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Abstract: A convenient and efficient one-step synthesis of
1,1,1-triborylalkanes was achieved via sequential dehydrogen-
ative borylation and double hydroborations of terminal
alkynes with HBpin (HBpin = pinacolborane) catalyzed by
inexpensive and readily available Cu(OAc)2. This process
proceeds under mild conditions, furnishing 1,1,1-tris(boro-
nates) with wide substrate scope, excellent selectivity, and good
functional-group tolerance, and is applicable to gram-scale
synthesis without loss of yield. The 1,1,1-triborylalkanes can be
used in the preparation of a-vinylboronates and borylated
cyclic compounds, which are valuable but previously rare
compounds. Different alkyl groups can be introduced stepwise
via base-mediated deborylative alkylation to produce racemic
tertiary alkyl boronates, which can be readily transformed into
useful tertiary alcohols.

Organoboron compounds have become, without doubt,
among the most useful species in organic chemistry due to
their ease of preparation and widespread application in
synthesis, pharmaceuticals, and functional materials.[1] Multi-
borylated compounds are important in modern organic
chemistry due to their various roles such as bioactive agents
and synthetic building blocks.[2] Monoboronates[3] and gem-
bisboronates[4] have been increasingly applied in organic
synthesis. In contrast, 1,1,1-triboronate analogues are rela-
tively rare, but are very interesting due to their documented
reactivity arising from the stabilization of a carbanion center
by the a-boronate moieties.[5] Thus, efficient methods for their
synthesis are desirable, but few are currently available. A
triboration of chloroform using (RO)2BCl and six equivalents
of lithium metal at low temperature was developed by
Matteson and co-workers.[5a,b] Mita, Sato et al. reported an
Ir-catalyzed, pyridine-directed triple C(sp3)@H boration of 2-
ethylpyridines at 150 88C; however, good yields and selectivity
resulted only when small, electron-donating substituents were
present on the pyridine rings.[6] Chirik and co-workers have

reported a Ni-catalyzed preparation of benzyltriboronates via
triboration of benzylic C@H bonds; however, although the
selectivity and yields were high, the substrate scope was quite
limited.[7, 8] The Huang group synthesized 1,1,1-triborylal-
kanes from alkenes via a Co-catalyzed double dehydrogen-
ative borylation/hydroboration sequence, but unactivated
alkenes were not suitable substrates.[9]

Terminal alkynes are very useful reagents in the synthesis
of diverse organoboron compounds.[5d,11] In 1995, our group
reported a Rh-catalyzed 1,1-diboration of (E)-styrylboro-
nates prepared via hydroboration of the corresponding
ethynylarenes with HBcat (HBcat = catecholborane;
Scheme 1a), which yielded predominantly 1,1,1-triborona-

tes.[5c,12] In 2017, Chirik et al. achieved the synthesis of 1,1,1-
triboronates via Co-catalyzed 1,1-diboration of terminal
alkynes with B2pin2 (Scheme 1b), which underwent subse-
quent hydroboration with HBpin. Two different types of
cobalt catalysts were used in this two-step sequence (Sche-
me 1b).[10] All of these methods, though useful, suffer from
major or minor drawbacks, such as weak functional-group
tolerance, expensive catalysts, or tedious procedures. Herein,
we report a straightforward atom-economical synthesis of
diverse 1,1,1-triborylalkanes from easily available and low-
cost catalysts and starting materials under mild conditions
(Scheme 1c).

Our investigation began with the triboration of phenyl-
acetylene (1 a) with HBpin in the presence of 10 mol%
Cu(OAc)2, 20 mol % PCy3, and stoichiometric KF in toluene
at 80 88C (Table 1, entry 1), giving the desired product 2a in
78% yield. The effect of ligand was investigated (Table 1,

Scheme 1. Methods for the synthesis of 1,1,1-tris(boronates) from
alkynes.
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entries 1–4), and PnBu3 was found to be optimal compared to
PCy3, PPh3, and PtBu3. In the presence of nitrogen ligands, no
desired product was obtained (Table S1 in the Supporting
Information), and there was no reaction in the absence of
a ligand (Table 1, entry 5).

The influence of the copper precursor was studied
(Table 1, entries 6–8 and Table S2), and copper(I) acetate
(Table 1, entry 6) appeared to be slightly less effective than
copper(II) acetate, but the difference is probably within
experimental error (85: 5 %). When Cu(acac)2 (Table 1,
entry 7) was used, the desired product was afforded in only
16% yield. Other copper sources such as CuCl2, CuCl, and
Cu(OTf)2 (Table S2, entries 1–3) were also examined, but
unfortunately, no desired product was detected. In the
absence of a copper source, the reaction did not occur
(Table 1, entry 8).

