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ABSTRACT: Molecular mechanics and dynamics simulations use distance based
cutoff approximations for faster computation of pairwise van der Waals and
electrostatic energy terms. These approximations traditionally use a precalculated
and periodically updated list of interacting atom pairs, known as the “nonbonded
neighborhood lists” or nblists, in order to reduce the overhead of finding atom
pairs that are within distance cutoff. The size of nblists grows linearly with the
number of atoms in the system and superlinearly with the distance cutoff, and as a
result, they require significant amount of memory for large molecular systems.
The high space usage leads to poor cache performance, which slows computation
for large distance cutoffs. Also, the high cost of updates means that one cannot
afford to keep the data structure always synchronized with the configuration of the
molecules when efficiency is at stake. We propose a dynamic octree data structure
for implicit maintenance of nblists using space linear in the number of atoms but
independent of the distance cutoff. The list can be updated very efficiently as the coordinates of atoms change during the
simulation. Unlike explicit nblists, a single octree works for all distance cutoffs. In addition, octree is a cache-friendly data
structure, and hence, it is less prone to cache miss slowdowns on modern memory hierarchies than nblists. Octrees use almost 2
orders of magnitude less memory, which is crucial for simulation of large systems, and while they are comparable in performance
to nblists when the distance cutoff is small, they outperform nblists for larger systems and large cutoffs. Our tests show that
octree implementation is approximately 1.5 times faster in practical use case scenarios as compared to nblists.

The most memory and time-consuming step in molecular
mechanics and molecular dynamics simulations is the

calculation of the nonbonded terms in the energy function,1

which requires summations of pairwise van der Waals and
electrostatics interactions. The computation times for these
summations are proportional to the number of interacting pairs
of atoms, which grows quadratically with the total number of
atoms in the molecular system. However, since the interactions
decay with distance, distance-based truncation (cutoff)
approximations are widely used in practice to trade-off accuracy
for speed, reducing the overall computation time to a linear (or
nearly linear) function of the number of atoms.2 These cutoff
approximations have traditionally been handled through
initially determined and periodically updated list of interacting
atomic pairsthe so-called nonbonded neighborhood lists3 or
nblists. The efficiency of molecular simulations is thus critically
dependent on the space- and time-efficient maintenance of
nblists. In the past, this efficiency had been achieved by dividing
the system into smaller regions based on cutoff distance4 or
chemical connectivity5 or the “By-Clusters-in-Cubes” (BYCC)
method.1 The BYCC method combines the connectivity and
spatial separation criteria by clustering atoms of the molecular

system. This clustering, however, is done only once at the
beginning of the molecular simulation. The resulting clusters
are then placed inside a cubic grid with the dimension of each
grid cell being roughly equal to the nblist’s cutoff distance plus
the maximum cluster size. This cubic division facilitates search
through the occupied neighboring cubes to determine the list of
interacting pairs of atoms. The BYCC method through its
reliance on cluster−cluster pairwise distances (rather than
pairwise atomic distances) is much faster than its predeces-
sors.4,5 The efficiency of the clustering step of BYCC, based on
connectivity is obviously higher for larger molecules. Since here
we are interested in simulation of the macromolecular systems
(e.g., several protein chains), we use BYCC as a comparison
benchmark. Explicit nblists can also be constructed using
dynamic packing grids,6 as well as binary hierarchy approaches.7

However, explicit nblists have high space requirement, poor
cache performance, high update cost, and need to be
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regenerated explicitly for different distance cutoffs, problems
that we now solve effectively in our new approach.
In this paper, we develop an octree8-based technique for

space-efficient implicit maintenance of nblists and efficient
evaluation of pairwise nonbonded energy terms under
conformational changes of the molecules. In the following
text, we will use the term nblists to indicate traditional nblists
method, as opposed to octrees. While nblists use space
superlinear in the distance cutoff d, space complexity of an
octree is independent of d, and so, unlike nblists, the same
octree can be used for all distance cutoffs. An octree is a cache-
friendly data structure, and octree-based energy evaluations
incur far fewer cache misses compared to nblists-based
evaluations. Thus, octree-based computations are less prone
to cache miss slowdowns on modern machines than
computations involving nblists.

