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3 Radiomics-based Management of Indeterminate Lung Nodules?

Are We There Yet?

With an estimated 229,000 new cases and 136,000 deaths in the
United States alone, lung cancer remains the deadliest malignancy
worldwide (1). Recently, however, the NLST (National Lung
Screening Trial) and the NELSON (Dutch-Belgian Randomized
Lung Cancer Screening Trial) studies have demonstrated improved
lung cancer mortality for low-dose computed tomographic (CT)
screening of the chest in high-risk individuals, and, consequently,
lung cancer screening programs are being implemented globally
(2, 3). Although this is very exciting, numerous challenges remain,
including the detection of large numbers of benign pulmonary
nodules, diagnosis of indolent lung cancers, and many others.

The implementation of lung cancer screening and the
increased use of diagnostic chest CT, together with advances in
CT technology, will undoubtedly lead to an ever-increasing number
of detected lung nodules. An estimated 20 million chest CT scans are
being performed annually in the United States alone (4, 5).

Despite the reliance on predictive models and nodule-
management practice guidelines, considerable variability in nodule
classification and uncertainty in management remain (6, 7).
Continued research exploring new biological and imaging-based
biomarkers is crucial to meeting these challenges.

In this issue of the Journal, Massion and colleagues
(pp. 241-249) report the development and external validation of
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a novel, computer-aided, deep learning-based radiomic model,
the Lung Cancer Prediction Convolutional Neural Network
(LCP-CNN), to distinguish benign nodules from malignant
screen-detected and incidentally detected indeterminate
pulmonary nodules (8).

Radiomics refers to the identification, extraction,
quantification, and analysis of imaging features from radiologic
images, with the goal of better or more consistently characterizing
radiologic findings. For lung nodules, quantitative and qualitative
density and morphologic features provide objective characterization
not available by standard visual image interpretation. The
analysis of already-available imaging data renders this approach to
development and validation of nodule radiomics safe and cost
effective. In contrast to conventional radiomic methods in which
imaging features are selected by experienced clinicians, deep
learning-based radiomics relies on machine learning—extracted
features that are frequently abstract and commonly difficult to
link back to the underlying biology.

Several other recent studies have explored the potential role
of radiomics in the classification of indeterminate pulmonary
nodules with promising results (9-11). Enthusiasm has, however,
been tempered by the lack of consistency in radiomics features
included in these models, the need for homogeneous image
acquisition, a lack of stability of the imaging features, the small
numbers of scans in relationship to the extracted imaging features
(type I error), and a lack of external validation. Models derived
from large, heterogeneous real-life data sets, such as the NLST, that
are further validated in external data sets, as in the current study,
are needed.
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Data on validated radiomic models for lung nodules remain
limited. We recently published our results using a conventional
eight-feature radiomic model (Mayo Radiomics Model) to
distinguish between benign and malignant lung nodules. Our model
was trained and internally validated on all available lung cancers
and matched benign controls (=7 mm) from the NLST, generating
an area under the curve (AUC) of 0.94 (12). The first successful
external validation data for our model were recently presented (13).
Similarly, a Google research group (Ardila and colleagues [14])
recently developed a deep-learning algorithm using patients’
current and prior CT images to detect lung nodules and assess
the probability of malignancy. This model, which included both
nodule detection and classification, was also developed using the
NLST data set, yielding a similarly impressive AUC of 0.94
(14). The authors were able to validate their results in an external
validation set of 1,139 cases including 27 cancers (AUC, 0.95)
(14). In the absence of prior imaging, the proposed Lung
Malignancy Score outperformed expert radiologists and reduced
the false-positive and false-negative risk to 11% and 5%,
respectively (14).

Massion and colleagues’ (8) LCP-CNN model represents
another promising radiomic model for the classification of both
screen-discovered and incidentally discovered pulmonary nodules.
The reported AUCs are excellent at 0.92, 0.84, and 0.92 in the
NLST (training set, screen-detected), Vanderbilt University, and
Oxford University (validation sets, incidental) sets, respectively
(8). The LCP-CNN model outperformed the clinical Mayo Clinic
lung-nodule-malignancy probability model for both external
validation sets (8). Compared with the clinical Mayo model, the
LCP-CNN model yielded net-reclassification indexes of 0.34 and
0.30 as a rule-in test and 0.33 and 0.58 as a rule-out test for the
Vanderbilt and Oxford University data sets, respectively (8). The
strengths of the current study include successful validation in
two independent data sets using nonprescribed, real-life CT
acquisition protocols and the potential applicability of the
LCP-CNN to both screen-detected and incidentally detected
pulmonary nodules. Although the model still awaits external
validation for screen-detected nodules, performance of the
LCP-CNN model was also reported for two additional retrospective
data sets (Leeds and Nottingham data) in comparison with the
Oxford University data set (15).

