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Summary The objective of this study was to compare accuracies of different Bayesian regression

models in predicting molecular breeding values for health traits in Holstein cattle. The

dataset was composed of 2505 records reporting the occurrence of retained fetal

membranes (RFM), metritis (MET), mastitis (MAST), displaced abomasum (DA), lameness

(LS), clinical endometritis (CE), respiratory disease (RD), dystocia (DYST) and subclinical

ketosis (SCK) in Holstein cows, collected between 2012 and 2014 in 16 dairies located

across the US. Cows were genotyped with the Illumina BovineHD (HD, 777K). The quality

controls for SNP genotypes were HWE P-value of at least 1 9 10�10; MAF greater

than 0.01 and call rate greater than 0.95. The FIMPUTE program was used for imputation of

missing SNP markers. The effect of each SNP was estimated using the Bayesian Ridge

Regression (BRR), Bayes A, Bayes B and Bayes Cp methods. The prediction quality was

assessed by the area under the curve, the prediction mean square error and the correlation

between genomic breeding value and the observed phenotype, using a leave-one-out cross-

validation technique that avoids iterative cross-validation. The highest accuracies of

predictions achieved were: RFM [Bayes B (0.34)], MET [BRR (0.36)], MAST [Bayes B (0.55),

DA [Bayes Cp (0.26)], LS [Bayes A (0.12)], CE [Bayes A (0.32)], RD [Bayes Cp (0.23)], DYST

[Bayes A (0.35)] and SCK [Bayes Cp (0.38)] models. Except for DA, LS and RD, the

predictive abilities were similar between the methods. A strong relationship between the

predictive ability and the heritability of the trait was observed, where traits with higher

heritability achieved higher accuracy and lower bias when compared with those with low

heritability. Overall, it has been shown that a high-density SNP panel can be used

successfully to predict genomic breeding values of health traits in Holstein cattle and that

the model of choice will depend mostly on the genetic architecture of the trait.
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Introduction

Maintaining cow health and productivity around parturition

and during early lactation is critical for the overall welfare and

profitability of dairy herds. Transition from the non-lactating

pregnant state to non-pregnant lactating state requires a dairy

cow to drastically adjust hermetabolism, so that nutrients can

bepartitioned to supportmilk synthesis, a process referred to as

homeorhesis (Bauman & Currie 1980). Endocrine changes at

calving and drastic metabolic adjustments to support milk

synthesis result in negative energy balance and immune

suppression (Goff 2004; Hammon et al. 2006). Despite

orchestrated homeostatic controls and homeorhetic adjust-

ments to cope with the changes in metabolism caused bymilk

production, 40–70% of dairy cows across different levels of

milk production, breeds and management systems develop
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metabolic or infectious diseases in the first month of lactation

(Santos et al.2010; Ribeiro et al. 2013). These health problems

not only cause reductions in milk yield and increases in

treatment costs, but alsoaffect the reproductive performanceof

dairy cows, which consequently impairs the sustainability of

dairy herds.

This suboptimal status in the health and wellness of dairy

cattle has led to a growing interest in the use of genetic

improvement as part of a comprehensive health manage-

ment strategy for dairy cows. Consequently, several new

methodologies for genomic selection (GS) have been pro-

posed (Weller et al. 2017).

The prediction quality of various Bayesian models has

been computed and compared in multiple genomic selection

studies (Meuwissen et al. 2001; P�erez et al. 2010; Magna-

bosco et al. 2016). However, the performance of each model

depends on the trait evaluated and its genetic architecture.

For example, models that perform some sort of variable

selection (e.g. Bayes B and C) might have a predictive ability

advantage for traits controlled by smaller numbers of major

effect QTL. On the other hand, for polygenic traits that are

affected by several QTL of small effects, most of the methods

have similar predictive ability, including simpler models,

such as ridge regression (Daetwyler et al. 2010). As such,

each application of GS requires a step of model comparison.

However, computing measures of predictive ability, such as

prediction accuracy, require the use of cross-validation (CV)

methods, which might be time-consuming, depending the

number of individuals and or markers analyzed.

