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SUMMARY

Cognitive dysfunction and decreased mobility from aging and neurodegenerative conditions, such 

as Parkinson and Alzheimer diseases, are major biomedical challenges in need of more effective 

therapies. Increasing brain resilience may represent a new treatment strategy. Klotho, a longevity 

factor, enhances cognition when genetically and broadly overexpressed in its full, wild-type form 

over the mouse lifespan. Whether acute klotho treatment can rapidly enhance cognitive and motor 

functions or induce resilience is a gap in our knowledge of its therapeutic potential. Here, we show 

that an α-klotho protein fragment (αKL-F), administered peripherally, surprisingly induced 

cognitive enhancement and neural resilience despite impermeability to the blood-brain barrier in 

young, aging, and transgenic α-synuclein mice. αKL-F treatment induced cleavage of the 

NMDAR subunit GluN2B and also enhanced NMDAR-dependent synaptic plasticity. GluN2B 

blockade abolished αKL-F-mediated effects. Peripheral αKL-F treatment is sufficient to induce 

neural enhancement and resilience in mice and may prove therapeutic in humans.

In Brief

Klotho is a longevity factor associated with cognitive enhancement when genetically and widely 

overexpressed over the lifetime of mice. Leon et al. show that peripheral delivery of a klotho 

fragment, αKL-F, acutely enhances cognition and neural resilience in young, aging, and disease 

model mice, establishing its therapeutic relevance and dissecting its underlying mechanisms.
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INTRODUCTION

Cognitive dysfunction and decreased mobility from aging and age-related neurodegenerative 

conditions such as Alzheimer disease (AD) and Parkinson disease (PD) are major 

biomedical challenges. Because more effective treatments are needed, and clinical trials 

targeting putative pathogenic proteins have failed, it is critical to develop alternate or 

complimentary therapeutic strategies. In light of this urgent medical need for our rapidly 

aging populations, delaying aging itself or increasing the function and resilience of the brain 

(Bennett, 2017; McEwen and Morrison, 2013) may represent new treatment strategies.

α-Klotho (klotho) is a pleiotropic protein that circulates as a hormone following cleavage 

from its transmembrane form. It regulates insulin (Kurosu et al., 2005), Wnt (Liu et al., 

2007), and fibroblast growth factor (FGF) (Urakawa et al., 2006) signaling. Overexpression 

of klotho extends life in organisms (Château et al., 2010; Kurosu et al., 2005), whereas 

lowering klotho shortens it (Kuro-o et al., 1997). Elevated klotho levels in humans, resulting 

from genetic variation (Arking et al., 2002; Dubal et al., 2014; Yokoyama et al., 2017), also 

associate with lifespan (Arking et al., 2002; Invidia et al., 2010) in some populations. In 

model organisms and humans, levels of klotho decline with age (Duce et al., 2008; Semba et 

al., 2011), chronic stress (Prather et al., 2015), cognitive aging (Shardell et al., 2016), 

neurodegenerative disease (Semba et al., 2014), and models of neurodegenerative disease 

(Dubal et al., 2015; Massó et al., 2015).

We previously discovered that life-long, genetic overexpression of klotho causally enhances 

normal cognition and neural resilience independent of age and when broadly expressed in 

the mouse body and brain (Dubal et al., 2014, 2015). It does so, at least in part, by directly 

or indirectly optimizing synaptic functions through NMDA receptor (NMDAR)-dependent 

mechanisms (Dubal et al., 2014, 2015). Importantly, genetic, lifelong, and widespread 

klotho elevation also contributes to neural resilience in a human amyloid precursor protein 

(hAPP) model of neurodegenerative disease related to AD (Dubal et al., 2015); that is, it 
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effectively counters cognitive and synaptic deficits despite high levels of pathogenic 

proteins, including Aβ, tau, and phospho-tau.

The relevance of klotho to brain health in humans is supported by the findings that elevated 

serum klotho, related to KLOTHO variation, are associated with better measures, including 

cognition (Dubal et al., 2014; Yokoyama et al., 2015), structural reserve of the prefrontal 

cortex in normal aging (Yokoyama et al., 2015), connectivity between cortical regions 

(Yokoyama et al., 2017), and physical performance in aging (Shardell et al., 2015), and that 

diminished klotho levels are associated with worse brain measures (Prather et al., 2015; 

Yokoyama et al., 2015, 2017). Furthermore, KLOTHO variation is associated with less 

cognitive decline and better cortical structure in another large cohort (de Vries et al., 2017), 

although positive genetic associations were not observed in other populations at particularly 

advanced ages (Almeida et al., 2017; Mengel-From et al., 2016).

Multiple proteins contribute to the pathogenesis of neurodegenerative diseases. α-Synuclein, 

a membrane protein whose overexpression inhibits mechanisms of exocytosis (Logan et al., 

2017), is central to PD and other parkinsonian disorders and contributes to multi-etiology 

dementias such as AD. Transgenic mice that overexpress wild-type human α-synuclein 

(hSYN) simulate key aspects of neurodegenerative disease, including cognitive and motor 

dysfunction (Fleming et al., 2004; Hatami and Chesselet, 2015). Therapeutic strategies that 

induce resilience against common pathogenic proteins such as α-synuclein involved in 

multiple diseases with broad phenotypes (Montine et al., 2014) could positively affect the 

human condition.

Whether acute klotho elevation represents a strategy that can rapidly enhance cognition, 

motor functions, and/or induce brain resilience is a gap in our knowledge of its therapeutic 

potential. Here we show that αKL-F, a fragment of the α-klotho protein similar to its 

secreted form, can acutely improve cognitive and motor functions following peripheral 

administration. It does so despite apparent impermeability to the blood-brain barrier in 

young, aging, and hSYN transgenic mice. Further investigation of αKL-F-mediated 

molecular mechanisms revealed activation of glutamatergic signaling and enhancement of 

synaptic plasticity.

