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Abstract

The mammalian gonad arises as a bipotential primordium from which a testis or ovary develops depending on the
chromosomal sex of the individual. We have previously used DNA microarrays to screen for novel genes controlling the
developmental fate of the indifferent embryonic mouse gonad. Maestro (Mro), which encodes a HEAT-repeat protein, was
originally identified as a gene exhibiting sexually dimorphic expression during mouse gonad development. Wholemount in
situ hybridisation analysis revealed Mro to be expressed in the embryonic male gonad from approximately 11.5 days post
coitum, prior to overt sexual differentiation. No significant expression was detected in female gonads at the same
developmental stage. In order to address its physiological function, we have generated mice lacking Maestro using gene
targeting. Male and female mice homozygous for a Mro null allele are viable and fertile. We examined gonad development
in homozygous male embryos in detail and observed no differences when compared to wild-type controls.
Immunohistochemical analysis of homozygous mutant testes of adult mice revealed no overt abnormalities. Expression
profiling using DNA microarrays also indicated no significant differences between homozygote embryonic male gonads and
controls. We conclude that Maestro is dispensable for normal male sexual development and fertility in laboratory mice;
however, the Mro locus itself does have utility as a site for insertion of transgenes for future studies in the fields of sexual
development and Sertoli cell function.
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Introduction

The differentiation of the mammalian gonad from an indifferent

embryonic primordium is controlled by distinct molecular

mechanisms in males and females. In males, the expression of

the Y-linked testis determining gene, SRY, initiates a pathway of

genetic and cellular activity that culminates in the differentiation of

the testis [1–4]. In females, the absence of SRY results in ovary

development. Whilst progress in understanding the molecular

basis of ovary development has been slower, several genes have

now been demonstrated to function in the pathway of testis

development, many of these comprising transcription factors or

secreted signalling molecules expressed in a male-specific fashion

during gonad development (reviewed in [5,6]). In order to

contribute novel genes to our understanding of these pathways

of sexual development we used DNA microarrays to screen for

transcripts exhibiting sexually dimorphic patterns of expression

during mouse gonadogenesis [7,8].

One gene identified by such a screen was Maestro (Mro) [9]. Mro

expression was examined by wholemount in situ hybridisation

(WMISH) analysis of the developing male and female gonads and

was detected only in the developing male gonad. Mro expression

was first observed at approximately 11.5 days post coitum (dpc) in

the undifferentiated male gonad. By 13.5 dpc Mro transcripts were

restricted to the developing testis cords and appeared to be found

in both the somatic (Sertoli) cells and germ cells of the cords. This

sexually dimorphic expression of Mro has been observed in two

independent studies of mouse gonad development using quanti-

tative RT-PCR [10] and DNA microarrays [11]. Extra-gonadal

sites of expression in adult mice were determined by Northern

analysis and included the heart, brain, and liver [9].

Mro encodes a predicted protein of 248 amino acids that

comprises four HEAT repeat motifs. HEAT repeats were first

identified in a functionally diverse group of proteins including

huntingtin, elongation factor 3, the PR65/A subunit of protein

phosphatase 2A (PP2A) and the lipid kinase TOR1 [12], and are

thought to mediate protein-protein interactions. Transfection of

Maestro-GFP fusion constructs into different mammalian cell lines

reveals a predominantly nucleolar localisation for the protein [9].

Along with the conventional role of the nucleolus in ribosome

biogenesis, additional roles in the modulation of diverse molecular

pathways have been described recently [13,14].

The expression pattern of Maestro during embryonic gonado-

genesis suggests a possible function in testis development.

Moreover, the nature of its encoded protein and subcellular

localisation promise novel insights into the molecular and cellular
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basis of gonad development in mammals. In order to define its

potential role in mouse sexual development we generated mice

lacking Maestro using gene targeting. Here, we report the

characterisation of sexual development in male mutant homozy-

gotes and a more general examination of the mutant phenotype.