When KF was omitted from the reaction mixture, trace
amounts of the 1,1,1-tris(boronates) were formed (Table 1,
entries 9). Much lower yields were obtained when the KF
loading was reduced to 20 mol% and 50 mol% (31 % and
58% yield, respectively; Table S6, entries 1 and 2), which
indicated that KF possibly promotes this transformation.
Then, a series of bases (Table 1, entries 10–15) were eval-
uated, with KOAc, K2CO3, KOPiv, and Li2CO3 being slightly
less effective than KF. Remarkably, as illustrated in
entries 16–19, the desired product can be obtained in up to

97% yield at 40 88C, while either higher or lower temperatures
gave inferior results.

With optimized reaction conditions identified, we exam-
ined the scope of this novel Cu-catalyzed triboration reaction
(Table 2). Generally, a wide range of both donor- and

acceptor-substituted aromatic alkynes were found to work
well, providing the corresponding 1,1,1-triborylated alkanes
in moderate to good yields (2a–2t). Substrates containing
electron-donating substituents, such as methyl (2b/2c),
methoxy (2d/2e/2 f), and dimethylamino (2g) groups,
afforded the corresponding products in moderate to good
yields of isolated product, ranging from 42 % to 88%. This
catalytic system was also efficient for substrates containing
electron-withdrawing groups (up to 81% isolated yield), such
as F (2h/2 i), Cl (2j/2k/2 l), Br (2m/2n), CF3 (2o/2p), CN (2q),
and CO2Me (2r). It should be noted that reaction of haloaryl-
substituted alkynes (2h–2n) occurred selectively to form the
desired products, and no C@X (X = F, Cl, Br) bond boration
was detected, thus opening the door for further functional-
ization. Furthermore, heteroaromatic and polyaromatic sub-
strates, for example, thienyl-substituted (2s) and naphthyl-
substituted (2t) acetylenes, are suitable substrates for this
sequential dehydrogenative borylation/double hydroboration
reaction (78 % and 62 % yield, respectively). This method
enables convenient gram-scale synthesis (5 mmol) without
significant loss of yield, as demonstrated for 1a (2a : 2.09 g,
87%).

Table 1: Optimization of reaction conditions.[a]

Entry Catalyst Ligand Base Temp.
(88C)

Yield 2a
(%)[b]

Yield 3a
(%)[b]

1 Cu(OAc)2 PCy3 KF 80 78 9
2 Cu(OAc)2 PPh3 KF 80 23 4
3 Cu(OAc)2 PtBu3 KF 80 21 54
4 Cu(OAc)2 PnBu3 KF 80 89 (84) 1
5 Cu(OAc)2

– KF 80 0 0
6 CuOAc PnBu3 KF 80 80 4
7 Cu(acac)2 PnBu3 KF 80 16 8
8 – PnBu3 KF 40 0 0
9 Cu(OAc)2 PnBu3 – 80 trace trace
10 Cu(OAc)2 PnBu3 KOAc 80 84 (78) 3
11 Cu(OAc)2 PnBu3 K2CO3 80 71 6
12 Cu(OAc)2 PnBu3 KOPiv 80 85 (80) 3
13 Cu(OAc)2 PnBu3 Li2CO3 80 82 (75) 5
14 Cu(OAc)2 PnBu3 KOtBu 80 15 35
15 Cu(OAc)2 PnBu3 DABCO 80 40 11
16 Cu(OAc)2 PnBu3 KF 100 66 6
17 Cu(OAc)2 PnBu3 KF 60 81 3
18 Cu(OAc)2 PnBu3 KF 40 97 (93) 3
19[c] Cu(OAc)2 PnBu3 KF 40 62 10
20 Cu(OAc)2 PnBu3 KF r.t 58 3

[a] Standard conditions: In an argon-filled glove box, 1a (0.2 mmol,
1 equiv), catalyst (10 mol%), ligand (20 mol%), base (1 equiv), HBpin
(4 equiv), toluene (0.25 mL), 24 h. [b] The product yield was determined
by GC-MS using n-dodecane as the internal calibration standard.
[c] Using “standard conditions” except HBpin (3 equiv). Yields of
isolated product are given in parentheses. acac = acetylacetonate,
DABCO=1,4-diazabicyclo[2.2.2]octane, Piv= pivalate.