RESULTS

αKL-F Is a Recombinant Modified Fragment of Mouse Klotho that Does Not Penetrate into 
the Brain or Alter Endogenous Hippocampal Klotho Levels

We first characterized the recombinant, mouse αKL-F fragment (Kurosu et al., 2005) by 

mass spectrometry. αKL-F is a protein representing a truncated form of the endogenous α-

klotho protein but lacking its transmembrane, N-terminal signal peptide, and intracellular 

domains (Figure 1A). This truncated peptide (954 amino acids [aa]) includes the KL-1 and 

KL-2 subdomains and a C-terminal 6-His tag sequence. It resembles the extracellular 

portion of α-klotho (or klotho) endogenously shed from the membrane by ADAM 10 and 17 

(Bloch et al., 2009; Chen et al., 2007), leading to a protein of approximately 959 aa that 

includes some of the transmembrane domain (Chen et al., 2015) and circulates in mouse 

serum, human serum, and human cerebral spinal fluid (CSF) (Imura et al., 2004).
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We assessed for post-translational modifications (PTMs) of αKL-F and detected six 

glycosylation sites (Figure 1B). The identified N- and O-glycosylation sites map to the KL1 

and KL2 domains and could potentially affect many facets of the protein, including 

recognition, stability, and solubility. No regulatory PTMs, such as phosphorylation, were 

detected. Other physical properties of the protein, such as its aggregation, higher-form 

conformations, and their importance to cognition-related functions, remain to be determined.

To probe whether peripherally administered αKL-F penetrates the brain, we injected a high 

dose (10–40 times the doses used in our studies) of the His tag protein (100 μg/kg, 

intraperitoneally [i.p.]). We assessed for its presence in the kidney and brain 4 hr later, 

within its estimated 7.5-hr half-life (Hu et al., 2016), by immunoprecipitation of the His tag 

(Figure 1C). The protein was observed in the kidney but not in the brain. Consistent with 

previous findings using autoradiographic methods (Hu et al., 2016), our data suggest that 

peripheral treatment with αKL-F does not cross the blood-brain barrier (BBB).

Because the endogenous klotho protein is also produced and circulates within the BBB, we 

wondered whether peripheral αKL-F treatment causes shifts in brain klotho levels. 

Peripheral αKL-F did not alter the levels of endogenous klotho in the hippocampus (Figures 

1D and 1E). These data suggest that the central activity of peripherally administered αKL-F 

probably engages signals transduced from the periphery to the CNS.

A Fragment of Klotho, αKL-F, Delivered Peripherally, Acutely Enhances Cognition in Young 
Mice

Whether klotho, or some form of it, can acutely enhance cognition or induce resilience is a 

gap in our knowledge of its biologic functions and therapeutic potential. To test the 

therapeutic potential of mouse αKL-F, we administered it peripherally (i.p.) in young mice.

We first tested spatial learning and memory in the Morris water maze. Young mice were 

treated with vehicle (Veh) or αKL-F (10 μg/kg, i.p.) daily prior to hidden platform training 

or a probe trial (Figure 2A). Remarkably, αKL-F treatment enhanced learning, as measured 

by decreased distance traveled to find the hidden platform (Figure 2B). αKL-F also 

enhanced spatial memory retention, as measured by increased time spent in the target 

quadrant (Figure 2C) and at the target site (Figure 2D) in the probe trial following hidden 

training. Mice treated with Veh or αKL-F showed no differences in their swim speeds 

(Figure 2E) or ability to find the target platform, identified by a visual cue (Figure 2F). Thus, 

similar to genetic, lifelong, and widespread overexpression of full-length mouse klotho 

(Dubal et al., 2014, 2015), peripheral delivery of mouse αKL-F was sufficient to enhance 

learning and memory, but acutely.

We then tested whether αKL-F improves another domain of cognition, working memory, in 

the small Y-maze (Figures 2H and 2I). In the same cohort and in several (over ten) 

independent, naive cohorts, young mice were treated with vehicle or αKL-F (10 μg/kg, i.p.) 

4 hr prior to exploration in the small Y-maze. αKL-F acutely enhanced working memory, as 

measured by increased spontaneous alternations in the maze. αKL-F induced a threshold-

dependent dose response on cognition, with the lowest effective dose detected at 2.5 μg/kg 

(Figure S1A). In addition, αKL-F-mediated cognitive enhancement combined with cognitive 
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training persisted for at least 2 weeks after the last treatment (Figure S1B), suggesting 

organizational, longer-lasting, and beneficial effects on the synapse and brain. Collectively, 

these data show that peripheral administration of αKL-F is sufficient to induce enhancement 

of a normal brain.

Of note, in our experiments, we did not detect cognitive enhancement with human αKL-F 

(87% homology to mouse) administration in mice following the same acute treatment 

paradigms in the small Y-maze or water maze (data not shown). This suggests species 

specificity of the biologic action and additionally shows that a protein of the same size, but 

with a different sequence, did not arbitrarily enhance cognition.

αKL-F Enhances Cognition in the Aging Brain

Because aging is the primary risk factor for cognitive impairment, we wondered whether 

αKL-F could enhance cognition in the aging brain. To test this, aging mice (18 months) 

were treated once with Veh or αKL-F (10 μg/kg, i.p.) 1 day prior to training in the two-trial 

Y-maze (Figure 3A). This task probes both spatial and working memory by measuring 

exploration time in a novel compared with a familiar arm of the maze following context 

training (Dellu et al., 1992). During testing, Veh-treated, aged mice showed no preference 

for the novel arm. αKL-F induced preference for the novel arm, indicating that it enhanced 

spatial and working memory in aged mice (Figure 3B). Thus, a single peripheral injection of 

αKL-F boosted cognition in the aging brain.

αKL-F Acutely Counters Motor and Cognitive Deficits in Transgenic hSYN Mice, an α-
Synuclein Model of Neurodegenerative Disease

Next, we probed whether αKL-F can acutely counter neurodegenerative disease-related 

deficits and pathologies in mice that overexpress wild-type hSYN mice using motor and 

cognitive tasks (Figure 4A). We chose this model because the majority of dementias related 

to both PD and AD are multi-etiology, α-synuclein is commonly shared among them, and 

this model enabled testing of motor deficits. hSYN mice (Rockenstein et al., 2002) 

accumulate α-synuclein in neurons and synapses throughout the brain (Rockenstein et al., 

2002) and exhibit motor and cognitive deficits (Fleming et al., 2004, 2006; Masliah et al., 

2000; Morris et al., 2011).