Materials and Methods

Gene targeting and mouse breeding
A Maestro (Mro) genomic clone was isolated from a 129SvJ

BAC library (CITB-CJ7-B, Research Genetics) as previously

described [9]. The Mro targeting construct was generated in

pBluescript II SK+ (Stratagene). The 59 homology arm consisted

of a 3036 bp fragment derived from mouse chromosome 18

containing the first coding exon of Mro. This was ligated to a

strong splice-acceptor lacZ expression cassette (designed to splice

onto exon three of Mro and act as a reporter), and a neomycin

resistance gene under the control of the PGK promoter for

selection purposes. Finally, a 3406 bp fragment, which extends

downstream from the 39UTR of Mro, was ligated to form the 39

homology arm. The construct was linearised with AscI and

transfected by electroporation into 16107 ES cells of a line (48/1)

derived from 129Ola [15] (a kind gift from Prof. Richard

Gardner). After ten days of selection with Geneticin, five hundred

resistant colonies were picked and expanded into 96 well plates.

Genomic DNA was isolated by digestion with Proteinase K (1 mg/

ml) in 50 ml of lysis buffer (10 mM Tris pH 7.5, 10 mM EDTA,

10 mM NaCl, 0.5% sarkosyl) followed by ethanol precipitation.

Once dried, samples were digested overnight with five units SpeI

(NEB). Digested, electrophoresed DNA was Southern blotted onto

Hybond N+ membrane (Amersham) then hybridised with a

282 bp 59 external probe (generated by PCR: F, 59-

TGGGAGCCTGACAAGTCCTA-39; R, 59-GCAAGCAGGG-

CAAAATGAAGG-39) which detects a 9.5 kb fragment derived

from the wild-type Mro allele and a 7.0 kb fragment from the

correctly targeted allele. Probes were labelled using the Mega-

prime kit (Amersham) and hybridised in ExpressHyb (Clontech)

following manufacturers’ instructions. Twelve clones containing a

correctly targeted allele were identified. These clones were further

expanded and following digestion of DNA with NdeI, Southern

blot analysis was repeated using a 790 bp probe (39 external

probe), which detects a 10.9 kb fragment derived from the wild-

type Mro allele and a 7.1 kb fragment from the correctly targeted

allele. This ensured that correct targeting had occurred at both

ends of the integration. Two ES cell clones (Mrotm1H-C4 and

Mrotm1H-C10), giving the predicted fragment sizes with both

external probes and exhibiting a normal 38, XY karyotype, were

then chosen for injection into C57BL/6J recipient blastocysts.

Embryos were transferred to pseudopregnant CD1 foster mothers.

Male and female chimaeric offspring, identified by the presence of

agouti coat colour, were then bred to C57BL/6J mice to assay for

germ-line transmission. Agouti coloured offspring of these crosses

were biopsied and their genotype determined by Southern

blotting. Mice carrying the targeted allele were bred onto

129SvEv, C57BL/6J and C3H/HeH backgrounds, and were also

inter-crossed to produce homozygote and wild-type littermates for

phenotypic analysis. A multiplex PCR assay, which screened for

both the presence of the wild-type Mro allele (F, 59-GAA-

CATCCGGCTCTGTCGTC-39; R, 59-CCACGAACCAG-

GAGGTCAAG-39) and also for the presence of the targeted

allele (F, 59-AGGCTATTCGGCTATGACTG-39; R, 59-

CGTCAAGAAGGCGATAGAAG-39), was developed to permit

rapid genotyping of mice. This became the sole method of

genotyping within the established colony following confirmation

that the PCR assay recapitulated results obtained by Southern

blotting. A Y chromosome-specific PCR reaction (F, 5-

CTCTGAGTACATCCGTGG-39; R 59-GCAATCCTGCT-

GAACTGC-39) was used to determine the chromosomal sex of

individuals within the colony.

Embryo harvesting, wholemount in situ hybridisation and
RT-PCR

Timed matings were used to generate embryos at specific stages.

Breeding pairs were set up at approximately 3 pm and vaginal

plugs were checked the following morning. Noon on the day of the

plug was counted as 0.5 dpc. Wholemount in situ hybridisation was

performed as previously described [7]. The following probes were

used for WMISH: Sox9 [16]; 3b-HSD (IMAGE EST clone

580043); Oct4 [17].