There are a few study-design decisions and potential sources
of bias in the LPC-CNN training and validation. In particular,
these consist of the inclusion of images from multiple time points
of the same nodule as independent data points, the limited
information about the actual imaging variables selected by machine
learning, and the influence of nodule size on the radiomic model.
Specifically, it would have been helpful if the radiologic features
driving the LCP-CNN model had been reported. However, these
concerns are lessened by the successful external validation of
the model.

What could the implementation of the LCP-CNN model or
other automated decision-support tools within our current clinical
workflow mean? Radiomics models such as the LCP-CNN model
could either replace or supplement clinical models to classify nodules
on the basis of the probability of malignancy. The data for the LCP-
CNN model suggests that, compared with the clinical Mayo Clinic
model, there would be no significant increase in cancers classified as
low-risk lesions. Application of the LCP-CNN model would result in a
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desirable decrease in intermediate-risk pulmonary nodules. However,
the rates of potential benign resection (benign lesions classified as high
risk), which ranged from 20% (Vanderbilt) to 30% (Oxford) in the
data sets, would potentially be suboptimal (8). The resection of
benign nodules should be kept to a minimum (10-20%); in fact,
application of the British Thoracic Society guidelines kept it to
<5% (16). However, as pointed out by the authors, we are
currently lacking data on how this information would impact the
clinical decision-making process because of the retrospective nature
of this data. The impact of the nodule classification used
prospectively for management remains unknown.

This work represents a major step toward demonstrating
the potential utility of radiomic classification in optimizing
the management of screen-detected and incidentally detected
pulmonary nodules. However, validation in larger, prospective
randomized studies investigating the actual clinical impact on
patient outcomes is needed. Any decision-support tool must
eventually prove to offer clinically important improvements, and
for lung cancer, we should expect real-world use of these tools to
result in a reduced time to the identification and treatment of
lung cancers, improved survival, decreased morbidity and cost
incurred from futile procedures performed on benign lesions,
and optimized use of invasive diagnostic procedures. Certainly,
confidence in the decision-support tool based on real-world data,
widespread availability, and the cost of any new clinically useful
biomarker will play a critical role in its clinical adoption.
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3 Protective Mechanical Ventilation in Organ Donors: A

Lifesaving Maneuver

Lung transplantation has become an effective lifesaving intervention
for patients with end-stage lung disease. However, the number of
available organs does not meet the current demand, with only
around 15-25% of lungs being procured from potential donors (1),
leading to persistently high mortality rates on the waiting list. Thus,
strategies to enhance lung procurement have been suggested as means
to reduce the mismatch between organ demand and supply (2) and
include extended lung-donor selection criteria (1), ex vivo lung
perfusion (EVLP) (3), and optimization of donor management (4).
Use of extended lung-donor selection criteria may easily increase
the availability of organs within the donor pool. Nonetheless, it
may increase the risk of post-lung transplantation primary graft
dysfunction, which occurs in about 20% of recipients and is associated
with increased morbidity and mortality (5). EVLP has shown
excellent reliability for donor lung assessment. Organs that would be
declined for transplantation according to standard criteria can be
maintained viable for up to 6 hours in clinical settings but up to 24
hours in experimental conditions. This allows a rigorous anatomical,
mechanical, functional, and biological evaluation of the donor lung
properties, which can more accurately inform the risk-benefit profile
of transplantation. This approach has resulted in an impressive
increase in the number of lung transplantations worldwide with
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encouraging long-term outcome (6). However, EVLP is a complex
strategy and requires specific skills and advanced resources.

Optimizing management of the lung in the donor may be the
strategy that can provide the greatest expansion in organs suitable for
transplant without significant increase in resource utilization. Potential
lung donors are prone to develop acute lung injury from the exposure
to a series of potential mechanical and inflammatory insults, including
brain death, atelectasis, lung trauma, aspiration pneumonitis, and
ventilator-associated pneumonia (7, 8). These conditions make donor
lungs particularly vulnerable and susceptible to the so-called
ventilator-induced lung injury (VILI) (9). Mechanical ventilation,
although necessary in donors to ensure adequate oxygenation to
protect organs potentially suitable for transplant, can itself cause lung
injury from excessive regional alveolar stress and strain and tidal
recruitment, with the consequent exacerbation of pulmonary and
systemic inflammation (9). Lung-protective mechanical ventilation
strategies aiming to avoid VILI can hence potentially determine a
great impact on lung availability for transplantation.

A prior landmark randomized clinical trial (10) implementing
low VT (6-8 ml/kg of predicted body weight [PBW]), higher
positive end-expiratory pressure (PEEP; 8-10 cm H,0), and
derecruitment preventive strategies (inline suctioning and
continuous positive airway pressure during the apnea test) showed
increased rates of organ procurement with similar survival rates.
However, the trial was stopped earlier than planned, thereby
introducing an important bias in the analysis of its findings.

In this issue of the Journal, Mal and colleagues (pp. 250-258)
assessed in organ donors the impact of lung-protective ventilation,
defined as PEEP =8 cm H,0 and VT <8 ml/kg PBW, on the
rate of lung procurement and recipient survival (11). The authors
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