We first tested whether αKL-F counters motor deficits in hSYN mice. Motor dysfunction is 

a predominant deficit in hSYN mice and linked with clinical manifestations of α-synuclein 

toxicity in humans. Building on our findings that a lower dose of αKL-F enhanced function 

in the normal brain (Figure S1A), we injected Veh and a lower dose of αKL-F (2.5 μg/kg 

instead of 10 μg/kg, i.p.) daily for 2 days prior to rotarod testing in hSYN mice and 

nontransgenic (NTG) littermate controls (Figure 4A). As expected (Morris et al., 2011), all 

hSYN mice showed a motor deficit in training and testing, as measured by decreased time to 

fall off a fixed (Figure 4B) and accelerating (Figure 4C) rod. αKL-F increased motor 

learning in hSYN mice during training and mean motor performance during testing (Figures 

4B and 4C). Thus, αKL-F improved motor learning and deficits, extending its therapeutic 

functions to another functional domain.
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We then tested whether αKL-F counters cognitive deficits in hSYN mice. Because hSYN 

mice show motor deficits but move around normally, we used the two-trial Y-maze, which 

measures spatial and working cognition based on exploration without heavy reliance on 

motor strength. After rotarod testing, mice were injected with Veh and αKL-F (2.5 μg/kg, 

i.p.) daily for an additional 2 days (Figure 4A). Veh-treated hSYN mice showed cognitive 

deficits compared with NTG controls, as measured by decreased preference for the novel 

arm (Figure 4D). αKL-F improved novel arm preference (by main effect) in NTG and hSYN 

mice (Figure 4D). αKL-F countered cognitive deficits in hSYN mice (Figure 4D) despite 

equivalent levels of speed and movement among all experimental groups during training 

(data not shown). Thus, in addition to enhancing cognition in the normal and aging brain, 

peripheral treatment with αKL-F acutely improved cognitive deficits in an hSYN model.

αKL-F Induces Neural Resilience in hSYN Mice without Altering Pathogenic Protein 
Species Related to Neurodegenerative Disease

Because deficits in hSYN mice depend on α-synuclein expression, we assessed whether 

αKL-F reduces levels of the pathogenic protein. Acute treatment with αKL-F, with the same 

experimental paradigm that countered neural deficits, did not alter the steady-state levels of 

α-synuclein or its phosphorylated form (Figures 4E–4G) in the hippocampus or cortex. In 

addition, αKL-F did not alter the levels of potential co-pathogens of α-synuclein, such as 

tau or phospho-tau (Haggerty et al., 2011; Wills et al., 2010) in hSYN mice (Figures 4E, 4H, 

and 4I). Thus, acute and peripheral treatment with αKL-F induced neural resilience in hSYN 

mice, as defined by countering neural functions without altering the levels of pathogenic 

protein species.

αKL-F Acutely Increases GluN2B Cleavage without Altering Synaptic GluN2B Levels and 
Enriches Glutamate Receptor Signaling

To begin to explore the mechanisms underlying αKL-F-mediated cognitive enhancement 

and neural resilience, we focused subsequent studies on normal, young mice because effects 

of αKL-F were discovered in this age group, and these mice were more available. We 

assessed the GluN2B subunit of NMDARs because transgenic overexpression of klotho 

increases cognition through GluN2B-dependent functions (Dubal et al., 2014), transgenic 

elevation of GluN2B enhances cognition in mice and rats (Cao et al., 2007; Tang et al., 

1999; Wang et al., 2009), and dysfunction of GluN2B contributes to cognitive decline in 

aging and neurodegenerative diseases (Ittner et al., 2010; Piggott et al., 1992; Sze et al., 

2001; Zhao et al., 2009). We first assessed, in parallel with the effects of lifelong, transgenic 

klotho overexpression (Dubal et al., 2014, 2015), whether αKL-F treatment acutely 

increases the levels of GluN2B in synaptic fractions of the hippocampus. Synaptic levels of 

GluN2B in the hippocampus did not differ between Veh- and αKL-F-treated mice (Figures 

5A–5C) despite αKL-F-mediated cognitive enhancement in mice. Thus, acute effects of 

αKL-F on cognition did not induce or require the synaptic increase of GluN2B levels 

observed in transgenic, klotho-overexpressing mice.

Synaptic proteins are dynamic structures with activity-dependent modification and turnover 

(Alvarez-Castelao and Schuman, 2015). Following stimulation, the GluN2B subunit of 

NMDARs can undergo cleavage by calpain, producing a low-molecular-weight (LMW) 
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form of the subunit (~115 kDa) (Dong et al., 2004, 2006; Simpkins et al., 2003). We noticed 

that, in whole hippocampal homogenates, an LMW form of the GluN2B protein not detected 

in synaptic, post-synaptic density (PSD)-enriched fractions, differed between experimental 

groups upon western blotting (Figures 6A–6E). αKL-F treatment elevated LMW GluN2B 

by approximately 4 hr following treatment (Figures 6A and 6B), and this correlated with 

better cognitive ability in the small Y-maze (Figure 6C). αKL-F increased LMW GluN2B in 

multiple replicate cohorts (Figure 6D; data not shown) and tended to do so in the absence of 

a cognitive task following several days of treatment (albeit less intensely) (Figure 6E). Thus, 

acute treatment with αKL-F led to engagement of the GluN2B subunit of NMDARs, 

causing its increased cleavage.

To verify the specificity of the LMW band, we generated a GluN2B blocking peptide 

harboring the GluN2B antibody epitope sequence. We then immunoprecipitated GluN2B 

proteins from mouse hippocampal homogenates and preincubated them with and without the 

GluN2B-blocking peptide. The blocking peptide abrogated detection of the high-molecular-

weight (HMW) and LMW bands, but not other non-specific bands, on western blotting 

(Figure 6F). Of note, the LMW form was not detected in synaptic fractions and surfaced 

clearly on western blotting of total hippocampal lysates only after increasing stringency with 

addition of 1% SDS to the homogenization buffer. Thus, GluN2B also exists in an LMW 

form, as reported previously (Dong et al., 2004, 2006; Simpkins et al., 2003), and αKL-F 

acutely increased its levels.