Efficient strategies for leave-one-out cross-validation

(LOOCV) have been proposed and their theory fully described

for GS using analytical solutions (Gianola & Sch€on 2016),

including the importance of samplingweights in the context of

Bayesian inference (Gianola & Sch€on 2016). Such approaches

permit the estimation of CV results by running the model only

once, with no need for the fully iterative implementation of

LOOCV. These methods have the advantage of being compu-

tationally cost-efficient, reducing the total amount of time to

run the analysis, and avoiding the use of parallel computing.

Thus, this study was carried out to assess the potential of

genomic selection in Holstein cattle by investigating the

accuracy of molecular breeding values for health traits. Four

Bayesian specifications of genomic regression models, namely

BayesianRidgeRegression (BRR), BayesA, Bayes B, and Bayes

Cp, were compared in terms of prediction accuracy using the

“LOOCV without CV” approach.

Materials and methods

Study population, health assessment and outcomes of
interest

A total of 11 733 cows calving between 2012 and 2014 on

16 dairy farms located in four US regions [northeast (four

herds), midwest (six herds), southeast (one herd) and

southwest (five herds)] were enrolled at parturition and

monitored for health and reproductive events assessed by

the research team using the same standardized protocols.

Monitoring of diseasewas performed onweekly visits to the

study farms. Procedures included: (i) evaluation of vaginal

discharge at 7 � 3 days in milk (DIM) and 28 � 7 DIM using

a 0–5 score system – 0 = nomucus, 1 = crystalline, 2 = flecks

of pus, 3 = mucopurulent <50%pus, 4 = purulent, >50%pus

and 5 = watery, reddish/brownish fetid discharge; (ii) collec-

tion of blood samples at 7 � 3 DIM for determination of

serum BHBA; and (iii) lameness scoring at 35 � 3 DIM using

a 1–5 score system – 1 = normal, 2 = mildly lame (stands

with flat back, but arches when walks; gait slightly abnor-

mal), 3 = moderately lame (stands and walk with arched

back), 4 = lame (arched back standing and walking, one or

more limbs favored) and 5 = severely lame (arched back,

refuses to bear weight in one limb, great difficulty moving

from lying position).

Diseases included retained fetal membranes (RFM; mem-

branes not expelled within 24 h after calving), metritis

(MET; 7 � 3 DIM; mucus score 5), clinical mastitis (MAST;

obtained from farm records, definition consisting of udder

inflammation/milk altered), left displaced abomasum (DA;

farm records), lameness (LS; score >2), clinical endometritis

(CE; 28 � 3 DIM; mucus score >2), respiratory disease (RD;

farm records), dystocia (DYS; calving requiring significant

intervention) and subclinical ketosis (SCK; 7 � 3 DIM;

serum BHBA >1.0 mmol/l). In addition, records included

milk yield tested monthly, up to 305 days after calving.

Based on phenotypic information from individual cows, a

reproductive index (RI) was developed, representing a

calculated predicted probability that a cow will become

pregnant as a function of the explanatory variables used in

a logistic model. Potential significant effects were initially

tested by univariable analysis. Effects with P < 0.05 were

offered to the multivariable analysis and the final model was

determined through backward elimination, considering

potentially significant interactions.

The final model for RI included a complement of

significant fixed effects and interactions as explanatory

variables influencing a pregnancy outcome: parity number;

body condition score at 40 DIM; incidence of RFM; MET;

resumption of ovulation by 50 DIM; region; SCK; MAST; CE;

milk yield at the first milk test after calving; interaction

effect of resumption of ovulation by 50 DIM 9 region;

interaction MAST 9 region; and interaction milk yield at

the first milk test after calving 9 parity number.

The RI was developed as a continuous variable,

originating from the probability equation of the logistic

regression model, ranging from 0 to 1, which is

directly related to the probability of pregnancy:

P pregnancyja; bð Þ ¼ eRbiZiþlr=1þ eRbiZiþlr, where P(preg-

nancy|a,b) is the probability that a cow will be pregnant

given a set of fixed factors Zi, interactions, the set of

multiplicative slopes bi and a scale parameter r.
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The selection of cows for genotyping was performed by

including two groups within each farm and calving season:

(i) high-fertility individuals = diagnosed pregnant at

60 days after the first post-partum artificial insemination

and within the highest 15% RI (n = 1750); and (ii) low-

fertility individuals = cows diagnosed not pregnant on day

60 after two post-partum artificial insemination and within

the lowest 7.25% RI (n = 850).