Table 2: Substrate scope for the Cu-catalyzed triboration of aromatic
alkynes.[a]

[a] Standard conditions: in an argon-filled glove box, 1 (0.2 mmol,
1 equiv), Cu(OAc)2 (10 mol%), PnBu3 (20 mol%), KF (1 equiv), HBpin
(4 equiv), toluene (0.25 mL), 40 88C, 24 h; yield of isolated product. [b] In
an argon-filled glove box, 1 (5 mmol, 1 equiv), Cu(OAc)2 (10 mol%),
PnBu3 (20 mol%), KF (1 equiv), HBpin (4 equiv), toluene (5 mL), 40 88C,
24 h.
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Unlike the previous synthetic method for preparing 1,1,1-
triborylalkanes from alkynes,[9] our Cu-catalyzed system is not
limited to aryl alkenes, since it can be extended to readily
available unactivated alkyl alkynes (Table 3). Alkynes with

linear alkyl groups were converted into the corre-
sponding 1,1,1-tris(boronates) in moderate yields
(2u to 2w, 35–67%). Reaction of cyclohexylacety-
lene and cyclopentylacetylene gave the triboration
product 2x in 37 % and 2y in 47 % yield of isolated
product, respectively, but reaction of cyclopropyla-
cetylene afforded the product 2z in higher yield
(76 %). Trimethylsilylacetylene 1aa gave the
desired product 2aa in 23% yield. For the con-
jugated 1,3-enyne 1-ethynylcyclohexene (1ab), no
boration occurred at the double bond, and 2 ab was
isolated in 52% yield, thus confirming the high
chemoselectivity of this reaction.

A series of studies was carried out to gain
insight into the reaction mechanism (for details, see
Part IV of the Supporting Information). Alkynyl-
boronate 4 a gave 2a in 78 % yield with the concomitant
generation of 5a as a side product in 15% yield [Scheme 2,
Eq. (1)]. This indicated that alkynylboronate 4a may serve as
an intermediate in the catalytic reaction. When 2a was
reacted with 2 equiv of HBpin, 1,1-diborylalkene 5a was
observed as the major product by GC–MS after 6 h, with the
concomitant generation of byproduct 3a via double hydro-
boration of terminal alkyne 1a. When another 2 equiv of

HBpin were added to the reaction mixture, 2 a was isolated in
85% yield after 18 h, and no 1,1-diborylalkene 5a remained,
as evidenced by GC–MS [Scheme 2, Eq. (2)], thus suggesting
that the 1,1-diborylalkene is an intermediate in the catalytic
cycle and undergoes hydroboration to form the final product.

Based on our experimental observations and previous
reports,[13,14] a possible catalytic cycle for the Cu-catalyzed
sequential dehydrogenative boration and hydroboration of
terminal alkynes is proposed (Scheme 3). [LnCuOAc], gen-
erated by reduction of Cu(OAc)2 in the presence of phos-
phine,[15, 16] reacts with HBpin and KF to afford a copper
hydride intermediate, as well as FBpin, with the latter being
confirmed by in situ 11B{1H} and 19F NMR studies (Figures S1
and S2 in the Supporting Information).[17] The copper hydride
can react with terminal alkynes to give the alkynylcopper
intermediate A and H2.

[18] The highly polarized copper–
carbon bond could undergo a s-bond metathesis with HBpin
(B) to afford intermediate alkynyl boronic ester 4 and
[LnCuH].[14, 19] Syn addition of [LnCuH] to alkynyl boronic
ester 4 would afford alkenyl copper species C,[20] which then
reacts with HBpin via s-bond metathesis to give intermediate
1,1-diborylalkene 5 (see above).[21] Then, 5 undergoes Cu-
catalyzed hydroboration to furnish the 1,1,1-tris(boronate),
thereby regenerating [LnCuH].[22]

While multiple borylated compounds such as gem-dibor-
ylalkanes are important synthetic intermediates for preparing
organoboron compounds via C@C bond formation,[4m–o, 23] by
comparison, the use of 1,1,1-tris(boronates) is much less
developed.[6, 7, 9] Herein, we describe an alkoxide-promoted
deborylative alkylation of 1,1,1-tris(boronates) via the gen-
eration and electrophilic trapping of a-boryl carbanions.
Using 1,n-dihalides as electrophiles and tBuONa as a base, we
found that double deborylative alkylation of 1,1,1-tris(boro-
nates) reliably delivered a-vinylboronates 7 a and carbocyclic
derivatives 7 b–7 f at room temperature in high yields within
6 h (Table 4). This strategy provides an efficient, straightfor-
ward route to useful a-vinylboronates and cyclic organo-
boronates.[4f]

In addition, different alkyl groups can be introduced in
a stepwise manner via two sequential base-mediated debor-
ylative alkylations to furnish tertiary boronic esters 9 with
three different alkyl groups. Oxidation of the tertiary boronicScheme 2. Mechanistic investigation.

Scheme 3. A plausible mechanism.