Because the klotho-derived fragment αKL-F probably engages multiple downstream 

pathways to enhance cognition, we probed broadly for possible targets with an independent 

and unbiased proteomic analysis of whole hippocampal homogenates from mice treated with 

Veh and αKL-F (10 μg/kg, i.p.) 4 hr prior to exploration in the small Y-maze. αKL-F 

induced glutamate receptor signaling as the top enriched canonical pathway by ingenuity 

pathway analysis, which identifies biologic patterns of molecular changes in a large dataset 

(Figure S2).

Taken together, two experimental approaches, hypothesis-and non-hypothesis-driven, 

independently converged on evidence for glutamatergic signaling as an important 

downstream target pathway of αKL-F-mediated functions. αKL-F modestly changed 

GluN2B in proteomic mass spectrometry studies (Figure S2); it tended to increase many, but 

not all, GluN2B peptides following trypsinization (Figure S2). This suggests that, instead of 

increasing overall protein levels, αKL-F may alter GluN2B cleavage, degradation, PTM, or 

other baseline cellular processes. This possibility is supported by our findings that αKL-F 

significantly increased the LMW form of GluN2B, but not the HMW form, on western 

blotting (Figure 6) and requires further study.

Downstream main effect analysis of all proteomic changes predicted that αKL-F activates 

synaptic transmission (Figure S2). We directly probed and validated this functional 

prediction.
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αKL-F Acutely Enhances NMDAR-Dependent Synaptic Plasticity in the Hippocampus

Activation of glutamate receptor signaling is critical for synaptic functions and plasticity. 

Long-term potentiation (LTP) is a form of synaptic plasticity dependent on NMDAR 

activation and is a key cellular substrate of learning and memory (Morris et al., 1986; 

Nabavi et al., 2014; Nakazawa et al., 2004). To assess whether αKL-F activates synaptic 

transmission and enhances synaptic plasticity, we next measured LTP in acute hippocampal 

slices at the CA1 Schaffer collateral pathway synapse, largely mediated by NDMARs 

(Kauer et al., 1988). During the same time frame that it enhanced cognition and caused 

GluN2B cleavage (4 hr after i.p. treatment), αKL-F enhanced LTP, as determined by field 

excitatory postsynaptic potential (fEPSP) recordings (Figures 7A and 7B). Of note, the 

extent of synaptic enhancement with acute, peripheral αKL-F treatment was similar to that 

observed with lifetime, transgenic, full-length klotho over-expression in the body and brain, 

although a different hippocampal region was examined in the current study (Dubal et al., 

2014, 2015)

Selective Blockade of NMDAR GluN2B Subunits Abolishes αKL-F Effects on Cognition

The dynamics of NMDAR channels are governed in part by their subunit compositions 

(Wang et al., 2008; Yashiro and Philpot, 2008). GluN2B-containing NMDARs deactivate 

more slowly than those with other subunit types, transducing longer-lasting calcium-

dependent signals (Wang et al., 2008). Because αKL-F acutely increased measures of 

GluN2B activation, including increasing its LMW form and enhancing synaptic plasticity, 

we tested whether blocking GluN2B-containing NMDARs modulates the effects of αKL-F 

on cognition. We specifically tested whether blockade of GluN2B in an acute, transient, and 

broad manner preferentially abrogates αKL-F-mediated cognitive enhancement without 

disrupting normal cognition.

To test this, we used a low dose of Ro 25-6981 (Ro 25), a highly specific GluN2B antagonist 

(Lu et al., 2017; Paoletti and Neyton, 2007) that minimally affects normal cognition (Figure 

S3), as described previously (Dubal et al., 2014; Mathur et al., 2009). Mice treated with a 

single injection of Veh or αKL-F (10 μg/kg, i.p.) were tested in the small Y-maze 4 hr later. 

Ten minutes prior to Y-maze testing, they received saline or low-dose Ro 25 (5 mg/kg, i.p.) 

(Dubal et al., 2014; Mathur et al., 2009). As expected, in the absence of Ro 25, αKL-treated 

mice showed better working memory than Veh-treated controls (Figure 7C), consistent with 

their enhanced cognition and enhanced LTP. Ro 25 effectively and preferentially blocked 

αKL-F-mediated cognitive enhancement (Figures 7C and 7D). At higher doses, Ro 25 also 

inhibited normal cognition (Figure S3). Thus, in parallel with the effects observed in 

transgenic klotho-overexpressing mice (Dubal et al., 2014), a low dose of a specific GluN2B 

antagonist effectively and preferentially blocked the effects of peripheral, acute treatment 

with αKL-F.

DISCUSSION

Our cognitive, behavioral, biochemical, protein-based, electrophysiological, and 

pharmacological studies in mice reveal a role for the peripheral delivery of a post-

translationally modified mouse klotho fragment, αKL-F, in acute enhancement of synaptic 
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and brain functions. αKL-F enhanced normal cognition in young mice and boosted 

cognition in aging mice. Furthermore, αKL-F countered cognitive and motor dysfunction in 

hSYN mice that model aspects of neurodegenerative disease. It did so without altering the 

levels of α-synuclein or related co-pathogenic proteins, indicating that αKL-F increases 

neural resilience.

Further investigation into its mechanisms revealed that peripheral αKL-F delivery increased 

glutamatergic signaling. It increased the LMW form of the NMDAR subunit GluN2B on 

western blotting, a putative marker of its activation in the hippocampus (Dong et al., 2004, 

2006; Simpkins et al., 2003) within 4 hr of delivery and cognitive testing. Furthermore, 

peripheral αKL-F acutely increased synaptic function, as measured by enhanced LTP, a 

cellular substrate of learning and memory. Antagonism of NMDAR function through acute 

blockade of GluN2B preferentially abrogated αKL-F-mediated enhancement of cognition.

Taken together, our findings suggest that peripheral treatment with αKL-F or a similarly 

derived and/or modified klotho fragment could enhance brain function and resilience and 

could represent a new therapeutic strategy for dysfunction related to aging, 

neurodegenerative diseases like PD and AD, and other brain diseases.