Reverse transcription polymerase chain reaction (RT-PCR)
Embryos generated by timed matings between heterozygotes (+/

Mrotm1H) were dissected at 13.5 dpc and embryonic testes/

mesonephros and tail tissue were collected. Samples were snap

frozen in a dry ice-ethanol bath. Following completion of PCR

genotyping using DNA from the collected tails, five pairs of testes

from each of the genotypes detected (Mrotm1H/Mrotm1H, +/Mrotm1H,

and +/+) were separately pooled for RNA extraction. Total RNA

was extracted using an RNeasy micro-kit (Qiagen), following

manufacturer’s instructions, including an on-column DNase diges-

tion step. First-strand cDNA synthesis was completed using a

dedicated cDNA synthesis kit (Roche cat# 1117831), following

manufacturers instructions. Three microlitres of the cDNA product

was subsequently used as template for RT-PCR amplifications of

Mro (F, 59-CAGCGTGCGGTATTCAGCTT-39; R, 59-ACAG-

CAGGATCTCTGGATGGCAGTG-39) and Hprt (F, 59-AAG-

GACCTCTCGAAGTGTTG-39; R, 59-GACGCAGCAACTGA-

CATTTC-39). Genomic DNA from 129Ola mice was used as a

control of possible genomic DNA contamination.

Fetal immunohistochemistry: Laminin, 3b-HSD and
PECAM detection

Tissues were freshly frozen in OCT compound (BDH/Merck)

and cryosections were cut at 10 mm, air-dried and fixed for

15 minutes in ice-cold acetone. Sections were rinsed in PBGT

(0.5% gelatine/0.05% Tween 20 (Sigma) in PBS) and then

incubated with rat anti-mouse laminin A chain (Chemicon) or rat

anti-mouse CD31-PECAM (BD Pharmingen) at a 1:100 dilution.

To detect 3b-HSD sections were incubated with rabbit anti-human

3b-HSD (a gift from Professor Ian Mason) at a 1:500 dilution in

PBGT for 45 minutes at room temperature. Sections were then

washed in PBGT and incubated in donkey anti-rat Alexa Fluor 594

(laminin, CD31-Pecam), or donkey anti-rabbit Alexa Fluor 488 (3b-

HSD), at a 1:200 dilution in PBGTN (PBGT+5% Sheep serum

obtained from Sigma) in the dark for 45 minutes at room

temperature. All Alexa Fluor conjugates were obtained from

Invitrogen. After rinsing in PBGT, sections were mounted under

coverslips in Vecta Shield (Vecta Laboratories Inc.) and photo-

graphed using an Axiophot epifluorescent microscope (Zeiss).

Fetal immunohistochemistry: AMH and hVASA
detetection

Tissues used for AMH and hVASA (also known as DDX4)

detection were fixed overnight in 4% paraformaldehyde and

embedded in paraffin wax. Sections were then cut at 8 mm thickness

and these were de-waxed through a xylene series and rinsed briefly in

water. Antigen retrieval was performed using antigen unmasking
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solution (Vecta Laboratories) following manufacturer’s instructions.

Sections were pre-blocked in 1% BSA (Sigma), 10% Donkey Serum

(Serotec), 0.1% TritonX-100 (Sigma) in PBS at room temperature for

45 minutes. Sections were then incubated in goat anti-human AMH

antibody (Santa Cruz) or goat anti-human VASA antibody (R&D

Systems) at a 1:100 dilution at 4uC over night. Samples were washed

in PBS containing 0.1% BSA and incubated in Donkey anti-goat

Alexa Fluor 594 (AMH) or Donkey anti-goat Alexa Fluor 488

(hVASA) in the dark for one hour at room temperature. After

washing, sections were mounted under coverslips in Vecta Shield and

photographed as described above.

DNA microarray analysis
DNA microarrays containing the RNG-MRC 25 K mouse probe

set were supplied by the MRC Harwell core microarray facility.