Table 3: Substrate scope for Cu-catalyzed triboration of alkyl alkynes and
a 1,3-enyne.[a]

[a] Standard conditions: in an argon-filled glove box, 1 (0.2 mmol,
1 equiv), Cu(OAc)2 (10 mol%), PnBu3 (20 mol%), KF (1 equiv), HBpin
(4 equiv), toluene (0.25 mL), at 40 88C for 24 h; yield of isolated product.
[b] Reaction time 36 h. [c] Reaction time 12 h.
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ester with H2O2/NaOH proceeded with reasonable efficiency,
giving tertiary alcohol 10 in 65% yield of isolated product.
Importantly, the transformation of 1,1,1-tris(boronate) prod-
ucts into tertiary alcohols can be performed in a one-pot,
three-step fashion without the requirement for isolation of the
intermediates (Scheme 4).

In conclusion, a general, atom-economical method for the
synthesis of 1,1,1-trisboronates from terminal alkynes cata-
lyzed by readily available and inexpensive Cu(OAc)2 and
phosphine ligands has been developed. A wide range of aryl
and alkyl alkynes underwent this transformation, producing
the corresponding 1,1,1-triborylalkanes in modest to high
yields. The reaction can be readily conducted on a gram scale
in high yield. We have also demonstrated that 1,1,1-tribor-
ylalkanes are useful synthetic intermediates for the construc-
tion of carbocyclic organoboronates and a-vinylboronates,
which were difficult to synthesize using previously reported
methods. A one-pot, stepwise deborylative functionalization
of 1,1,1-triborylated alkanes gave an unsymmetrical
R1R2R3C(OH) tertiary alcohol. Further applications of
1,1,1-tris(boronates) for the construction of diverse tertiary
and quaternary carbon centers are under investigation in our
laboratory.

Acknowledgements

T.B.M. thanks the Julius-Maximilians-Universit-t Wgrzburg
for support. X.L. and W.M. are grateful to the China
Scholarship Council for providing Ph.D. scholarships. Y.Z.

thanks Prof. Dr. Q. Ye (SUSTech) for providing the oppor-
tunity to visit the Julius-Maximilians-Universit-t Wgrzburg,
and SUSTech for financial assistance. We thank AllyChem
Co. Ltd. for a generous gift of B2pin2 and Drs. J. Zhao and X.
Jia (Julius-Maximilians-Universit-t Wgrzburg) for helpful
discussions.

Conflict of interest

The authors declare no conflict of interest.

Keywords: boronic acid · cross-coupling ·
dehydrogenative borylation · gem-bisboronates · hydroboration

How to cite: Angew. Chem. Int. Ed. 2019, 58, 18923–18927
Angew. Chem. 2019, 131, 19099–19103

[1] a) Boronic Acids: Preparation and Applications in Organic
Synthesis Medicine and Materials, 2nd ed. (Hrsg.: D. G. Hall),
Wiley-VCH, Weinheim, 2011; b) Synthesis and Applications of
Organoboron Compounds Topics in Organometallic Chemistry,
Vol. 49 (Eds.: E. Fern#ndez, A. Whiting), Springer, Berlin, 2015 ;
c) E. C. Neeve, S. J. Geier, I. A. I. Mkhalid, S. A. Westcott, T. B.
Marder, Chem. Rev. 2016, 116, 9091 – 9161.

[2] a) G. Lesley, P. Nguyen, N. J. Taylor, T. B. Marder, A. J. Scott, W.
Clegg, N. C. Norman, Organometallics 1996, 15, 5137 – 5154;
b) A. Goswami, H. Pritzkow, F. Rominger, W. Siebert, Eur. J.
Inorg. Chem. 2004, 4223 – 4231; c) H. Yoshida, S. Kawashima, Y.
Takemoto, K. Okada, J. Ohshita, K. Takaki, Angew. Chem. Int.
Ed. 2012, 51, 235 – 238; Angew. Chem. 2012, 124, 239 – 242; d) K.
Hyodo, M. Suetsugu, Y. Nishihara, Org. Lett. 2014, 16, 440 – 443;
e) J. R. Coombs, L. Zhang, J. P. Morken, J. Am. Chem. Soc. 2014,
136, 16140 – 16143; f) C. I. Lee, W. C. Shih, J. Zhou, J. H.
Reibenspies, O. V. Ozerov, Angew. Chem. Int. Ed. 2015, 54,
14003 – 14007; Angew. Chem. 2015, 127, 14209 – 14213; g) G. L.
Gao, J. X. Yan, K. Yang, F. E. Chen, Q. L. Song, Green Chem.
2017, 19, 3997 – 4001; h) Z. Yang, T. Cao, Y. L. Han, W. L. Lin, Q.
Liu, Y. Tang, Y. Z. Zhai, M. Q. Jia, W. L. Zhang, T. H. Zhu, S. M.
Ma, Chin. J. Chem. 2017, 35, 1251 – 1262; i) D. Yukimori, Y.
Nagashima, C. Wang, A. Muranaka, M. Uchiyama, J. Am. Chem.
Soc. 2019, 141, 9819 – 9822; j) X. Liu, W. Ming, A. Friedrich, F.
Kerner, T. B. Marder, Angew. Chem. Int. Ed. 2019, https://doi.
org/10.1002/anie.201908466; Angew. Chem. 2019, https://doi.org/
10.1002/ange.201908466.