Peripheral αKL-F Elevation Causes Central Cognitive Enhancement and Phenocopies 
Lifelong, Widespread, Genetic Klotho Overexpression

Surprisingly, a fragment of klotho, αKL-F, acutely enhanced cognition in young mice when 

delivered peripherally, thus phenocopying, in part, the functional effects we found with 

genetic, lifelong, and widespread overexpression of full-length, wild-type klotho (Dubal et 

al., 2014). This was unexpected because the fragment is impermeable to the BBB by 

prediction (Pardridge, 2005), direct radiography (Hu et al., 2016), and our 

immunoprecipitation studies. Because the αKL-F effects were acute, we conclude that 

neurodevelopmental effects of klotho, or sustained and high levels of wild-type klotho in the 

brain over a long period, are not required for neural enhancement. How peripheral αKL-F 

transmits a signal to the CNS is a fascinating question that remains to be answered. 

Possibilities include induction or modification of other factors that cross or interact with the 

BBB and direct or indirect alteration of central klotho levels, although we did not find 

evidence for the latter. Importantly, the ability of peripheral αKL-F to induce central effects 

is of therapeutic value because it bypasses the need to deliver protein directly into the CNS 

and, thus, evades a primary limitation of developing brain therapies. Our study does not rule 

out that klotho might also act with the CNS but, rather, establishes the relevance of its acute, 

peripheral elevation, particularly in a truncated form.

αKL-F, Lacking Several Structural Domains, Causes Better Cognitive Functions

The cognition-enhancing effects of αKL-F define an important segment of the klotho 

protein required for brain benefits. Because αKL-F lacks the transmembrane, intracellular, 

and N-terminal regions, our findings identify the cognition-enhancing effects within amino 

acids 35–982 comprising the KL1 and KL2 domains. How this post-translationally modified 

protein, which exists endogenously in a similar form (sometimes called soluble klotho), and 
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its interactions with other proteins lead to signals than converge upon glutamatergically 

mediated cognitive enhancement remain to be determined.

Because wild-type, full-length klotho is a pleiotropic protein that engages multiple signaling 

peripheral pathways, including insulin (Kurosu et al., 2005), Wnt (Liu et al., 2007), and FGF 

(Urakawa et al., 2006), narrowing the fragment(s) necessary for cognitive enhancement may 

help to further target neural functions that may be independent, or not, of klotho’s putative 

actions on aging-related mechanisms.

The effects of peripheral αKL-F treatment on cognition largely phenocopied the effects of 

widespread, transgenic klotho over-expression; however, direct assessment of whether one is 

more robust is limited by the variability inherent to behavioral assays and the divergent 

nature of pharmacologic and genetic strategies. Acute pharmacologic elevation, potentially 

relevant for therapeutic development, may also be influenced by various factors affecting the 

potency and detection of neural enhancement, such as klotho aggregation and 

oligomerization (Imura et al., 2004) or precipitation; protein production, handling, or 

stability; differing influences of subtle stressors on the complex measurement of cognition 

(Sorge et al., 2014); or some combination of factors. In our studies, αKL-F effects were 

replicated in well over ten independent mouse cohorts of diverse characteristics (young, 

aging, and disease model mice) with dosing of a fresh preparation. How the fragment can be 

optimized by dose, composition, and biologic action may increase our understanding of how 

to enhance the brain-targeted effects of klotho.

αKL-F Improves Cognition in the Aging Brain

Peripheral delivery of αKL-F acutely enhanced cognition in aging mice. This is important 

because it demonstrates that αKL-F can increase spatial and working memory in the 

naturally aged brain and, therefore, can effectively target vulnerable substrates of cognition 

in aging. The long-lasting effect in aged mice induced better cognitive functions nearly 2 

days following treatment, after predicted elimination of αKL-F (Hu et al., 2016). In further 

studies of young mice, a long-lasting αKL-F effect combined with cognitive training was 

observed over 2 weeks later. Together, our data suggest that αKL-F may harbor therapeutic 

benefits for the young and aging brain in a long-lasting and organizational manner. Because 

the synapse is a target of aging and enhanced by αKL-F, we speculate that the beneficial 

effects occur through synaptic remodeling.

αKL-F Causes Neural Resilience against Motor and Cognitive Dysfunction without Altering 
Pathogenic Protein Levels

Peripheral αKL-F acutely improved motor dysfunction in an α-synuclein model of 

neurodegenerative diseases, extending the beneficial effects of the klotho-derived fragment 

from cognition to motor functions. Because transgenic klotho elevation does not modify 

measures of muscle function (Phelps et al., 2013), our findings raise the possibility that 

αKL-F acutely counters motor problems by facilitating cognitive motor learning or boosting 

motor regions of the brain, probably through substrates of synaptic plasticity. Of note, we 

did not find effects of αKL-F on total movements in the open field or time spent in the open 
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arms of an elevated plus maze (data not shown), suggesting that the protein improves motor 

function without causing hyperactivity or anxiety.

Peripheral αKL-F acutely counteracted cognitive deficits in a disease model with 

overexpression of the wild-type α-synuclein human protein, which plays a major role in α-

synucleinopathies, including Parkinson disease, multiple system atrophy, and Lewy body 

dementia. Because dementias are multi-etiology and share common pathogenic proteins, 

including α-synuclein (Montine et al., 2014), the protein is also relevant to AD. Of note, the 

immediate beneficial cognitive effect of αKL-F described here is similar to effects of 

genetic, lifelong, and widespread overexpression of full-length wild-type klotho in the body 

and brain of hAPP mice, another disease model related to AD (Dubal et al., 2015).

αKL-F induced motor and cognitive benefit in hSYN mice without altering the levels of 

pathogenic or putative co-pathogenic proteins, α-synuclein, phospho-α-synuclein, tau, and 

phospho-tau. These data support growing lines of evidence that klotho induces neural 

resilience or the capacity to acutely counter or recover from cognitive and motor 

dysfunction. We speculate that klotho, and more specifically αKL-F, modulates common 

downstream targets, such as glutamatergic signaling at the synapse, in the pathogenesis of 

aging, AD, PD, and other diseases.

αKL-F Acutely Activates Glutamatergic Signaling to Enhance Cognition and Synaptic 
Plasticity

Hypothesis- and non-hypothesis-driven approaches independently converged on evidence for 

glutamate receptor signaling as an important downstream pathway of αKL-F-mediated 

functions. αKL-F acutely caused enriched levels of the NMDAR subunit GluN2B in the 

normal, young brain. However, instead of synaptic enrichment of HMW levels observed in 

transgenic mice chronically overexpressing klotho (Dubal et al., 2014), we found that acute 

αKL-F treatment increased LMW GluN2B in whole hippocampal homogenate within 4 hr. 