Each contained 25,365 spotted oligonucleotide probes of between

50–53 bases in length representing the total number of transcripts

predicted for the mouse genome (annotation available at http://

www.microarray.fr:8080/mediante/index). Total RNA was ex-

tracted from homozygous mutant (Mrotm1H/Mrotm1H) embryonic

male gonads (n = 20) and an identical number of wild-type (+/+)

control gonads at 13.5 dpc. RNA extraction was performed using

the RNeasy micro-kit (Qiagen). Approximately 1.0 mg total RNA

Figure 1. Targeted disruption of the Maestro gene. (A) The mouse Maestro locus (i), targeting vector (ii) and targeted allele (iii). The first coding
exon is indicated by the ATG start codon. The final coding exon is indicated by the TAA stop codon. Relationship between exons and HEAT domains
in the Mro protein is indicated. The NdeI and SpeI restriction enzyme sites are shown, as are the primer binding sites for the RT-PCR reaction. The 59
(shaded box) and 39 (black box) external probes used for Southern analysis are shown. (B) Southern blot of SpeI-digested ES cell DNA samples probed
with the 59 external probe showing wild-type (+/+) and homologous recombinant (+/2) clones. Southern blot of NdeI-digested ES cell DNA samples
probed with the 39 external probe showing wild-type (+/+) and homologous recombinant (+/2) clones, confirming that the correct recombination
events have occurred at both ends. (C) Southern blot genotyping using the 59 external probe of three mice derived from intercrossing of offspring of
chimaeric mice. Wild-type (+/+), heterozygous (+/2) and homozygous (2/2) samples are shown. (D) RT-PCR analysis of male embryonic gonad
(13.5 dpc) RNA samples showing the expression of Mro in wild-type (+/+) and heterozygous (+/2) samples but absence of expression in the
homozygous (2/2) sample. The housekeeping gene Hprt is expressed in all three samples. G, genomic DNA control; W, water control; M, markers. (E)
Representative testes from 13.5 dpc wild-type (+/+), heterozygous (+/2) and homozygous (2/2) embryos assayed for Beta-galactosidase activity,
showing LacZ is expressed from the correctly targeted Mro locus and recapitulates wild-type Mro expression [9].
doi:10.1371/journal.pone.0004091.g001
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was used for first-strand cDNA synthesis (Roche cat# 1117831).

One fifth of the first-strand reaction was used as template for a

global amplification reaction [18]. Amplified cDNA was then

fluorescently labelled using the Bioprime labelling kit (Invitrogen).

Microarrays were hybridised as previously described [18] and

washed in 26 SSC for 5 minutes, 0.16 SSC/ 0.1% SDS for five

minutes and 0.16SSC for 2 minutes, all at room temperature with

agitation. After washing, the slides were scanned using a

ProScanArray HT (Perkin-Elmer) and data extracted with

ImaGene 6.0 (BioDiscovery). Normalisation was performed using a

2D Lowess function within the R statistical package (http://www.

r-project.org). Data were then imported into GeneSpring (Silicon

Genetics) for further analysis. The criterion for differential expression

was above 2.0-fold change in all replicate hybridisations. These data

have been deposited in the ArrayExpress microarray database of

the European Bioinformatics Institute (http://www.ebi.ac.uk/

arrayexpress/) with accession number E-MEXP-527).

Fertility assessment
Seven Mrotm1H homozygous male mice were mated to a total of

25 wild-type females, resulting in the production of 204 pups (95

female, 109 male), with an average of 8.16 pups per litter. Five

homozygous mutant females were each mated to wild-type males

and all produced litters (25 males and 19 females, average litter

size 8.8).

Adult Pathology, Histology and Immunohistochemistry
A histopathological screen for gross abnormalities was per-

formed on 8-week-old homozygous mice. Two male and two

female mice were investigated in a wide (approximately 30 organs

and tissue) pathology screen according to a standardized necropsy

SOP (http://www.eumorphia.org/EMPReSS/). A further three

males and five females were investigated in a narrower histology

screen that included brain, adrenal, trachea, lung, diaphragm,

aorta, heart, spleen, lymph node (tracheobronchial and mesenter-

ic), esophagus, small and large intestine, liver, gall bladder,

exocrine and endocrine pancreas, kidney and ureter. The ovaries

and tubular genitalia were also examined in females.

