) 95% CI LASSO regression

Normal vs. Tumour Early vs. Late Stage

Number of DEGs 18,985 6,687 1,624 33

Abbreviations: CI, confidence interval.

Table 4
Hyperparameters of deep learning model.

Hyperparameters Values

Epochs 10
Layers Input 33

Hidden 1 5
Hidden 2 5
Output 2

Activation function a1 Rectifier
a2 Rectifier
aO Softmax

Drop out d0 0%
d1 0%
d2 0%

L1-regularization L11 0.0001
L12 0.0001
L1O 0.0001

L2-regularization L21 0.001
L22 0.001
L2O 0.001

S. Lee et al. Computational and Structural Biotechnology Journal 18 (2020) 2639–2646
remaining were excluded because normal samples acting as noise.
To identify non-overlapping genes, we examined 95% CI for every
gene, resulting in the selection of 1624 genes (Fig. 1b).

3.2. Feature selection

In order to verify the correlation between the gene expression
level and the tumour projection, the effect of overfitting was
excluded from the interaction between the genes. Therefore, we
used the variable method of the LASSO (Least Absolute Shrinkage
and Selection Operator) regression algorithm to solve the multi-
collinearity problem, which has strong correlation between inde-
pendent variables. To reduce the influence of pRCC heterogeneity
on feature selection, we applied the feature selection algorithm
to each of the ten sub-sample groups, and then the selected genes
were combined to ensure consistently stable features (see meth-
ods). Consequently, we identified 33 efficient features which could
distinguish early and late stage pRCC (Table 3, Table S2), and gen-
erated an MDS plot with each pRCC stage sample using these fea-
tures. The plot shows a definite separation between early and late
stage samples, although some samples were mixed with other
stage samples (Fig. 1c). Among the 33 features, 16 genes had been
already investigated previously in tumour studies from kidney or
various carcinoma types (Table S2).
Table 5
Overall performance table for stage prediction of pRCC using deep learning and four mach

Model Training dataset Validation da

Accuracy SD Accuracy

DL 0.922 0.082 0.942
RF 0.864 0.062 0.846
SVM 0.883 0.058 0.788
cforest 0.848 0.063 0.808
GLM 0.839 0.073 0.769

Abbreviations: DL, deep learning; RF, random forest; SVM, support vector machine; GLM
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Furthermore, to confirm the selected features were representa-
tive of pRCC and were not biased towards the training dataset, we
extracted five independent datasets from whole samples; all sam-
ples belong to at least one dataset. All the feature selection algo-
rithms (Wilcoxon rank sum test, confidence interval, LASSO)
were applied to the five datasets under the same conditions. Then,
each selected feature of the five datasets was shared over 90% with
the 33 features (31, 30, 33, 33, and 31 features, respectively)
(Fig. S3).
3.3. Construction of deep learning model to distinguish early and late
stage pRCC

To predict early and late stage pRCC, we built a deep learning
model, using the selected features (33 genes). However, due to
the difficulty of finding a suitable hyperparameter for the deep
learning model, we designed 400 random deep learning models
using random hyperparameters with a grid search, and the optimal
model was selected based on the area under curve (AUC) and accu-
racy. The best hyperparameters of the optimal deep learning stage
prediction model for pRCC are shown in Table 4.

To evaluate the performance of deep learning, we compared the
results against the random forest (RF), support vector machine
(SVM), cforest, generalized linear model (GLM) which have been
used in previous machine learning studies. The performance of
the models was compared using different measures, including
not only accuracy and AUROC, but also balanced accuracy and F1
scores, which are more informative in evaluating estimates on
imbalanced datasets. These results show that the accuracy and
AUC of deep learning models yielded the best early and late stage
pRCC classification outcomes. The deep learning prediction accu-
racy and AUROC of pRCC were 0.942 and 0.933, respectively, which
are much higher than the results of five other machine learning
methods (Table 5). Asides the deep learning outcome, the random
forest (RF) method performed better with an accuracy of 0.846 and
AUROC of 0.914 (PR-AUC of 0.891).
3.4. Classification of pathological sub-stages of pRCC using similarity

Between early stages I and II and between late stages III and IV,
patients at different stages of pRCC were not clearly classified, pos-
sibly due to tumour heterogeneity or differences in tumour type.
Therefore, we identified specific DEGs that distinguished patholog-
ical sub-stages, 18 genes between stages I and II and 11 genes
ine learning methods.

taset

AUROC Balanced Accuracy F1 Score

0.933 0.885 0.963
0.914 0.692 0.907
0.720 0.731 0.857
0.804 0.641 0.884
0.692 0.692 0.846

, generalized linear model; SD, standard deviation.