Animals and genotyping

The initial population included 11 733 Holstein cows

calving between 2012 and 2014 on 16 US farms. The

dataset in analysis was composed of a subpopulation of

2505 records in cows that were determined with high and

low reproductive performance based on the calculated RI.

Cow records included information on the presentation of

RFM, MET, MAST, DA, LS, CE, RD, DYST and SCK. Except

for LS that was treated as a multicategorical variable, all

other traits are dichotomous (yes or no). An exploratory

analysis was performed to investigate data consistency and

to evaluate the significance of environmental effects on

traits. The environmental factors studied included farm (16

farms), year (2012, 2013 and 2014) and season of the

calving (summer or winter), and parity (primiparous or

multiparous).

A total of 2505 cows were selected based on a reproduc-

tive index (IndexP60) and genotyped using IlLUMINA BOVINE

HD SNP CHIP (777 962 SNPs; Illumina, Inc.). The data-

cleaning steps removed: (i) SNPs located on sex and

mitochondrial chromosomes; (ii) SNPs without map posi-

tion information; (iii) SNPs with call rate less than 0.95; (iv)

SNPs with MAF less than 0.01; and (v) SNPs with deviation

from HWE (P < 10�10). After data cleaning, 603 986 SNPs

were retained for analyses.

Imputation

The FIMPUTE program version 2.2 (Sargolzaei et al. 2014)

was used for imputation of missing SNP genotypes in the

HD chip. This program uses deterministic methods to

combine family and population information. The imputa-

tion is based on overlapping sliding windows and assumes

that individuals are related to some degree. Overlapping of

windows allows for consistency of haplotype phases across

windows. As pedigree information was available, FIMPUTE

was run using both family- and population-based algo-

rithms, with its own default parameters.

Pedigree-based analyses

Pedigree-based analyses were performed using a univariate

threshold animal model (logit). Such models applied belong

to the class of generalized linear mixed models, which can

be used to analyze data with different distributions from the

exponential family (e.g. binomial). This model uses a link

function relating the expected value E(yijkl) = lijkl to the

linear predictor gijkl. The following linear predictor was

used:

gijkl ¼ uþ YSi þ Parityj þ Hk þ ul;

where gijkl is a function of the expected phenotype, φ is an

intercept, YSi is the fixed effect of year-season of calving

(j = 1, 2, . . ., 5); Parityj is the fixed effect of parity

(primiparous or multiparous), Hk is a random effect for

the herd of calving (k = 1, 2, . . ., 16) and ul is a random

effect animal (l = 1, 2, . . ., 11 733). The pedigree file

contained the relationships of 18 610 animals.

The threshold model postulates an underlying continu-

ous variable, liability, such that the observed binary

response takes value 1 if liability exceeds a fixed threshold

and 0 otherwise. The threshold and the residual variance

are not identifiable, so these parameters were set equal to 0

and 1 respectively. Variance components were estimated

using a generalized linear mixed model using the AI-REML

algorithm in the DMU package (Madsen & Jensen 2008).

Genomic prediction

Genomic prediction models were fit using four Bayesian

specifications: BRR, Bayes A, Bayes B and Bayes Cp. For
these methods, the general statistical model is:

y ¼ Xbþ
Xk

j¼1

mjaj þ e

where y is an n 9 1 vector of phenotypic information, b is a

p 9 1 vector of fixed effects, X is the incidence matrix for

fixed effects, mj is an n 9 1 vector representing the

genotypes of the jth SNP for all of the animals (j = 1,

2,. . ., k), aj is the genetic effect of the jth SNP and

e � N 0; Ir2e
� �

is a vector of residuals.