To examine the adult testes of mutant mice in more detail,

urogenital systems from wild type and Mrotm1H homozygous males

were removed, fixed in Bouins for 4 to 6 hours, then transferred to

70% ethanol. Testes were then dissected out, weighed and

processed and embedded in paraffin wax using standard techniques

and an automated processor. Subsequently, sections were cut,

mounted onto slides and immunostained for markers of different

testicular cell-types, either smooth muscle actin - peritubular myoid

cells (Sigma, monoclonal antibody, 1:5000 dilution), 3b-HSD -

Leydig cells (gift from Professor Ian Mason, rabbit polyclonal

antibody, 1:3000), or hVASA - germ cells (Abcam, polyclonal

antibody, 1:500), as detailed previously [19,20]. Sections were

photographed using a Provis microscope (Olympus Optical Co.,

London, UK) equipped with a Kodak DCS330 camera (Eastman

Kodak Co., Rochester, NY). Testis sections from Mro homozygotes

and wild-type siblings were also immunofluorescently stained for

beta-galactosidase (Promega, monoclonal antibody, 1:400). Follow-

ing antigen retrieval [19,20], nonspecific binding sites were blocked

by incubating sections in normal goat serum (NGS; Autogen

Bioclear UK Ltd.) diluted 1:4 in PBS containing 5% BSA (Sigma-

Figure 2. Molecular marker analysis of Mrotm1H homozygous embryonic male gonads. (A) Wholemount in situ analysis of developing male
gonads (13.5 dpc) explanted from wildtype (+/+) and homozygous mutant (2/2) embryos using a probe for the Sertoli cell marker Sox9. (B, C)
transverse sections through the gonads reveals expression in the testis cords, with signal concentrating at the periphery of the cords. (D) Analysis of
expression of the germ cell marker Oct4. (E, F) Expression is observed in the testis cords, the signal being restricted to large round germ cells in the
centre of the cords. (G) Analysis of expression with the Leydig cell marker 3bHSD. (H, I) Expression is restricted to cells of the interstitium. No
significant differences between wild-type and mutant samples is observed with any of these markers. Scale bars show 50 mM.
doi:10.1371/journal.pone.0004091.g002
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Aldrich) for 30 minutes, then incubated overnight at 4uC with Beta-

galactosidase antibody, diluted 1:400. Sections were washed three

times in PBS and exposed to goat anti-mouse Peroxidase FAB for

30 minutes. Sections were again washed three times in PBS, then

underwent tyramide signal enhancement (Perkin-Elmer, NEL741)

for 10 minutes, following manufacturer’s instructions. Sections were

again washed three times in PBS, counterstained with propidium

iodide (1:10000 dilution), mounted, and stored in the dark at 4uC
prior to visualisation. Fluorescent images were captured using a

Zeiss LSM 510 Meta Axiovert 100 M confocal microscope (Carl

Zeiss Ltd.). Appropriate negative controls were included, whereby

the primary antibody was replaced by normal goat serum alone, to

ensure that any staining observed was specific.

Ethics
Investigations on mice described here were conducted in

accordance with the International Guiding Principles for Biomed-

ical Research Involving Animals as promulgated by the Society for

the Study of Reproduction. These experiments were performed

under the authority given by UK Home Office Project License

PPL 30/1879.

Results

Disruption of Mro by homologous recombination in ES
cells

We generated a targeting construct that removed 88% of the

coding region of the Mro gene (exons 5 to 9) replacing it with an in-

frame lacZ reporter and a selectable marker. This targeting removes

all four HEAT domains of Mro, leaving a single coding exon (exon 4)

which splices directly onto the LacZ reporter gene. The design of the

targeting construct removes any possibility of generating any of the

five splice-variants of Mro reported in the Emsembl database (www.

ensembl.org/mus), or indeed any novel protein-coding Mro splice-

variants (other than the LacZ fusion protein). Mice carrying the

targeted mutation (Mrotm1H), generated from two independent ES cell

clones, were identified by Southern blotting and the absence of Mro

expression in homozygotes was confirmed by reverse transcription

polymerase chain reaction (RT-PCR) using RNA from five pairs of

testes from each of the genotypes: Mrotm1H/Mrotm1H, +/Mrotm1H, and

wild-type littermates. Correct targeting was further confirmed

through X-gal staining of 13.5 dpc embryos, which revealed Beta-

galactosidase expression recapitulated Mro expression exactly (Fig. 1).

