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Abstract

Motivation: Model selection and parameter inference are complex problems of long-standing

interest in systems biology. Selecting between competing models arises commonly as underlying

biochemical mechanisms are often not fully known, hence alternative models must be considered.

Parameter inference yields important information on the extent to which the data and the model

constrain parameter values.

Results: We report Dizzy-Beats, a graphical Java Bayesian evidence analysis tool implementing

nested sampling - an algorithm yielding an estimate of the log of the Bayesian evidence Z and the

moments of model parameters, thus addressing two outstanding challenges in systems modelling.

A likelihood function based on the L1-norm is adopted as it is generically applicable to replicated

time series data.

Availability and implementation: http://sourceforge.net/p/bayesevidence/home/Home/

Contact: s.aitken@ed.ac.uk

1 Introduction

Bayesian methods provide a sound basis for ranking alternative

systems biology models and for characterizing the extent to which

parameters are constrained by models and data (Kirk et al., 2013).

Markov Chain Monte Carlo methods have been applied to model

selection (Schmidl et al., 2012) and to parameter inference in sys-

tems biology (Hug et al., 2013; Kanodia et al., 2014), but often re-

quire considerable algorithmic and conceptual development. Nested

sampling promises to ease these complex computational tasks:

Recent biological applications include (Aitken and Akman, 2013;

Kirk et al., 2013; Pullen and Morris, 2014).

General purpose code for nested sampling is available in R

(Skilling, 2006; Aitken and Akman, 2013), and biological applica-

tions of the MultiNest tool (Feroz et al., 2013) have been reported

(Kirk et al., 2013; Pullen and Morris, 2014). A C-based command-

line application implementing nested sampling and providing a

Systems Biology Markup Language (SBML) interface has recently

been released (Johnson et al., 2014), but no graphical tool is currently

available. Thus we sought to add nested sampling to the widely used

Dizzy chemical kinetics simulation tool (Ramsey et al., 2005) (over

200 citations as of November 2014). In addition, we have added an

optimization function and SBML 3.1 compatibility. However, as

Dizzy’s command language has operators that cannot be captured in

SBML 3.1, and SBML 3.1 has features not supported by Dizzy, this

feature is restricted to the intersection of the modelling languages.

2 Methods

Nested sampling calculates two of the central results of Bayesian in-

ference: the posterior distribution PðhjD;HiÞ of the parameters h,

and the evidence PðDjHiÞ, that is, the support for the data D

under hypothesis Hi (Skilling, 2006), through a sampling strategy.
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A selection between two alternative models H0 and H1 can be made

by calculating the ratio of their posterior probabilities (1), a calcula-

tion that can be decomposed into the Bayesian evidence (Z0 and Z1)

and the prior probability of the respective hypotheses.

PðH1jDÞ
PðH0jDÞ

¼ PðDjH1ÞPðH1Þ
PðDjH0ÞPðH0Þ

¼ Z1PðH1Þ
Z0PðH0Þ

(1)

Z ¼
ð

LðhÞpðhÞ dh (2)

The evidence (2) is a scalar quantity that can be viewed as an inte-

gral of the likelihood (L) over the elements of mass (dX ¼ pðhÞdh)

associated with the prior density pðhÞ. The prior mass can be accu-

mulated from its elements (dX) in any order. The enclosed prior of

likelihood > k can be defined (3), and this allows the evidence to be

written as a one-dimensional integral of the (inverse) likelihood

L(X) over the unit range (taking the enclosed prior mass X to be the

primary variable) (4) (Skilling, 2006).