IZn the BRR method, an independent Gaussian prior with

common variance is assigned to each regression coefficient,

that is, pða1; a2; . . .; akjr2a Þ ¼
Qk
j¼1

Nðajx007C;0; r2a Þ. The vari-

ance parameter r2a is treated as an unknown and assigned a

scaled inverse chi-squared (v�2) prior density,

pðr2a Þ ¼ v�2ðr2a jva; S2a Þ, with degrees of freedom, va ¼ 2

and scale S2a . Similarly, a v�2 prior density is assumed also

for the residual variance r2e , i.e. pðr2e Þ ¼ v�2ðr2e jve; S2e Þ.
In the Bayes A model (Meuwissen et al. 2001), indepen-

dent Gaussian distributions are assumed a priori for the SNP

effects aj, aj � Nð0; r2ajÞ, with zero mean and SNP-specific

dispersion parameter r2aj . The variance associated with the

effect of each SNP is assigned an independent and identi-

cally distributed scaled inverse chi-square prior to distribu-

tion, pðr2ajÞ ¼ v�2ðr2aj jva; S2a Þ, where va and S2a are known

degrees of freedom and scale parameters respectively. With

© 2020 The Authors. Animal Genetics published by
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these specifications, the marginal prior distribution of each

marker effect follows a t-distribu-

tion, pðajjva; S2a Þ ¼
R1
0 Nðajj0; r2ajÞv�2ðr2aj jva; S2a Þdr2aj , i.e.

pðajjva; S2a Þ ¼ tð0; va; S2a Þ (Rosa et al. 2003).

The Bayes B model (Meuwissen et al. 2001) assumes that,

a priori, an SNP has no effect at all with a probability p, or it
follows a normal distribution with zero mean and an SNP-

specific variance r2j with a probability 1 � p. That is,

pðajjr2aj ; pÞ ¼
0 with probability p

Nð0; r2ajÞ with probability ð1� pÞ
�

Again, the prior distribution of SNP variances is a scaled

inverse chi-square distribution. Thus, the marginal prior

distribution of aj, after integrating r2aj out, is a mixture

distribution, as follows:

pðajjpÞ ¼ 0 with probability p
tð0; va; S2a Þ with probability ð1� pÞ

�

The Bayes Cp method (Habier et al. 2011) is similar to

the Bayes B approach, except that a prior distribution is

also assumed for the proportion p of null-effect markers,

and that a Gaussian prior with a common variance is

assumed for each of the non-null marker effects. The

inclusion (or exclusion) of each marker in the model is

modeled by an indicator variable dj, which is equal to 1

if the marker j is fitted in the model or it is zero

otherwise.

Predictive ability

The predictive ability was assessed by employing the

strategy called “cross-validation without doing cross-vali-

dation” (Gianola & Sch€on 2016). The model performance

was assessed using the area under the curve, the mean

square error of the prediction and accuracy, defined as the

correlation between the phenotypic information and its

predicted genomic breeding value. The LOOCV without CV

was performed for the Bayesian models by weighing the

marker effects by importance sampling weights (Gelfand

1992; Gianola & Sch€on 2016). The following steps were

used to assess the predictive ability:

For the GBLUP method, the algorithm used to predict the

genomic breeding value û can be described as follows:

1 Compute the GEBV using the whole dataset:

û ¼ C�1y:

where C�1 ¼ ðI þ G�1kÞ�1 and k ¼ r2e=r
2
g .

1 For i ¼ 1; 2; . . .; n

~ui ¼ 1

1� ci
ðûi � ciyiÞ;

where G is the genomic relationship matrix, k is the ratio

between the residual and genetic variances and ci is the

diagonal element of the ith individual obtained from the

matrix C�1.

The LOOCV without CV can be performed for the

Bayesian alphabet methods by weighting the marker effects

by importance sampling weights (Gelfand 1992; Gelfand &

Sahu 1999; Gianola & Sch€on 2016; Vehtari et al. 2017).

The following steps can be used to access the prediction

accuracy:

1 Once the Markov chain Monte Carlo (MCMC) iterations

are completed, the importance sampling weights for the

Table 1 Genetic variance and heritability estimated using pedigree-

based logit mixed model.