1. OCTREES FOR MAINTAINING MOLECULES UNDER
CONFORMATIONAL CHANGES

An octree8 is a tree data structure that recursively and
adaptively subdivides the 3D space into octants, and is often
used as a container for Cartesian space data. Here, we use
octrees to store all atomic centers (or 3D atomic Cartesian
coordinates) of a molecular system, organized recursively based
on their spatial locality. Octrees have been used in the past for
fast multipole-like approximations of force fields in particle
simulations9 and in molecular solvation energy and force
calculations.10

In this work, we show that octrees can be used for space-
efficient maintenance of nonbonded neighborhood lists (i.e.,
nblists) of a molecular system and can be updated very
efficiently as the configuration of the system changes. A special
type of octree, as defined below, will be used for the purpose.
Octrees are more space-efficient, update-efficient, and cache-
efficient in implicit maintenance of nblists compared to
explicitly maintaining them. Also, unlike explicit nblists, a
single octree can be used for any distance cutoff required for
evaluating pairwise interactions among atoms.
An octree is called ( , α)-admissible provided no leaf of
contains more than α points and each internal node has

more than /α points, where > 0 is an integer and α ≥ 1.

Figure 1 shows an example of a (3,1)-admissible quadtree,11

which is a 2D variant of octrees. The quadtree is constructed by
recursive subdivision of the box bounding the initial set of
points (i.e., circle centers) into nonempty quadrants. Observe
that in the resulting tree each internal node contains more than
3/1 = 3 points, but no leaf contains more than 3 × 1 = 3.

1.1. Construction of Octrees. Given a set P of points (or
atom centers) in three dimensions, representing a simulated
molecular system, consisting of arbitrary number of chemically
connected components, a ( , α)-admissible octree can be
constructed by first finding a box (or cube) bounding P and
then recursively subdividing the initial cube into smaller
nonempty subcubes until each subcube encloses at most α
points. The straightforward recursive algorithm is shown in
Supporting Information Figure 1. It can be shown that such a
tree can be constructed in (n log n) time, where n = |P| (see
Supporting Information).

1.2. Space Usage. In this section, we show that a ( , α)-
admissible octree can be modified easily to use space linear in
the number of atoms in the molecular system it stores. The
trick is to use a contracted octree, which is obtained from a
standard octree by directly connecting each node of to its
nearest proper ancestor with more than one child.
Thus, each internal node of a contracted octree has at least

two children. All algorithms we have described so far can be
easily modified to work on contracted octrees without any
asymptotic increase in running times. It can be shown that a
contracted ( , α)-admissible octree storing a molecular
system containing n atoms uses Θ(n) space, where is a
positive integer and α ≥ 1 (as shown in the Supporting
Information).

1.3. Computing Interactions. Given two octrees A and
B storing molecules A and B (possibly A = B and thus A =
B), respectively, the pairwise interactions between atoms of A

and B can be computed as follows. Suppose we are only
interested in computing interactions between a pair of atoms
provided their centers lie within a given distance cutoff d. We
perform a simultaneous recursive traversal of A and B
starting from their root nodes. Suppose at some point we are
at node u of A and node v of B. If the two cubes
corresponding to u and v are separated by a distance (surface-

Figure 1. A (3,1)-admissible quadtree in which no leaf contains more than 1 × 3 = 3 points (i.e., centers) and each internal node contains more than
3/1 = 3 points. The quadtree is constructed by recursive subdivision of the box bounding the initial set of points into quadrants.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct400474w | J. Chem. Theory Comput. 2014, 10, 4449−44544450



to-surface) larger than d, then there can be no interaction.
Otherwise, if both nodes are leaves, we consider each pair ⟨p ∈
u, q ∈ v⟩, and compute the interaction between p and q
provided the two atom centers lie within distance d. If neither
of the two conditions above hold, we move to the children of u
and/or v and compute the interactions recursively. Supporting
Information Figure 2 shows the pseudocode of the algorithm. It
can be shown that all pairwise interactions between atoms
within distance cutoff d can be computed in (nd2 (δd +

1/3)) time, where δ is the time to compute one pairwise
interaction (see Supporting Information). For any fixed value of
d the running time of interaction calculation increases with the
increase of . This happens because the larger the value of ,
the larger the region of unnecessary exploration. However, as
computing interactions is a recursive function, the smaller the
value of , the deeper the recursion and the larger the
recursion overhead. Hence, one must chose a value of that
balances between these two types of overheads.
1.4. Updates. The key novelty of our work is that we allow

fast updates of the octree under conformational changes of the
molecular system, during the course of simulation. Figure 2
illustrates the basic idea behind such updates using the (3,1)-
admissible quadtree from 1. Figure 2a shows the original state
of the quadtree with the point (i.e., circle center) to be updated
marked with solid black outline. The updated position of that
point is shown in Figure 2b but without updating the structure
of the quadtree. Observe that the point has moved out of leaf u
and internal node x (i.e., parent of u) but remains inside node w
(i.e., parent of x) and all its ancestors. Hence, in order to keep
the structure of the quadtree correct, the point must be
removed from nodes u and x. Figure 2c shows the quadtree
after the removals. Observe that since leaf u is now empty it no
longer appears in the quadtree and since the number of points
inside x is less than 4 it has now become a leaf. Also observe
that the updated point has now moved to the top-right
quadrant of node w, which was originally empty. So, the new
children (leaf v) of w are created corresponding to that