[3] a) G. J. Irvine, M. J. G. Lesley, T. B. Marder, N. C. Norman, C. R.
Rice, E. G. Robins, W. R. Roper, G. R. Whittell, L. J. Wright,
Chem. Rev. 1998, 98, 2685 – 2722; b) N. Miyaura, Bull. Chem.
Soc. Jpn. 2008, 81, 1535 – 1553; c) S. Jin, Y. Cheng, S. Reid, M. Li,
B. Wang, Med. Res. Rev. 2010, 30, 171 – 257; d) I. A. I. Mkhalid,
J. H. Barnard, T. B. Marder, J. M. Murphy, J. F. Hartwig, Chem.
Rev. 2010, 110, 890 – 931; e) A. Suzuki, Angew. Chem. Int. Ed.
2011, 50, 6722 – 6737; Angew. Chem. 2011, 123, 6854 – 6869; f) L.
Xu, S. Zhang, P. Li, Chem. Soc. Rev. 2015, 44, 8848 – 8858;
g) G. A. Molander, J. Org. Chem. 2015, 80, 7837 – 7848; h) R. D.
Dewhurst, E. C. Neeve, H. Braunschweig, T. B. Marder, Chem.
Commun. 2015, 51, 9594 – 9607; i) T. B. Clark, Asian J. Org.
Chem. 2016, 5, 31 – 42.

[4] a) S. Shimada, A. S. Batsanov, J. A. K. Howard, T. B. Marder,
Angew. Chem. Int. Ed. 2001, 40, 2168 – 2171; Angew. Chem. 2001,
113, 2226 – 2229; b) M. Shimizu, T. Hiyama, Proc. Jpn. Acad. Ser.
B 2008, 84, 75 – 85; c) K. Endo, T. Ohkubo, M. Hirokami, T.
Shibata, J. Am. Chem. Soc. 2010, 132, 11033 – 11035; d) K. Endo,
M. Hirokami, T. Shibata, J. Org. Chem. 2010, 75, 3469 – 3472;
e) J. C. H. Lee, R. McDonald, D. G. Hall, Nat. Chem. 2011, 3,

Scheme 4. Stepwise deborylative alkylation and oxidation to prepare
a tertiary alcohol.

Table 4: Deborylative alkylation for the construction of carbocyclic
organoboronates.[a]

[a] Standard conditions: in an argon-filled glove box, 2a (0.11 mmol,
1.1 equiv), 6 (0.1 mmol), tBuONa (4 equiv), THF (0.5 mL), r.t. , 6 h; yield
of isolated product.

Angewandte
ChemieCommunications

18926 www.angewandte.org T 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2019, 58, 18923 –18927

https://doi.org/10.1021/acs.chemrev.6b00193
https://doi.org/10.1021/om950918c
https://doi.org/10.1002/ejic.200400426
https://doi.org/10.1002/ejic.200400426
https://doi.org/10.1002/anie.201106706
https://doi.org/10.1002/anie.201106706
https://doi.org/10.1002/ange.201106706
https://doi.org/10.1021/ol403326z
https://doi.org/10.1021/ja510081r
https://doi.org/10.1021/ja510081r
https://doi.org/10.1002/anie.201507372
https://doi.org/10.1002/anie.201507372
https://doi.org/10.1002/ange.201507372
https://doi.org/10.1039/C7GC01161J
https://doi.org/10.1039/C7GC01161J
https://doi.org/10.1002/cjoc.201700416
https://doi.org/10.1021/jacs.9b04665
https://doi.org/10.1021/jacs.9b04665
https://doi.org/10.1002/anie.201908466
https://doi.org/10.1002/anie.201908466
https://doi.org/10.1002/ange.201908466
https://doi.org/10.1002/ange.201908466
https://doi.org/10.1021/cr9500085
https://doi.org/10.1246/bcsj.81.1535
https://doi.org/10.1246/bcsj.81.1535
https://doi.org/10.1021/cr900206p
https://doi.org/10.1021/cr900206p
https://doi.org/10.1002/anie.201101379
https://doi.org/10.1002/anie.201101379
https://doi.org/10.1002/ange.201101379
https://doi.org/10.1039/C5CS00338E
https://doi.org/10.1021/acs.joc.5b00981
https://doi.org/10.1039/C5CC02316E
https://doi.org/10.1039/C5CC02316E
https://doi.org/10.1002/ajoc.201500284
https://doi.org/10.1002/ajoc.201500284
https://doi.org/10.1002/1521-3773(20010601)40:11%3C2168::AID-ANIE2168%3E3.0.CO;2-0
https://doi.org/10.1002/1521-3757(20010601)113:11%3C2226::AID-ANGE2226%3E3.0.CO;2-Q
https://doi.org/10.1002/1521-3757(20010601)113:11%3C2226::AID-ANGE2226%3E3.0.CO;2-Q
https://doi.org/10.2183/pjab.84.75
https://doi.org/10.2183/pjab.84.75
https://doi.org/10.1021/ja105176v
https://doi.org/10.1021/jo1003407
https://doi.org/10.1038/nchem.1150
http://www.angewandte.org