Trait

Genetic variance

(SD)

Herd variance

(SD) Heritability1

Retained

placenta

0.6338 (0.2555) 0.1675 (0.0010) 0.1516 (0.0536)

Metritis 0.1920 (0.0748) 0.0589 (0.0007) 0.0538 (0.0200)

Mastitis 0.6077 (0.2329) 0.1946 (0.0005) 0.1457 (0.0490)

Displaced

abomasum

1.3013 (0.5794) 0.1927 (0.0028) 0.2608 (0.0944)

Lameness 1.5849 (0.5800) 0.2045 (0.0000) 0.3027 (0.0831)

Clinical

endometritis

0.1477 (0.0614) 0.0685 (0.0001) 0.0418 (0.0168)

Respiratory

disease

2.3445 (0.9729) 0.1824 (0.0009) 0.3849 (0.1127)

Dystocia 1.1502 (0.4278) 0.0803 (0.0002) 0.2476 (0.0730)

Subclinical

ketosis

0.7009 (0.2615) 0.3287 (0.0000) 0.1592 (0.0514)

1Logit model: h2 ¼ r2u þ r2h þ p2=3, where r2u and r2h are the estimated

additive genetic and herd variances respectively.

Table 2 Genomic heritability for retained placenta, metritis, mastitis, displaced abomasum, lameness, clinical endometritis, respiratory disease,

dystocia and subclinical ketosis using the Bayesian alphabet.

Trait Bayesian Ridge Regression Bayes A Bayes B Bayes C

Retained placenta 0.1342 (0.0017) 0.1576 (0.0011) 0.1935 (0.0039) 0.1729 (0.0027)

Metritis 0.1501 (0.0077) 0.1202 (0.0006) 0.1404 (0.0036) 0.1687 (0.0029)

Mastitis 0.1299 (0.0025) 0.0995 (0.0013) 0.1428 (0.0055) 0.1016 (0.0019)

Displaced abomasum 0.0609 (0.0014) 0.0671 (0.0005) 0.0799 (0.0004) 0.0965 (0.0014)

Lameness 0.1621 (0.0042) 0.2076 (0.0018) 0.1356 (0.0027) 0.1687 (0.0105)

Clinical endometritis 0.1071 (0.0014) 0.2129 (0.0014) 0.1327 (0.0016) 0.1803 (0.0042)

Respiratory disease 0.0908 (0.0007) 0.1263 (0.0014) 0.1311 (0.0008) 0.1921 (0.0028)

Dystocia 0.1043 (0.0018) 0.2064 (0.0019) 0.1783 (0.0026) 0.2246 (0.0075)

Subclinical ketosis 0.1249 (0.0039) 0.1922 (0.0019) 0.1338 (0.0039) 0.1613 (0.0095)
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marker effects can be computed as follows:

wi;s ¼
exp yi�xiasð Þ2

2r2e

h i
Ps

s¼1 exp
yi�xiasð Þ2
2r2e

h i

1 For i ¼ 1; 2; . . .; n,

~ui ¼ mi

Xs

s¼1

wi;sa
ðsÞ
i

where w is the importance sampling weight, a is the marker

effect, y is the phenotype and mi is a vector representing the

genotypes of the ith animal.

Genomic heritability

The narrow-sense genomic heritabilities (h2) were estimated

using the BRR, Bayes A, Bayes B, and Bayes Cp models as:

h2 ¼ r2g
r2g þ r2e

;

where r2g and r2e are the genomic and residual variances

respectively. The genomic variance was calculated as

r2g ¼
Xj

i¼1

2pjð1� pjÞa2j :

Analyses and computer resources

The BGLR package (de los Campos & P�erez-Rodr�ıguez 2014)

was used to fit the BRR, Bayes A, Bayes B and Bayes Cp
models using an MCMC method. For each model, the MCMC

sampling length was 100 000 iterations, with the first

80 000 excluded as the burn-in and a thinning interval of

10. Convergence was checked by visual inspection of trace

plots and the convergence tests of Brooks, Gelman, and

Rubin (Gelman & Rubin 1992) and Geweke (1992). The

analyses were performed using the UW–Madison Center for

High Throughput Computing in the Department of Com-

puter Sciences.

Results and discussion

One of the most significant advances in dairy cattle health

and welfare in recent decades has been the shift from

treatment of clinical diseases to the implementation of

preventive strategies to maintain health (LeBlanc et al.