quadrant containing the updated point. Figure 2c shows the
structure of the quadtree after the update. Detailed description
of the method together with pseudocode is given in the
Supporting Information.
We prove in the Supporting Information that a ( , 2)-

admissible octree storing a molecular system of n atoms
supports updates of atomic positions in (log n) amortized
time each, where is a positive integer. However, observe that
in molecular dynamics simulations atoms often move very short
distances at every step, and the number of nodes on the
shortest path between the leaves corresponding to the old and
the new centers of the atom is very small. The update time will
often be proportional to the length of this path, and thus much
better than (log n).

2. RESULTS AND DISCUSSIONS

We outline the experimental setup in section 2.1. The BYCC
method for explicit nblists was originally implemented in the
CHARMM program.12 We reimplemented the BYCC method,
and incorporated it into our molecular simulation library after a
rigorous testing and validation phase that verified compliance
with the CHARMM implementation. In order to avoid the
costly update of nblists after each change of atomic position, we
update them only when at least one atom has moved by more
than 0.5 Å since the last update. The space requirements of
explicit nblists and octrees are compared in section 2.1. Section
2.3 reports the running times and cache performance of a
limited-memory BFGS minimizer13 using the two data
structures for maintaining molecular systems under conforma-
tional changes.

2.1. Experimental Setup. All algorithms were imple-
mented in C, and tested on Intel Xeon 5680, using the icc
compiler with optimization flag “-O3”.
We ran our experiments on the following six proteins of

varying sizes downloaded from the Protein Data Bank,14,15 and
prepared using CHARMM c34b2:12,16 1CLV (4680 atoms),

Figure 2. Updating the (3,1)-admissible quadtree from 1: (a) The point to be updated is marked with solid black outline. (b) The point is moved to
a new location, and so it moves out of leaf u and internal node x but remains inside node w and all its ancestors. (c) Node u becomes empty, and so,
it is removed. Node x now contains only 3 points, and so, it becomes a leaf. The updated point moves to the top-right quadrant of node w, which was
empty before, and so, a new leaf v containing only the updated point is created.
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2HMI (13 758 atoms), 1SUV (25 118 atoms), 2XRP (33 602
atoms), 3LUE (46 200 atoms), and 2CGT (70 847 atoms).
We have found that (60, 2) octrees work best for molecular

simulation application.
In our experiments, we compare the cost of maintaining

molecules under conformatonal changes using nblists and
octrees. For this purpose, we use these data structures to store
molecules that undergo changes in atomic positions during
energy optimization using the limited-memory BFGS (LBFGS)
algorithm.13 LBFGS is a quasi-Newton optimization method
that uses a limited memory variation of the Broyden−Fletcher−
Goldfarb−Shanno (BFGS) algorithm17−20 for solving nonlinear
optimization problems. We have used our own C port of Jorge
Nocedal’s original Fortran implementation of the LBFGS
algorithm.13

2.2. Space Usage. For each protein included in our
experiments, we constructed nblists for each integral distance
cutoff ranging from 9 to 20 Å.
Figure 3 compares the sizes of these data structures. In

Figure 3a, we plot the space used by the octrees as well as by
the nblists for 12, 15, and 18 Å distance cutoff. Figure 3b zooms
in on the octree curve in Figure 3a. As evident from the plots
both octrees and nblists for any given distance cutoff use space
linear in the number of atoms in the molecular system.
However, size of an nblist grows as the distance cutoff
increases. Also, the size of an octree is much smaller than that
of an nblist for the same system. For the six proteins in the
plots, octree size varied from 55 KB (for 1CLV) to 1 MB (for
2CGT), while nblist size varied from 3.5 MB (for 1CLV) to
around 50 MB (for 2CGT) for 12 Å distance cutoff, and from 9
MB to around 130 MB for 18 Å cutoff. Overall, nblists used
from 45 to 65 times more space than octrees for 12 Å cutoff,
and the range increased to 120−165 for 18 Å.
It turns out that for the proteins and the d values included in

our experiments 3.7nd2.1 is a lower bound on the sizes of nblists
while 1.7nd2.5 is an upper bound. In comparison, octrees use
only Θ (n) space. As can be seen, octrees are orders of
magnitude more memory efficient than nblists.
2.3. Running Times in Application to Local Mini-

mization. Figure 4 compares the time required to complete
100 steps of the LBFGS minimizer using octrees and nblists as
the distance cutoff for computing pairwise interactions grows.