894; f) K. Hong, X. Liu, J. P. Morken, J. Am. Chem. Soc. 2014,
136, 10581 – 10584; g) C. Sun, B. Potter, J. P. Morken, J. Am.
Chem. Soc. 2014, 136, 6534 – 6537; h) H. Li, Z. Zhang, X.
Shangguan, S. Huang, J. Chen, Y. Zhang, J. Wang, Angew. Chem.
Int. Ed. 2014, 53, 11921 – 11925; Angew. Chem. 2014, 126, 12115 –
12119; i) M. V. Joannou, B. S. Moyer, S. J. Meek, J. Am. Chem.
Soc. 2015, 137, 6176 – 6179; j) J. R. Coombs, L. Zhang, J. P.
Morken, Org. Lett. 2015, 17, 1708 – 1711; k) H.-Y. Sun, K.
Kubota, D. G. Hall, Chem. Eur. J. 2015, 21, 19186 – 19194; l) W.
Jo, J. Kim, S. Choi, S. H. Cho, Angew. Chem. Int. Ed. 2016, 55,
9690 – 9694; Angew. Chem. 2016, 128, 9842 – 9846; m) S. K. Bose,
S. Brand, H. O. Omoregie, M. Haehnel, J. Maier, G. Bringmann,
T. B. Marder, ACS Catal. 2016, 6, 8332 – 8335; n) C. Wu, J. Wang,
Tetrahedron Lett. 2018, 59, 2128 – 2140; o) N. Miralles, R. J.
Maza, E. Fern#ndez, Adv. Synth. Catal. 2018, 360, 1306 – 1327;
p) R. Nallagonda, K. Padala, A. Masarwa, Org. Biomol. Chem.
2018, 16, 1050 – 1064; q) Y. Hu, W. Sun, C. Liu, Synlett 2019, 30,
1105 – 1110.

[5] a) R. B. Castle, D. S. Matteson, J. Organomet. Chem. 1969, 20,
19 – 28; b) D. S. Matteson, Synthesis 1975, 1975, 147 – 158;
c) R. T. Baker, P. Nguyen, T. B. Marder, S. A. Westcott, Angew.
Chem. Int. Ed. Engl. 1995, 34, 1336 – 1338; Angew. Chem. 1995,
107, 1451 – 1452; d) T. B. Marder, N. C. Norman, Top. Catal.
1998, 5, 63 – 73; e) M. Bluhm, A. Maderna, H. Pritzkow, S.
Bethke, R. Gleiter, W. Siebert, Eur. J. Inorg. Chem. 1999, 1693 –
1700; f) Y. Q. Gu, H. Pritzkow, W. Siebert, Eur. J. Inorg. Chem.
2001, 373 – 379; g) A. S. Batsanov, J. A. Cabeza, M. G. Crestani,
M. R. Fructos, P. Garci#-_lvarez, M. Gille, Z. Lin, T. B. Marder,
Angew. Chem. Int. Ed. 2016, 55, 4707 – 4710; Angew. Chem.
2016, 128, 4785 – 4788.

[6] T. Mita, Y. Ikeda, K. Michigami, Y. Sato, Chem. Commun. 2013,
49, 5601 – 5603.

[7] W. N. Palmer, C. Zarate, P. J. Chirik, J. Am. Chem. Soc. 2017,
139, 2589 – 2592.

[8] In a previous study, 1,1,1-triborylated toluene was found to form
from toluene in 18% yield after long reaction times using an air-
stable cobalt catalyst: W. N. Palmer, J. V. Obligacion, I. Pappas,
P. J. Chirik, J. Am. Chem. Soc. 2016, 138, 766 – 769.

[9] L. Zhang, Z. Huang, J. Am. Chem. Soc. 2015, 137, 15600 – 15603.
[10] S. Krautwald, M. J. Bezdek, P. J. Chirik, J. Am. Chem. Soc. 2017,

139, 3868 – 3875.
[11] a) T. Ishiyama, N. Miyaura, Chem. Rec. 2004, 3, 271 – 280; b) J.