This probably represents calpain-mediated cleavage linked with GluN2B activation 

(Simpkins et al., 2003; Wu and Lynch, 2006) rather than increased transcription, translation, 

or trafficking of the subunit to the synapse. From a temporal perspective, it is possible that 

the immediate effects of klotho activate GluN2B-containing NMDARs by cleavage and that 

the lifelong, chronic overexpression effects of klotho cause compensatory GluN2B increases 

to ultimately offset klotho-mediated, ongoing cleavage and turnover.

NMDAR channel dynamics are governed by their subunit compositions (Yashiro and 

Philpot, 2008); GluN2B-containing NMDARs deactivate more slowly and transduce longer-

lasting intracellular signals (Wang et al., 2008). Increased GluN2B-dependent NMDAR 

functions cause enhanced cognitive and synaptic functions (Cao et al., 2007; Tang et al., 

1999; Wang et al., 2009). Thus, our findings support the hypothesis that αKL-F-mediated 

signals preferentially activate GluN2B-containing NMDARs. Consistent with this 

hypothesis, peripheral delivery of αKL-F enhanced cognition and synaptic plasticity, and 

selective blockade of GluN2B preferentially abrogated αKL-F-mediated effects. Of note, a 

study of direct application of a klotho fragment to hippocampal slices did not observe 

increased hippocampal LTP (Li et al., 2017), potentially reflecting hypoactive protein, 
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induction protocol differences, and/or a requirement for peripheral rather than central klotho 

delivery to elicit synaptic effects.

The direct target of αKL-F, the relevant and causal peripheral mechanisms linked to that 

target, and the processes by which these core peripheral events reach the brain to affect the 

NMDAR and other synaptic functions remain to be determined. It is interesting to speculate 

that immune signals, other known klotho-related mechanisms, or some combination of 

pathways could converge onto glutamatergic signaling to induce better synaptic functions 

underlying cognitive and motor enhancement and neural resilience.

Our findings highlight a role for αKL-F in promoting optimal synaptic functions in the 

normal brain and to boost “synaptic health” (Morrison and Baxter, 2014) in aging and 

disease-states. Because synaptic health may confer resilience against the effects of aging and 

a myriad of aging-and non-aging related neurologic and psychiatric diseases, the potential to 

enhance it may be relevant to the human condition. Synaptic enhancement induced by αKL-

F might be non-specific or, in contrast, could directly relate to abnormal mechanisms 

involved in aging and disease. Future studies will need to determine whether αKL-F 

specifically reduces detrimental synaptic mechanisms caused by aging, α-synuclein, and 

other pathogenic proteins.

αKL-F-mediated enhancement of synaptic functions and brain resilience with peripheral 

treatment in mice is potentially promising for paths toward human therapeutics in aging and 

disease.

EXPERIMENTAL PROCEDURES

Mice

All studies were conducted in a blinded manner in age-matched and sex-balanced, congenic 

C57BL/6 mice unless indicated otherwise. Specifically, mice were randomly allocated to 

each group, and the experimenter was blinded to their treatment. Aged mice were obtained 

from the National Institute on Aging (NIA) mouse colony. Transgenic hSYN mice 

(Rockenstein et al., 2002) overexpress human wild-type α-synuclein under the Thy-1 

promoter. Because the α-synuclein transgene is inserted on the X chromosome in this line 

and randomly inactivates in females, we utilized only males from this line. Mice were kept 

on a 12-hr light/dark cycle with ad libitum access to food (Picolab Rodent Diet 20) and 

water. All studies were approved by the Institutional Animal Care and Use Committee of the 

University of California, San Francisco and conducted in compliance with NIH guidelines. 

See the Supplemental Experimental Procedures for further details.

Mass Spectrometry for PTMs of the Klotho Fragment

Mouse klotho fragment peptide (R&D Systems, 1819-KL) was trypsin-digested and 

subjected to liquid chromatography-tandem mass spectrometry using a NanoAcquity 

(Waters) ultra-performance liquid chromatography (UPLC) system interfaced to a linear trap 

quadrupole (LTQ) Orbitrap Velos (Thermo Scientific) mass spectrometer. Data were 

analyzed using Protein Prospector version 5.19 (Chalkley et al., 2008). See the Supplemental 

Experimental Procedures for further details.
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Cognition and Behavior

Mice were tested as described previously in the Morris water maze (Dubal et al., 2014), 

small Y-maze (Dubal et al., 2014), two-trial Y-maze (Dellu et al., 1992), and rotarod (Morris 

et al., 2011). Drug treatments were administered as indicated. See the Supplemental 

Experimental Procedures for further details.

Synaptic Membrane Fractionation

Synaptic membrane fractions were separated for protein analysis as described (Dubal et al., 

2014; Dubal et al., 2015).

Western Blot Analyses

Protein studies on the hippocampus and cortex were performed and quantified as described 

previously (Dubal et al., 2015). Additionally, α-synuclein (1:1,000, Abcam) and 

phosphorylated α-synuclein-Ser129 (1:1,000, Wako Pure Chemicals Industries) were 

measured. SDS (1%) was included in homogenates for optimal detection of the LMW 

GluN2B protein.

Immunoprecipitation

Immunoprecipitation (IP) of klotho was performed using modification of methods described 

previously (Bonifacino et al., 2001). In brief, hippocampal lysates were incubated with 

magnetic Dynabeads protein G (Thermo Fisher Scientific) conjugated with GluN2B 

antibody (2 μg, 06600, Millipore) For specificity of bands identified by IP, GluN2B antibody 

(Ab) was incubated with a blocking peptide (KFNGSSNGHVYEKLSSIESDV, 21 aa, 

generated by Watsonbio Sciences) harboring the GluN2B antibody epitope sequence prior to 

conjugation with Dynabeads. Beads were magnetically pulled, washed, and eluted. The 

precipitates were resolved on SDS-PAGE gel. See the Supplemental Experimental 

Procedures for further details.