2006). Moreover, significant research efforts are now

centered on exploring genetic variation associated with the

ability of animals to control disease (K€onig & May 2019).

As reported in the literature (Gagneur et al. 2011; Miar

et al. 2014), with the continuous reduction of genotyping

costs over time, phenotyping has become the most impor-

tant component in the calibration of GS models. In addition,

the identification of a model that provides the best predictive

ability and captures most of the genetic variance is one of

the most important steps in genomic prediction.

Unlike the Bayesian models that use a probit link

function, the pedigree-based analyses performed to estimate

Table 3 Predictive ability (accuracy), area under the ROC curve (AUC)

and mean squared error of prediction for retained fetal membranes,

metritis, mastitis, displaced abomasum, lameness, clinical endometritis,

respiratory disease, dystocia and subclinical ketosis using GBLUP and

four Bayesian model specifications: Bayesian Ridge Regression, Bayes

A, Bayes B and Bayes C.

Trait GBLUP

Bayesian

Ridge

Regression Bayes A Bayes B Bayes C

Accuracy

Retained

placenta

0.2600 0.2009 0.3000 0.3401 0.3219

Metritis 0.3360 0.3629 0.2097 0.2932 0.2418

Mastitis 0.3170 0.2352 0.1984 0.5546 0.2044

Displaced

abomasum

0.1710 0.0615 0.0258 0.1275 0.2572

Lameness 0.1040 0.0858 0.1160 0.0931 0.1227

Clinical

endometritis

0.3100 0.2530 0.3178 0.2780 0.2671

Respiratory

disease

0.2510 0.0280 0.2105 0.1122 0.2350

Dystocia 0.2590 0.1307 0.3481 0.1443 0.3156

Subclinical

ketosis

0.3480 0.2316 0.3023 0.2178 0.3761

AUC

Retained

placenta

0.7750 0.6819 0.7670 0.8108 0.7881

Metritis 0.7170 0.7332 0.6320 0.6805 0.6528

Mastitis 0.7810 0.6930 0.6593 0.8870 0.6707

Displaced

abomasum

0.8630 0.6111 0.5515 0.7209 0.8829

Lameness 0.5809 0.6467 0.6364 0.5656 0.6572

Clinical

endometritis

0.6920 0.6488 0.6896 0.6636 0.6624

Respiratory

disease

0.8140 0.5626 0.8440 0.6799 0.8957

Dystocia 0.6970 0.5947 0.7301 0.6109 0.7133

Subclinical

ketosis

0.7520 0.6531 0.7016 0.6447 0.7598

Mean square error

Retained

placenta

0.8970 0.2446 0.5299 0.3414 0.3077

Metritis 0.3700 0.3996 0.2481 0.1988 0.4018

Mastitis 0.7430 0.5279 0.3446 0.0879 0.5666

Displaced

abomasum

0.3130 0.1940 0.1453 0.3283 0.3299

Lameness 1.4090 1.7929 1.3596 1.1740 1.0702

Clinical

endometritis

0.4490 0.2634 0.2187 0.2330 0.2630

Respiratory

disease

1.7760 0.5032 0.4340 0.6731 0.0202

Dystocia 0.1530 0.1370 0.1372 0.3051 0.1279

Subclinical

ketosis

0.5380 0.4337 0.3405 0.4614 0.2971
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the heritability used a threshold model with logit as a link

function. In addition to the 2505 cows used in the genomic

analyses, there were more 9229 cows with valid records.

The pedigree-based heritability ranged from 0.0418

(0.0168) to 0.3849 (0.1127) for CE and RD respectively

(Table 1). The SNP-heritability ranges among models for the

health traits were (Table 2): RFM, 0.13 (Bayesian Ridge

Regression) and 0.19 (Bayes B); MET, 0.12 (Bayes A) and

0.16 (Bayes Cp); MAST, 0.09 (Bayes A) and 0.14 (Bayes B);

DA, 0.06 (Bayesian Ridge Regression) and 0.09 (Bayes Cp);
lameness, 0.15 (Bayes B) and 0.20 (Bayes A); CE, 0.10

(Bayesian Ridge Regression) and 0.21 (Bayes A); RD, 0.09

(Bayesian Ridge Regression) and 0.19 (Bayes Cp); DYST,
0.10 (Bayesian Ridge Regression) and 0.22 (Bayes Cp); and
SCK, 0.12 (Bayesian Ridge Regression) and 0.19 (Bayes A).