Fig. 3. The similarity-based hierarchical clustering plot shows the relationships found within stage data. At each edge, red and blue letters represent approximately unbiased
p-values and bootstrap probability, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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between stages III and IV, using the Wilcoxon rank sum test and
quantile approach.

With these DEGs, we calculated the correlation among early or
late stage pRCC 0samples determined via the deep learning predic-
tion model, computed Euclidian distances between samples to
indicate similarities, and performed the unsupervised hierarchical
clustering with bootstrap support to show the relationship among
patients based on pathological tumour stage similarities. There-
fore, when a pRCC patient was predicted as ‘‘early stage” via the
deep learning algorithm, the relationship between stage I and stage
II was also displayed through the hierarchical clustering plot to
visually represent which stage was more likely (Fig. 3).

We evaluated the performance of our methods via a validation
dataset for 52 patients which was entirely isolated from our initial
analysis. The dataset contained 39 early (33 stage I, 6 stage II) and
13 late (9 stage III, 4 stage IV) stage patients. Of these, a total of 49
patients (excluding only three patients) were predicted as reliable
(correctly annotated) early or late stage with an accuracy of 0.94
via the deep learning prediction model (Table 5). The tumour
stages for 41 of these 49 patients were accurately classified: 33
of 39 early-stage patients were closer to stage I and 6 were closer
to stage II, with true positive rates (TPR) of 85% (Table S3). Of 10
late-stage patients, 9 were closer to stage III and 1 were closer to
stage IV, with TPRs of 80% (Table S4). Thus, the similarity calcula-
tion approach for classifying the pathological sub-stages of pRCC
successfully discriminated between stages with TPR of 83.7%
(Table S3).

We further tried to develop an automated tumour stage predic-
tion method to annotate the pathological stages of pRCC patients
by constructing an R function. This allowed the classification of
early and late stage pRCC and their pathological sub-stage by cal-
culating the distance between samples and performing hierarchi-
cal clustering using gene expression data derived from RNA-seq.
The R function developed in this study consists of two key mod-
ules: a deep learning prediction model to distinguish early and late
stage pRCC and a similarity calculation for detailed pathological
sub-stage classification. Further, it shows the relationship between
patients and tumour stage as displayed in the hierarchical cluster-
ing plot (Fig. 3). Typically, the user needs to provide gene expres-
sion (FPKM) values of biomarker genes for every patient. The
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output includes a patient list and the corresponding predicted
pRCC stage (early or late), and also provides pathological sub-
stage information about which stage is closer to the clustering
group. Each patient’s result will be provided as a dendrogram (Sup-
plementary File 1). The R function source code is reported in Sup-
plementary File 2.
3.5. Performance assessment of classification methods

Furthermore, we evaluated our pathological tumour stage pre-
diction methods using additional test dataset. Since, there are no
publicly available pRCC RNA-seq datasets, to the best of our knowl-
edge, we used the 29 unknown stage patients excluded from the
initial dataset. The American Joint Committee on Cancer (AJCC)
clinical stage information was available for 11 of these patients
(seven stage I and four stage II patients). We examined these
patients using our automatic analysis process and found that one
stage II patient had been wrongly classified as late stage in the first
module, and two stage II patients predicted as stage I in the second
module, indicating the high performance and accuracy (0.80) of
our process (Table S4). The remaining 18 samples without stage
information were classified by our methods (Table S6).
4. Discussion

Reliable tumour stage prediction is important as it is used as a
criterion for determining physical or chemical treatment methods
and disease prognosis. Most gene expressions associated with
tumour characteristics are distinguished by differences in normal
tissue [25,26]. Among the genes that reveal tumour characteristics,
genes that distinguish stage characteristics are rare. Unlike the dif-
ferences in gene expression levels in normal and tumour cells, gene
expression based on stages in tumour tissues are not significantly
different [1,27]. Nevertheless, identifying differences in gene
expression for various cancer stages is a valid verification process,
in terms of diagnosis and treatment, especially since early findings
greatly affect the patient’s welfare. Thus, it is still valuable to iden-
tify differences in gene expression by pathological tumour stage.
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In this study, we focus on analysing the dataset of poorly stud-
ied pRCCs, which are well-known to have a high risk of recurrence.
Therefore, characterization of pRCC stages is necessary for early
detection and effective treatment. In a previous study, 17 hub
genes were identified through network analysis to distinguish
pRCC pathological stages with AUCs > 0.7 using TCGA data for
106 patients [28]. Another recent study reported 104 genes identi-
fied through machine learning methods with an PR-AUC of 0.804
and accuracy of 88% using TCGA data for 161 patients [29]. These
studies only used a subset of the available TCGA dataset (from a
total of 288 primary solid tumour patients, 259 with stage infor-
mation) and obtained low performances. Although several
machine learning approaches exist for distinguishing tumour
stages based on gene expression data, there remains a critical need
to improve accuracy. Recent advances in the machine learning
community have shown great promise for the application of deep
learning to cancer classification [30]. Furthermore, several super-
vised and unsupervised deep learning-based classification meth-
ods have been proposed for cancer detection and diagnosis, and
these have demonstrated superior performance over classical
methods, such as SVM and RF [31,32].