For smaller distance cutoffs the overhead of recursion in
calculation of interactions slows down octree-based computa-
tion. However, that overhead gradually diminishes compared to
the cost of actual computation as the cutoff value increases.
Also, nblists constructed for large cutoff values are often too
large to fit in the cache, and as a result, computations slow
down due to costly cache misses. Octrees, on the other hand,
incur very few cache misses as they are often small enough to fit
into the cache. Detailed analysis of cache performance is
provided in the Supporting Information.
We have compared performance of octrees vs nblists in

different synthetic scenarios. We have used several nonbonded
forces with different cutoffs.
Figure 4a plots the ratio of the running time of the nblists-

based LBFGS minimizer to that of the octree-based minimizer
when minimizing van der Waals (vdW) energy only. Octrees
were up to 20% slower than nblists for distance cutoffs 9 Å−11
Å, comparable to nblists for cutoff values 12 and 13 Å and ran
faster than nblists for all systems when the cutoff value reached
14 Å. Supporting Information Figure 6 reveals one of the major
reasons behind the improving performance of octrees. As the
distance cutoff increased, the sizes of nblists also increased,
leading to increasing number of misses at various levels of the
caches. On the other hand, much smaller sizes of octrees and
their cache-friendly recursive traversal for energy evaluation
meant that the number of cache misses incurred by the octree-
based minimizer grew at a much slower rate.
Figure 4b is similar to Figure 4a but uses hydrogen bonding

(hbond) energy in addition to vdW energy. The nblists-based
minimizer evaluated the hbond energy using the same nblist
constructed for evaluating vdW energy. However, since the
same octree works for all distance cutoffs, the octree-based
minimizer always evaluated the hbond energy using a 3 Å
distance cutoff irrespective of what cutoff value was used for
vdW energy. Because of the lower overhead in evaluating
hbond energy, octrees achieved even better speedup with
respect to nblists than in Figure 4a. For example, for 16 Å
cutoff, octrees were 10−30% faster than nblists in Figure 4a, but
in Figure 4b, the speedup values improved to 20−40%.
Figure 4c is for minimizing the sum of vdW, hbond, and

Coulomb electrostatic (Coul) energy. While the nblists-based
minimizer used the same distance cutoff for evaluating all three

Figure 3. Plot a compares the sizes of of nblists and octrees constructed for six protonated proteins containing 4600−71 000 atoms. nblists are built
for 12, 15, and 18 Å distance cutoff. Plot b zooms in on the octree curve in plot a.
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types of energy, the octree-based minimizer always used a 3 Å
cutoff for hbond, and 9 Å for vdW. Octrees always
outperformed nblists and ran 80−100% faster (i.e., 1.8−2.0
times faster) for 16 Å cutoff (see Figure 4c).
Figure 5 shows a breakdown of the total time spent in

minimizing 2CGT into the time required for updating the data
structure and the time needed for computing the energy.
Implementations based on nblists and octrees have been
compared. Observe that octree update times are almost
insensitive to distance cutoffs while time required for updating
nblists increases with the cutoff value. Even for a 9 Å cutoff,
octrees can be updated more than 20 times faster than nblists,
and for 20 Å, updating octrees can be more than 100 times
faster. Though octree-based energy computation is slower than
nblists for smaller distance cutoffs, this relative speed improves
and octrees start to beat nblists for large cutoffs.

■ CONCLUSION

We have developed memory and cache efficient octree
implementation of implicit nblists, which has almost 2 orders
of magnitude lower memory usage as compared to existing
implementations. In addition to tremendous reduction in
memory requirements the code runs approximately 1.5 faster
than nblists in practical use case scenarios. The algorithm
described in the paper is suitable for effective parallelization and
vectorization, as described and demonstrated in the Supporting
Information section 2.2, and thus can be applied to Molecular
Dynamics (MD). Current implementation is directly useful for
simulations requiring multiple simultaneous minimizations,
such as multistart Monte Carlo Minimization (MCM). The
code is available under open source license.

Figure 4. Time required for 100 steps of LBFGS minimization involving nblists and octrees: (a) minimize in (and hence compute) vdW energy for
various distance cutoffs, where both data structures use the same cutoff value; (b) minimize in vdW plus hbond energy, where nblists use the same
cutoff value (given in the horizontal axis) for both types of energy while octrees use a fixed 3 Å cutoff for hbond and the same cutoff as nblists for
vdW (given in the horizontal axis); (c) minimize in vdW plus hbond plus Coul, where nblists use the same cutoff value (given in the horizontal axis)
for all types of energy while octrees use a fixed 3 Å cutoff for hbond, a fixed 9 Å cutoff for vdW, and the same cutoff as nblists for Coul (given in the
horizontal axis).
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