Takaya, N. Iwasawa, ACS Catal. 2012, 2, 1993 – 2006; c) R.
Barbeyron, E. Benedetti, J. Cossy, J. J. Vasseur, S. Arseniyadis,
M. Smietana, Tetrahedron 2014, 70, 8431 – 8452; d) F. Zhao, X.
Jia, P. Li, J. Zhao, Y. Zhou, J. Wang, H. Liu, Org. Chem. Front.
2017, 4, 2235 – 2255.

[12] P. Nguyen, R. B. Coapes, A. D. Woodward, N. J. Taylor, J. M.
Burke, J. A. K. Howard, T. B. Marder, J. Organomet. Chem.
2002, 652, 77 – 85.

[13] Cu-catalyzed hydroboration of alkynes: a) K. Semba, T. Fuji-
hara, J. Terao, Y. Tsuji, Chem. Eur. J. 2012, 18, 4179 – 4184; b) S.
Lee, D. Li, J. Yun, Chem. Asian J. 2014, 9, 2440 – 2443; c) W. J.
Jang, W. L. Lee, J. H. Moon, J. Y. Lee, J. Yun, Org. Lett. 2016, 18,
1390 – 1393; d) Y. Tsuji, T. Fujihara, Chem. Rec. 2016, 16, 2294 –
2313.

[14] Cu-catalyzed dehydrogenative borylation of terminal alkynes:
a) E. A. Romero, R. Jazzar, G. Bertrand, Chem. Sci. 2017, 8,
165 – 168; b) E. A. Romero, R. Jazzar, G. Bertrand, J. Organo-
met. Chem. 2017, 829, 11 – 13.

[15] a) B. Hammond, F. H. Jardine, A. G. Vohra, J. Inorg. Nucl.
Chem. 1971, 33, 1017 – 1024; b) C. Borner, C. Kleeberg, Eur. J.
Inorg. Chem. 2014, 2486 – 2489; c) C. Borner, L. Anders, K.
Brandhorst, C. Kleeberg, Organometallics 2017, 36, 4687 – 4690;
d) C. Kleeberg, C. Borner, Organometallics 2018, 37, 4136 –
4146; e) W. Oschmann, C. Borner, C. Kleeberg, Dalton Trans.
2018, 47, 5318 – 5327; f) W. Drescher, C. Kleeberg, Inorg. Chem.
2019, 58, 8215 – 8229.

[16] The exact oxidation state of Cu and, indeed, the nuclearity of the
active catalyst are not clear, as Kleeberg has recently shown that
dimeric CuI and higher-order Cu-boryl clusters with Cu oxida-
tion states between 0 and 1 are formed from LCu(OR) and
diboron(4) reagents.[15] See also Ref. [2j].

[17] L. Kuehn, M. Stang, S. Wgrtemberger-Pietsch, A. Friedrich, H.
Schneider, U. Radius, T. B. Marder, Faraday Discuss. 2019,
https://doi.org/10.1039/C9FD00053D.

[18] K. K. Chakrahari, J.-H. Liao, S. Kahlal, Y.-C. Liu, M.-H. Chiang,
J.-Y. Saillard, C. W. Liu, Angew. Chem. Int. Ed. 2016, 55, 14704 –
14708; Angew. Chem. 2016, 128, 14924 – 14928.

[19] H. Zhao, L. Dang, T. B. Marder, Z. Lin, J. Am. Chem. Soc. 2008,
130, 5586 – 5594.

[20] a) T. Fujihara, K. Semba, J. Terao, Y. Tsuji, Catal. Sci. Technol.
2014, 4, 1699 – 1709; b) T. Bai, Y. Yang, C. Han, Tetrahedron Lett.
2017, 58, 1523 – 1527.

[21] J. Won, D. Noh, J. Yun, J. Y. Lee, J. Phys. Chem. A 2010, 114,
12112 – 12115.

[22] N. Yuma, T. Naofumi, Lett. Org. Chem. 2017, 14, 243 – 247.
[23] a) Z.-Q. Zhang, C.-T. Yang, L.-J. Liang, B. Xiao, X. Lu, J.-H. Liu,

Y.-Y. Sun, T. B. Marder, Y. Fu, Org. Lett. 2014, 16, 6342 – 6345;
b) W. Sun, L. Wang, C. Xia, C. Liu, Angew. Chem. Int. Ed. 2018,
57, 5501 – 5505; Angew. Chem. 2018, 130, 5599 – 5603.