These data also confirmed that the first 30 residues of Mro retained in

this targeted mouse line were, as expected, expressed as a fusion

protein with Beta-galactosidase. Finally, localisation of this fusion

protein to the cytoplasm (as opposed to Mro nuclear localisation (9)),

strongly suggested that the remaining residues of Mro were extremely

unlikely to rescue any potential phenotype. Male and female

homozygotes were born in the expected Mendelian ratios and

appeared to be morphologically and behaviourally normal by gross

inspection. Seven male homozygotes were mated with wild-type

females and each sired litters of normal size. Five female homozygotes

were also mated with wild-type males and all produced litters with an

average size of 8.8.

Examination of gonad development in male Mrotm1H

homozygotes
In order to determine whether the loss of Maestro had disrupted

gonad development, male and female wild-type and homozygous

mutant embryos were collected at 12.5 and 13.5 dpc, shortly after

sexual differentiation, and dissected gonads were visually inspected

for abnormalities. Mutant gonads appeared normal and there

were no discrepancies observed between phenotypic (gonadal) sex

and genotypic (chromosomal) sex. Embryonic male wild-type and

homozygous mutant gonads (13.5 dpc) were then studied in more

detail by comparative expression analysis of a number of markers

of testicular differentiation, including Sox9 (Sertoli cell lineage), 3b-

HSD (Leydig cells), and Oct4 (germ cells). These samples were also

sectioned to allow inspection of the cellular specificity of

Figure 3. Immunohistochemical analysis of wild-type (+/+) and
mutant (2/2) embryonic male gonads. Sections of embryonic
gonads (13.5 dpc) are shown after immunostaining with antibodies
against the following proteins: Laminin (basement membranes); Amh
(Sertoli cells); 3bHSD (Leydig cells); hVASA (germ cells); PECAM
(endothelial and germ cells). No significant differences were observed
between mutant and wild-type samples with any of the antibodies
studied. Scale bars show 50 mM.
doi:10.1371/journal.pone.0004091.g003
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hybridisation. No significant differences between mutant and wild-

type gonads were observed (Fig. 2). Antibodies detecting five

protein markers of were also used to image the developing male

gonads: PECAM, AMH, VASA, 3bHsd and Laminin. Again, no

significant differences were observed between homozygous and

wild-type gonads (Fig 3).

Microarray analysis of gonad development
In order to screen for molecular differences between embryonic

gonads from homozygotes and wild-type embryos more generally,

we used spotted DNA microarrays. Oligonucleotides from 25,365

genes were represented on each array and hybridisations of

mutant and wild-type male gonad RNA samples were performed

in duplicate. Analysis of these data revealed no significant

differences in expression between the samples (see Materials and

Methods and data not shown). One oligonucleotide representing

Maestro itself, which would have been predicted to hybridise

differentially to the two samples, gave a signal that was beneath

cut-off levels in both samples. This may represent the low

abundance of Maestro, the performance of the oligonucleotide or

a combination of these factors. Our previous microarray analysis

of Maestro utilised longer spotted cDNA probes [9].

Histological examination of adult testes in Mrotm1H

homozygotes
Examination of four 12-week-old Mrotm1H homozygous males

revealed that testis weights in mutant males (100.3614.2;

Mean6SD, N = 4) were unchanged from values for age-matched

wild-type males (94.9626.0). Gross testicular morphology was

largely normal in mutant males and most seminiferous tubules

exhibited complete spermatogenesis (Fig 4). Immunofluorescent

staining of testicular sections from Mro2/2 animals demonstrat-

ed Beta-galactosidase expression driven by the Mro locus is limited

to Sertoli cells of the adult testis (Fig 5).

General histological examinations
Necropsies were performed on twelve 8-week-old homozygous

males and females. No gross pathology was found. In addition to

the studies of the adult testes, the ovaries and tubular genitalia of

homozygous mutant females examined were unremarkable.