In the present study, we constructed an optimum deep learning
model which distinguished early and late stage pRCC patients
using gene expression data. We used 259 (207 for biomarker iden-
tification and model training, and 52 for model validation) of the
288 pRCC patient RNA-seq data available in TCGA, only excluding
29 patients with unknown stages. In selecting features for distinc-
tion between early and late stage, differentially expressed genes
between early and late stage patients were selected using the Wil-
coxon rank sum test and CIs, multicollinearity was eliminated
using LASSO regression, and 33 genes were finally selected for
use in the prediction model. To predict tumour patient’ pathologi-
cal stage, the deep learning method was used; we set up 400 mod-
els to optimize hyperparameters, and selected models based on
their predictability and suitability. The predictive performance of
the optimum deep learning model was tested by comparing the
AUC and accuracy values with the results of four other machine
learning methods using validation datasets. As expected, deep
learning showed the best predictive power with an accuracy of
0.942 and AUROC of 0.933 (PR-AUC of 0.891), mainly because the
optimum parameter was identified by applying multiple random
parameters. Considering the relatively poor prediction of late stage
classification in the validation dataset, it is likely that overfitting
occurred to some extent for early stages due to the unequal num-
ber of patients. The number of pRCC patients with late stage dis-
ease (53) used for stage classification modelling was relatively
small compared to those with early stage disease (154). As the
number of late stage samples that can be analysed increases, the
performance of the stage classification model will improve.

After dividing the early and late stages, we classified the patho-
logical tumour stage by calculating the similarity and cluster anal-
ogous approach using the 18 DEGs for stages I and II, 11 DEGs for
stages III and IV and quantile filtering. The quantity and quality of
TCGA molecular data have been lauded by a large number of scien-
tists, and these data have resulted in studies that have significantly
advanced our understanding of cancer biology [33]. In addition,
numerous independent investigators have used TCGA as a resource
to support their own studies and to help interpret molecular test-
ing of individual patients in clinical settings [33–35]. Therefore,
when a patient’s tumour was predicted as early stage using the
deep learning model, the patient was compared with stages I and
II patients to identify the pathological sub-stage, using TCGA as a
reference database. Then, we applied an unsupervised hierarchical
clustering method, using similarity and distance measures to clus-
ter most similar data points into the same cluster [36], yielding an
2645
accuracy of 0.84 for the validation dataset and accuracy of 0.80 for
the additional test dataset.

Furthermore, we implemented an automated pRCC pathological
stage prediction R function, which can analyse the gene expression
data from a sample and predict whether it is an early or late stage
patient and the pathological sub-stage.

pRCCs are frequently asymptomatic, and are often only inciden-
tally detected on imaging related with other clinical causes. Conse-
quently, diagnosis is often delayed, and it may be found in an
already metastasized state [10]. In addition, 12% of pRCC patients
remain unclassified [9]. Surgery is effective for localized pRCC
(early stage); however, once pRCC becomes metastatic (late stage)
the survival rate of patients drops sharply. Patients with higher
pathological stages tend to have worse prognoses. Therefore, the
pathological stage of pRCC is the most effective prognosis factor.
The standard treatment for localized pRCC is surgery, including
radical or partial nephrectomy, due to its insensitivity to radiother-
apy and chemotherapy [37]. Targeted therapies have better results
and fewer side effects compared with immunotherapy. However,
targeted therapies are still limited and liable to drug resistance
[38,39]. In order to overcome the current limitations in diagnosis,
therapy and follow-up of pRCC, biomarkers for use during biopsy
have been proposed as essential components for precision medi-
cine. Moreover, 29 samples (10%) of pRCC provided by TCGA did
not have pathological stage information. These could be exactly
identified by pathological stage with molecular investigations.
Therefore, molecular investigations with the biomarkers character-
ized in this study may help to identify the precise stage of disease,
which could improve the prediction of oncological outcomes and
lead to optimized target therapies.

Since this study was designed and performed using only TCGA
dataset due to the non-existence of publicly available pRCC
RNA-seq data, we recommend future confirmatory studies using
larger datasets. Nevertheless, to the best of our knowledge, this
is the first report of a model distinguishing the pathological
tumour stages of pRCC using deep learning and similarity-based
hierarchical clustering methods. Our findings are potentially appli-
cable for improving early detection and treatment of pRCC and
establishing a clearer classification of the pathological stages in
other tumours.
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