Manuscript received: July 25, 2019
Revised manuscript received: August 28, 2019
Accepted manuscript online: September 6, 2019
Version of record online: November 11, 2019

Angewandte
ChemieCommunications

18927Angew. Chem. Int. Ed. 2019, 58, 18923 –18927 T 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org

https://doi.org/10.1038/nchem.1150
https://doi.org/10.1021/ja505455z
https://doi.org/10.1021/ja505455z
https://doi.org/10.1021/ja500029w
https://doi.org/10.1021/ja500029w
https://doi.org/10.1002/anie.201407000
https://doi.org/10.1002/anie.201407000
https://doi.org/10.1002/ange.201407000
https://doi.org/10.1002/ange.201407000
https://doi.org/10.1021/jacs.5b03477
https://doi.org/10.1021/jacs.5b03477
https://doi.org/10.1021/acs.orglett.5b00480
https://doi.org/10.1002/chem.201406680
https://doi.org/10.1002/anie.201603329
https://doi.org/10.1002/anie.201603329
https://doi.org/10.1002/ange.201603329
https://doi.org/10.1021/acscatal.6b02918
https://doi.org/10.1016/j.tetlet.2018.04.061
https://doi.org/10.1002/adsc.201701390
https://doi.org/10.1039/C7OB02978K
https://doi.org/10.1039/C7OB02978K
https://doi.org/10.1016/S0022-328X(00)80082-0
https://doi.org/10.1016/S0022-328X(00)80082-0
https://doi.org/10.1002/anie.199513361
https://doi.org/10.1002/anie.199513361
https://doi.org/10.1002/ange.19951071213
https://doi.org/10.1002/ange.19951071213
https://doi.org/10.1023/A:1019145818515
https://doi.org/10.1023/A:1019145818515
https://doi.org/10.1002/(SICI)1099-0682(199910)1999:10%3C1693::AID-EJIC1693%3E3.0.CO;2-9
https://doi.org/10.1002/(SICI)1099-0682(199910)1999:10%3C1693::AID-EJIC1693%3E3.0.CO;2-9
https://doi.org/10.1002/1099-0682(200102)2001:2%3C373::AID-EJIC373%3E3.0.CO;2-6
https://doi.org/10.1002/1099-0682(200102)2001:2%3C373::AID-EJIC373%3E3.0.CO;2-6
https://doi.org/10.1002/anie.201601121
https://doi.org/10.1002/ange.201601121
https://doi.org/10.1002/ange.201601121
https://doi.org/10.1039/c3cc42675k
https://doi.org/10.1039/c3cc42675k
https://doi.org/10.1021/jacs.6b12896
https://doi.org/10.1021/jacs.6b12896
https://doi.org/10.1021/jacs.5b12249
https://doi.org/10.1021/jacs.5b11366
https://doi.org/10.1021/jacs.7b00445
https://doi.org/10.1021/jacs.7b00445
https://doi.org/10.1002/tcr.10068
https://doi.org/10.1021/cs300320u
https://doi.org/10.1016/j.tet.2014.06.026
https://doi.org/10.1039/C7QO00614D
https://doi.org/10.1039/C7QO00614D
https://doi.org/10.1016/S0022-328X(02)01310-4
https://doi.org/10.1016/S0022-328X(02)01310-4
https://doi.org/10.1002/chem.201103612
https://doi.org/10.1002/asia.201402458
https://doi.org/10.1021/acs.orglett.6b00325
https://doi.org/10.1021/acs.orglett.6b00325
https://doi.org/10.1002/tcr.201600039
https://doi.org/10.1002/tcr.201600039
https://doi.org/10.1039/C6SC02668K
https://doi.org/10.1039/C6SC02668K
https://doi.org/10.1016/j.jorganchem.2016.09.025
https://doi.org/10.1016/j.jorganchem.2016.09.025
https://doi.org/10.1016/0022-1902(71)80169-0
https://doi.org/10.1016/0022-1902(71)80169-0
https://doi.org/10.1002/ejic.201402234
https://doi.org/10.1002/ejic.201402234
https://doi.org/10.1021/acs.organomet.7b00775
https://doi.org/10.1021/acs.organomet.8b00672
https://doi.org/10.1021/acs.organomet.8b00672
https://doi.org/10.1039/C8DT00627J
https://doi.org/10.1039/C8DT00627J
https://doi.org/10.1021/acs.inorgchem.9b01041
https://doi.org/10.1021/acs.inorgchem.9b01041
https://doi.org/10.1039/C9FD00053D
https://doi.org/10.1002/anie.201608609
https://doi.org/10.1002/anie.201608609
https://doi.org/10.1002/ange.201608609
https://doi.org/10.1021/ja710659y
https://doi.org/10.1021/ja710659y
https://doi.org/10.1039/c4cy00070f
https://doi.org/10.1039/c4cy00070f
https://doi.org/10.1016/j.tetlet.2017.03.011
https://doi.org/10.1016/j.tetlet.2017.03.011
https://doi.org/10.1021/jp1081966
https://doi.org/10.1021/jp1081966
https://doi.org/10.1021/ol503111h
https://doi.org/10.1002/anie.201801679
https://doi.org/10.1002/anie.201801679
https://doi.org/10.1002/ange.201801679
http://www.angewandte.org