Discussion

Expression profiling using DNA microarrays is an increasingly

common method employed to identify candidate sex determining,

Figure 4. Gross testis morphology in wild-type (+/+) and Mrotm1H homozygous (2/2) males at age 12 weeks. Sections in the upper two
panels were immunostained for smooth muscle actin, which labels peritubular myoid cells and blood vessels, whereas those in the central two panels
were immunostained for 3b-HSD, which specifically labels the cytoplasm of Leydig cells. The lower two panels show staining of the germ cell marker,
hVASA (DDX4). No significant differences between mutant and wild-type samples were observed. Scale bars show 100 mm.
doi:10.1371/journal.pone.0004091.g004
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or sexual differentiation, genes in the mouse. More recently, cell

sorting techniques reliant on fluorescently tagged transgenic

marker proteins have been employed to purify specific cell types

and thereby refine the screen for potential regulators of

gonadogenesis [21,22]. Whilst these and other studies vary in

the precise approach taken, they share the common aim of

identifying sex- and cell-type specific gene expression in the

embryonic gonad as a means of identifying candidates for loci

causing disorders of human sexual development. Given that it has

been estimated that up to 70% of such cases of gonadal dysgenesis

in the human population remain unaccounted for by mutations in

known sex determining genes such as SRY and SOX9 [23], such a

gene-driven approach to identifying candidates is well motivated.

However, very few genes emerging from such screens have made

the transition from promising candidate to established player in

sexual development. Two recent success stories involving genes

initially identified by expression-based screens, the role of

prostaglandin D2 in testis determination [24,25] and the role of

Cyp26B1 as a meiosis inhibiting factor in developing male gonads

[26,27], are relatively rare exceptions to this assessment. Two

obstacles to establishing functional roles for the many candidate

sexual development genes that exist remain the time and cost of

generating mice lacking the relevant gene, and the absence of any

reliable in vitro assay for gene function during mouse gonadogen-

esis. However, the generation of mice harbouring null alleles of

candidate sexual development genes is perhaps the only reliable

way of addressing their function that, at the same time, offers

important genetic tools for future experiments.

The expression pattern of the mouse Maestro gene implicates it

in some role during sexual development of the male. We have

shown that mice lacking Maestro develop normally, are fertile and

appear to have no gross morphological abnormalities when housed

in conventional conditions. Maestro is highly conserved amongst

mammals [9], but no similar gene product has been detected in

non-mammalian species by database searches. Moreover, Maestro

appears to be a genuine single-copy gene, with no close paralogues

existing in mice. Given these observations, the explanation for the

absence of any major phenotypic abnormalities in Maestro-

deficient mice is unclear. No closely related gene exists that might

act redundantly with Maestro, although some unrelated gene

product may be able to compensate. We examined gene

expression in the developing gonad of Maestro-deficient animals

with this explanation in mind, but no significant differences

between mutant and wild-type samples were observed. Despite

expression of Maestro in extra-gonadal sites, no other morpho-

logical abnormalities were observed despite extensive histological

examinations. Our observations on mice lacking Maestro have

been made with varying degrees of depth on three different genetic

backgrounds, namely C3H/HeH, C57BL/6J and 129SvEv.

Preliminary studies suggest that there are no significant differences

between mutant phenotypes on these backgrounds.

We are currently screening for proteins that physically interact

with Maestro during gonad development in the mouse. Once

identified, it will be important to determine the phenotypic

consequences of removing both Maestro and genes encoding its

protein partners. In this way, it may be possible to discern a

physiological role for the Maestro gene and identify the relevant

molecular pathways in which it acts.

The series of experiments we have undertaken to determine the

role of Maestro, whilst inconclusive in their initial aim, have a

secondary serendipitous outcome. We have carried out a

comprehensive investigation of a locus from which exogenous

DNA can be expressed in specific cell lineages of the embryonic

and adult testis (with extra-gonadal expression observed in heart,

brain, liver and kidney (9)). In addition, by utilizing a LacZ

expression cassette, we have demonstrated exactly where to insert

such DNA in the Mro locus to achieve this expression. Thus whilst

we have been unable to determine the function of Mro, the Mro

locus itself has utility as a site of transgene expression that can be

exploited during future investigations into sexual development and

Sertoli cell function.
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Scale bars show 100 mm.
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