Electrophysiology

Coronal brain slices of 300-μm thickness from 3-month-old mice were obtained as described 

previously (Dubal et al., 2014; Dubal et al., 2015) with modifications. Recordings were 

performed using the Med64-Quad II multi-electrode array (Alpha MED Scientific) in the 

CA1 region following stimulation of the Schaffer collateral path. See the Supplemental 

Experimental Procedures for further details.

Statistical Analyses

Experimenters were blinded to the treatment. Statistical analyses were performed as 

described previously (Dubal et al., 2014, 2015) using GraphPad Prism 7 for t tests. R Studio 

(v 2.0) was used for rank-sum tests as described previously (Possin et al., 2016) and post hoc 

tests. All t tests were two-tailed unless indicated otherwise. Post hoc tests were conducted 

with the Bonferroni-Holm correction (R) to control for a family-wise error rate at α = 0.05. 

Error bars represent SEM, and null hypotheses were rejected at or below a p value of 0.05.
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See the Supplemental Experimental Procedures for further details regarding all experimental 

methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A klotho fragment (αKL-F) enhances cognition in young and aging mice

• αKL-F counters deficits in α-synuclein mice without altering pathogenic 

protein levels

• αKL-F induces GluN2B cleavage and increases NMDAR-dependent synaptic 

plasticity

• Selective NMDAR blockade of GluN2B subunits abolishes acute αKL-F 

effects
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Figure 1. αKL-F Is a Recombinant Post-translationally Modified Fragment of Klotho, and Its 
Peripheral Administration Does Not Show BBB Crossing or Alteration of Endogenous 
Hippocampal Klotho Levels
(A) Amino acid sequence of the endogenous α-klotho protein (top, aa 1–1014) and the 

recombinant α-klotho fragment (αKL-F, bottom, aa 35–982) followed by a His tag. N-T, N 

terminus; TR, transmembrane region; IC, intracellular domain.

(B) Locations of O-glycosylation and N-glycosylation sites of the recombinant protein made 

in Chinese hamster ovary (CHO) cells.

(C) αKL-F was not observed to cross into the brain 4 hr following i.p. injection of Veh or 

αKL-F (100 μg/kg). Western blot shows immunoprecipitation against His-tagged αKL-F 

(His-IP) in kidney (detected) and brain (not detected) lysates. αKL-F was added to the veh-

treated lysates as a positive control for detection of His-tagged protein (His-Total).

(D) Representative western blot showing Klotho and GAPDH levels in homogenized whole 

hippocampus 4–5 hr following Veh or αKL-F (i.p., 10 μg/kg) treatment (n = 12/group; male; 

age, 4 months). Images were captured from the same gel.

(E) Quantitation of endogenous brain klotho levels showing no differences between Veh- 

and αKL-F-treated mice. NTG levels are arbitrarily defined as 1.0.

Data are mean ± SEM.
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Figure 2. αKL-F, Delivered Peripherally, Acutely Enhances Cognition in Young Mice
(A) Diagram of the experimental paradigm of Veh or αKL-F injection (i.p., 10 μg/kg) 

followed by spatial and working memory testing in the Morris water maze. Mice received 

daily treatment for 5 days, 16 or 4 hr prior to training and testing (n = 11–18/ group; sex-

balanced; age, 4 months).

(B) Spatial learning curves (platform hidden) in the water maze. Data represent the daily 

average of distance traveled to the platform. αKL-F decreased the distance, indicating 

enhanced learning. Rank-sum test, αKL-F effect days 2–4, p < 0.05.

(C) Probe trial with the platform removed 24 hr after completion of hidden training. αKL-F 

increased the percentage of time spent in the target quadrant, indicating enhanced recall of 

spatial memory.

(D) Probe trial at 24 hr. αKL-F increased the duration of time spent at target, indicating 

enhanced recall of spatial memory.

(E) Velocity in the water maze did not differ between mice treated with Veh or αKL-F.
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(F) The distance traveled to find a cued, visible platform in the water maze did not differ 

between mice treated with Veh or αKL-F.

(G–I) Diagram of the experimental paradigm of Veh or αKL-F injection (G, i.p., 10 μg/kg), 

followed by working memory testing in the small Y-maze (H and I). Mice (age, 4 months) 

received treatment 4 hr prior to testing.

(H) Percentages of alternations among arms during exploration of the Y-maze. αKL-F 

increased alternations, indicating enhanced working memory. In this cohort, mice (males, n 

= 12–13/group) were exposed to Veh or αKL-F 2 days before testing.

(I) Percentages of alternations among arms during exploration of the Y-maze. In a replicate 

independent cohort, αKL-F increased working memory. Mice (males, n = 9/group) were 

naive to previous treatments or testing.

*p < 0.05, **p < 0.01 (t test). Data are mean ± SEM.

See also Figure S1.

Leon et al. Page 21

Cell Rep. Author manuscript; available in PMC 2018 February 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. αKL-F, Delivered Peripherally, Acutely Enhances Cognition in Aged Mice
(A) Diagram of the experimental paradigm of Veh or αKL-F treatment (i.p., 10 μg/kg) and 

testing of aged mice in the two-trial Y-maze. (n = 8–10 mice/ group; sex-balanced groups; 

age, 18 months). Mice received an injection followed by training (24 hr after treatment) and 

then testing (40 hr after treatment).

(B) Duration of time spent in the novel compared with the familiar arm, expressed as a ratio 

to indicate novel arm preference. αKL-F increased spatial and working memory in aged 

mice over time. Two-way repeated measures ANOVA, αKL-F effect, **p < 0.01.

Data are mean ± SEM.
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Figure 4. αKL-F, Delivered Peripherally, Induces Neural Resilience by Acutely Countering 
Cognitive and Motor Deficits in Trans-genic hSYN Mice
(A) Diagram of the experimental paradigm of Veh or αKL-F treatment (i.p., 2.5 μg/kg). 

Mice received single daily injections for 6 days. On day 4, NTG and hSYN mice were tested 

on the rotarod to assess motor performance. On day 7 (17 hr after the last injection), mice 

were tested in the two-trial Y-maze to assess spatial and working cognition.

(B) Motor learning and function measured by time on the rotarod during training. hSYN 

mice showed motor dysfunction compared with NTG mice. αKL-F treatment improved 

motor learning in hSYN mice (n = 10–15 mice/group; male; age, 3–6 months). Mixed model 

ANVOA: hSYN effect, p < 0.0001.