XðkÞ ¼
ð

LðhÞ>k
pðhÞ dh (3)

Z ¼
ð1

0

LðXÞ dX (4)

LðXðkÞÞ � k

Given a sequence of decreasing values 0 < Xm < . . . X2 < X1 < 1

where the likelihood Li ¼ LðXiÞ can be evaluated, the evidence can

be approximated numerically as a weighted sum. Inferences about

the posterior can be obtained from the sequence of m discarded

points generated by sampling, P. Each point is assigned the weight

pi ¼ LðhiÞwi=Z, from which the first and second moments of each

parameter in h can be estimated—for more details see Skilling

(2006) and Aitken and Akman (2013). The size of the population of

active points (points hi within the evolving constraint LðhÞ > k) used

to sample the parameter space is the only parameter of the algorithm

that the user must specify. For complex likelihood functions with

multiple modes, this number may be as high as 10 000, and for a sin-

gle mode as low as 200.

Dizzy-Beats updates the user interface of the original Dizzy

program (Ramsey et al., 2005) retaining the text of the model in the

left editing panel (see Fig. 1) and placing the original simulator choices

in the simulation tab on the right. A histogram plot for visualizing the

results of stochastic simulations is added to the simulation viewing

formats. Two new tabs add optimization and inference capabilities,

and both require a data file to be specified (a simple comma separated

format is used, with column headers matching the names of species in

the model). Using the simulation tab, the user can select parameters,

modify their values and see the simulation results plotted over the

data. This allows a manual tuning and exploration of the model’s fit

to the data. Computational optimization using simulated annealing

can be run to explore a larger parameter space. Similarly, the inference

tab requires users to select parameters to be included in inference by

nested sampling and to input their prior range. A uniform prior is

assumed as is typical in nested sampling. A graph of log likelihood or

of the samples of the selected parameters can be viewed as nested

sampling progresses to monitor progress. The stopping heuristics of

Aitken and Akman (2013) are implemented but the user can in add-

ition specify the maximum number of iterations, and must specify the

number of active points. The outputs are a file summarizing the re-

sults, and a second listing the posterior samples for further analysis.

A likelihood function based on the L1-norm is used for opti-

mization and inference—this is defined by Equations (5) and (6)

(Sivia and Skilling, 2006).

�t ¼ hjxt � ltji ¼
ð
jxt � ltjpðxÞdNx (5)

pðxj lt; �tf gÞ ¼
Ym
t¼1

1

2�t
exp � j~xt � ltj

�t

� �
(6)

Equation (5) defines the normalizing constant �t as the expected

value of the moduli of the differences between the replicate observa-

tions at time t and the values predicted by the kinetic model (lt).

The product of the probabilities of the median observation at time

t (~xt) defines the likelihood function for a time series x of m samples

[Equation (6)]. Maximization of this likelihood minimizes the sum

of the moduli of the residuals (rather than their squares) on the basis

that the testable information is restricted to the expected value of

the modulus of the difference between theory and experiment.

Should we know both the mean and variance, maximum entropy

considerations would lead instead to the Gaussian distribution

(Sivia and Skilling, 2006). Time points where the replicates are most

dissimilar contribute least to the likelihood as �t is larger—as is

desirable.

3 Discussion

Dizzy-Beats is a graphical application for simulating and optimizing

systems models based on an established simulator (Ramsey et al.,

2005) and its simple textual model syntax, to which we have

added SBML 3.1 import/export functionality. Uniquely, Dizzy-Beats

provides model comparison and parameter inference functions

through the nested sampling algorithm in a graphical application.

Comparable functions are implemented in BioBayes (Vyshemirsky

and Girolami, 2008); however, users must edit the XML representa-

tion of the model should they wish to make modifications.

SYSBIONS (Johnson et al., 2014) implements nested sampling

but all interaction is via the command-line. The use of a likelihood

based on the L1-norm derived from biological replicate data

makes fewer assumptions than a Gaussian error model (Johnson

et al., 2014; Vyshemirsky and Girolami, 2008), and is less computa-

tionally complex than a transitional likelihood function derived

from reaction propensities (Aitken and Akman, 2013; Heron et al.,

2007).

Fig. 1. Dizzy-Beats: an application for parameter inference and model

selection
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