Figures S1–S9 show Manhattan plots visualizing the genetic

architecture of the health disorders considered in this study.

Although the models usually deliver similar predictive

abilities when properly tuned, their prior assumptions,

distributions and the variable selection performed by some

models (i.e. Bayes B and Bayes Cp) result in different marker

effect estimates, which could explain the difference in the

genomic heritabilities obtained within traits.

Table 3 shows the results of CV analysis for the predictive

ability, in which a measure of the overall fit achieved with

each method was assessed by the mean square error of

prediction. The Bayesian Ridge Regression had the smallest

mean square error for RFM; Bayes A for DA and CE; Bayes B

for MET and MAST; and Bayes Cp for lameness, RD, DYST

and SCK.

Except for DA, lameness and RD, the predictive abilities

were similar across models for all other traits. Overall, these

results are in accordance with results in the literature (de los

Campos et al. 2013; Gianola 2013), which indicate the

similarity of the Bayesianmodels in terms of predictive ability.

The models for best predictive abilities were: RFM, Bayes B

(r = 0.34 and AUC = 0.81); MET, Bayes B (r = 0.34 and

AUC = 0.81);MAST, Bayes B (r = 0.55 andAUC = 0.89); DA,

Bayes Cp (r = 0.26 and AUC = 0.88); lameness, Bayes Cp
(r = 0.26 and AUC = 0.88); CE, Bayes A (r = 0.32 and

AUC = 0.69); RD, Bayes Cp (r = 0.23 and AUC = 0.91);

DYST, Bayes Cp (r = 0.23 and AUC = 0.91); and SCK, Bayes

Cp (r = 0.23 and AUC = 0.91) respectively (Table 3).

The relatively low estimates of heritability might have

limited the prediction accuracies of genomic breeding

values. The correlation (Fig. 1) between heritability and

accuracy (across methods and traits) ranges from 0.21

(Bayes C) to 0.64 (Bayes A) and from 0.30 (MET) to 0.93

(RFM). These positive and overall high estimates of corre-

lation show that the heritability has indeed limited the

prediction accuracies, among other factors. In fact, some

authors have reported superior accuracies of genomic

breeding values in scenarios involving higher heritable

traits as well as larger numbers of phenotypic records and

genotyped animals (Bolormaa et al. 2013a,b; Neves et al.

2014; Fernandes J�unior et al. 2016).

Although four differentmodeling approacheswere used for

the genomic prediction, the correlations between phenotypes

and their genomic breeding valueswere similar among them.

However, it is important to stress that results fromany specific

genomic selection application cannot always be easily applied

to other populations. This means that each application

should involve its own model comparison exercise to max-

imize the predictive ability for each trait.

Conclusion

In this study, we investigated different methods for genomic

prediction of breeding values of RFM, MET, MAST, DA,

lameness, CE, RD, DYST and SCK. Except for DA, lameness

Figure 1 The correlation between heritability

and accuracy across methods and traits.
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and RD, the predictive abilities were similar between

methods. Although the relatively low estimates of heritabil-

ity might have limited the prediction accuracies of genomic

breeding values, there was observed a strong relationship

between the predictive ability and the heritability of the

trait, where traits with higher heritability achieved higher

accuracy and lower bias when compared with those with

lower heritability. Overall, the information from high-

density SNP panel can be successfully used to predict

genomic breeding values of health traits in Holstein cattle,

but the model choice will most likely depend on the genetic

architecture of the trait.
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Additional supporting information may be found online in

the Supporting Information section at the end of the article.

Appendix S1 Genome-wide association study for health

traits.

Figures S1–S9 show Manhattan plots visualizing the

genetic architecture of retained fetal membranes, metritis,

mastitis, displaced abomasum, lameness, clinical endometri-

tis, respiratory disease, dystocia and subclinical ketosis.
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