(C) Motor function measured by time on the rotarod during testing. hSYN mice showed 

motor dysfunction compared with NTG mice. Mixed model ANOVA: hSYN effect, p < 

0.0001. αKL-F treatment increased time on the rotarod across sessions in hSYN mice. Two-

way repeated measures ANOVA: αKL-F effect, *p < 0.05 as indicated by brackets.

(D) Duration of time spent in the novel compared with the familiar arm during testing, 

expressed as a ratio to indicate novel arm preference at 5 min of exploration. αKL-F 

improved cognitive deficits in hSYN mice (n = 14–23 mice/group; male; age, 3–6 months). 

Two-way ANOVA: hSYN effect, p < 0.0001; αKL-F effect, p < 0.01.
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(E–I) The hippocampus and cortex of Veh- and αKL-F-treated hSYN mice were analyzed 

after 3 days of daily injection (n = 5–6 mice/group; male; age, 3–7 months).

(E) Representative western blots showing hippocampal levels of total α-Syn, phosphorylated 

α-Syn (p-α-Syn, Ser-129), total mouse tau (T-Tau), phosphorylated mouse tau (p-Tau, 

Ser-396/404), Actin, and GAPDH in Veh- and αKL-F-treated hSYN mice.

(F) Quantitation of α-Syn levels, showing no differences between Veh- and αKL-F-treated 

hSYN mice.

(G) Quantitation of p-α-Syn (Ser-129) levels, showing no differences between Veh- and 

αKL-F-treated hSYN mice.

(H) Quantitation of T-Tau levels, showing no differences between Veh- and αKL-F-treated 

hSYN mice.

(I) Quantitation of p-Tau levels, showing no differences between Veh- and αKL-F-treated 

hSYN mice.
#p = 0.10, *p < 0.05 versus trial 1 (B, paired t tests) or as indicated by brackets (C, mean 

effect; D, unpaired t tests) via Bonferroni-Holm test. Data are mean ± SEM.
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Figure 5. αKL-F Does Not Alter Synaptic Levels of HMW GluN2B
(A–C) Synaptic membrane fraction 1 (PSD-enriched) and fraction 2 (non-PSD-enriched) 

isolated from the hippocampus of mice (age, 4 months; male) 4 hr after a single treatment 

followed by the small Y-maze or after 5 days of daily treatment with Veh or αKL-F (i.p., 10 

μg/kg).

(A) Representative western blots from hippocampal membrane fractions from mice 4 hr 

(top) following a single treatment or 5 days following daily treatments (bottom). Only the 

HMW GluN2B band was observed.

(B) Quantitation of PSD-enriched (fraction 1) GluN2B protein levels 4 hr following 

treatment (n = 4/group).

(C) Quantitation of PSD-enriched (fraction 1) GluN2B protein levels 5 days following daily 

treatment (n = 10/group).

Data are mean ± SEM.
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Figure 6. αKL-F Acutely Increases an LMW Form of GluN2B
(A–E) Whole hippocampal lysate isolated from mice treated with Veh or αKL-F (10 μg/kg 

i.p.) after 4 hr of a single treatment followed by the small Y-maze or 5 days of daily 

treatment and then assessed for GluN2B levels.

(A) Representative western blots from hippocampal total lysates (with 1% SDS) from mice 

with Veh or αKL-F 4 hr after treatment (top, images were captured from the same gel) or 5 

days following daily treatment (bottom) (age, 4 months; male). HMW and LMW GluN2B 

forms were observed.

(B) Quantitation of LMW/total (HMW+LMW) GluN2B protein levels from the 

hippocampus 4 hr after treatment (n = 10/group).

(C) Correlation of relative LMW/total GluN2B fragment levels from mice shown in (D) with 

percentage alternations in the small Y-maze (R2 = 0.5, p < 0.03 with αKL-F treatment).

(D) Replicate independent cohort quantitation of LMW/total GluN2B protein levels from the 

hippocampus 4 hr after treatment (n = 21/group).

(E) Quantitation of LMW/total GluN2B protein levels from the hippocampus following 5 

days of daily treatment in the absence of behavior studies (n = 11–12/group).

(F) Western blot showing the specificity of the HMW and LMW GluN2B band by 

immunoprecipitation with and without preincubation with a GluN2B-blocking peptide 

harboring the GluN2B antibody epitope sequence.

#p < 0.10, *p < 0.05 versus Veh as indicated by brackets. Data are mean ± SEM. See also 

Figure S2.
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Figure 7. αKL-F Acutely Enhances NMDAR-Dependent Synaptic Plasticity in the Hippocampus, 
and Selective Blockade of the NMDAR Subunit GluN2B Abolishes αKL-F Effects on Cognition
(A and B) fEPSP recordings from acute hippocampal slices of 3-month-old male mice (n = 

7–14 slices/group, 3 mice/group) treated with Veh or αKL-F 4h prior to brain slicing.

(A) LTP induction and potentiation in the CA1 region was monitored for 30 min following 

theta burst stimulation of the Schaffer collateral pathway.

(B) Average fEPSP slope averaged over 30 min in hippocampal slices of mice treated with 

Veh or αKL-F. Two-way repeated measures ANOVA: αKL-F effect, p < 0.01.

(C and D) Mice (n = 15/group; male; age, 4 months) were treated i.p. with Veh or αKL-F 

(10 μg/kg) 4 hr prior to testing, followed by i.p. saline (−) or Ro 25 (+) (5 mg/kg) 10 min 

prior to testing in the small Y-maze.

(C) Percentages of alternations among arms during exploration of the small Y-maze over 4 

min. αKL-F increased alternations, and Ro 25 preferentially decreased αKL-F-mediated 

effects. Two-way ANOVA: Ro 25 by αKL-F interaction, p < 0.05.

(D) Percentage of decrease in alternations following Ro 25 treatment in Veh-and αKL-F-

treated mice. Ro 25 preferentially decreased the percentage of alternations in mice with 

αKL-F treatment.

*p < 0.05, **p < 0.01 versus Veh or as indicated by brackets by t test (B and D) or 

Bonferroni-Holm test (C). Data are mean ± SEM. See also Figure S3.
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