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Abstract 

Background: The application of calcium phosphate (CaP)‑based bone substitutes plays an important role in peri‑
odontal regeneration, implant dentistry and alveolar bone reconstruction. The incorporation of strontium (Sr) into 
CaP‑based bone substitutes appears to improve their biological properties, but the reported in vivo bone repair per‑
formance is inconsistent among studies. Herein, we conducted a systematic review and meta‑analysis to investigate 
the in vivo performance of Sr‑doped materials.

Methods: We searched PubMed, EMBASE (via OVIDSP), and reference lists to identify relevant animal studies. The 
search, study selection, and data extraction were performed independently by two investigators. Meta‑analyses and 
sub‑group analyses were conducted using Revman version 5.4.1. The heterogeneity between studies were assessed 
by  I2. Publication bias was investigated through a funnel plot.

Results: Thirty‑five studies were finally enrolled, of which 16 articles that reported on new bone formation (NBF) 
were included in the meta‑analysis, covering 31 comparisons and 445 defects. The overall effect for NBF was 2.25 (95% 
CI 1.61–2.90, p < 0.00001,  I2 = 80%). Eight comparisons from 6 studies reported the outcomes of bone volume/tissue 
volume (BV/TV), with an overall effect of 1.42 (95% CI 0.65–2.18, p = 0.0003,  I2 = 75%). Fourteen comparisons reported 
on the material remaining (RM), with the overall effect being ‑2.26 (95% CI − 4.02 to − 0.50, p = 0.0009,  I2 = 86%).

Conclusions: Our study revealed that Sr‑doped calcium phosphate bone substitutes improved in vivo performance 
of bone repair. However, more studies are also recommended to further verify this conclusion.
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Introduction
At present, the repair of alveolar bone defects caused by 
disease, trauma, periodontitis, or congenital malforma-
tion is facing challenge, especially for patients with large 
bone defects or systemic diseases (such as osteoporosis 
or diabetes) [1, 2]. Although autologous bone grafting is 
considered to be the gold standard, its clinical applicabil-
ity is limited owing to the need to open up a second sur-
gical area and possible complications at the donor site [3, 
4].
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Nowadays, calcium phosphate (CaP) ceramics—as a 
representative material for synthetic bone substitutes—
have been widely used in periodontal regeneration and 
alveolar bone reconstruction [4, 5]. However, traditional 
calcium phosphate materials have insufficient osteogenic 
ability and degradation performance. To improve the 
biological properties of these bone substitutes, research-
ers have attempted to incorporate bioinorganic ions into 
CaP–based materials [6].

Among various bioinorganic ions, strontium (Sr) has 
attracted significant research attention in the past ten 
years [7]. Sr is known to be a trace element in the human 
body and plays an important role in bone metabolism [8, 
9]. It is conducive to osteogenesis, and can be mixed with 
hydroxyapatite (HA) through surface exchange or ion 
substitution, leading to the increase of bone mineral con-
tent and bone density, which improves bone regeneration 
and repair.

Several studies have investigated the effects of the addi-
tion of Sr on the physicochemical properties and in vitro/
in vivo behaviour of CaP-based bone substitutes. Tao 
et  al. demonstrated that the calcium phosphate doped 
with Sr has a faster absorption rate [10]. In addition, Sr-
substituted biomaterials increased the differentiation 
of osteoblasts and activated the expression of pro-oste-
ogenic molecules used for bone remodelling [11–13]. A 
number of in vivo studies have shown that Sr-enhanced 
calcium phosphate materials have better osteogenic 
properties in  vivo [14–16]. However, other study found 
that no positive effect was observed in terms of promot-
ing in vivo bone regeneration [17].

In view of the differences among studies regarding 
the effects of Sr-doped CaP-based materials, it becomes 
imperative to conduct a systematic review and meta-
analysis. In addition, sub-group analyses based on dif-
ferent animals, material types, and implantation periods 
were also conducted. The main purpose of this study was 
to systematically review the synthesis method and char-
acteristics—such as crystallinity, particle size, and poros-
ity—of included Sr-doped (CaP) materials and to analyse 
the properties of new bone formation (NBF) and material 
degradation in vivo.

Methods
Search strategy
The methodology of this study followed the recommen-
dations of the Systematic Review Centre for Laboratory 
Animal Experimentation (SYRCLE) guidelines [18] and 
the guidelines of the PRISMA statement (http:// www. 
prisma- state ment. org/). In vivo studies that evaluate the 
effects of Sr-doped (CaP)-based materials from data-
base inception to December 2020, without any language 
restrictions, were identified by searching the PubMed and 

EMBASE (via OVIDSP) databases. This paper combined 
the MeSH heading and text search strategies, with multi-
ple terms associated with ‘bone regeneration’, ‘strontium’, 
‘bone substitutes’, and ‘animal research’ were used. Since 
tricalcium phosphate (TCP), HA, anhydrous dicalcium 
phosphate (TTCP), and tetracalcium phosphate (DCPA) 
are commonly used materials in this field of research, 
these terms have been also used as search words in the 
search formula. Search filters were utilized to detect all 
publications concerning animal studies [19, 20]. The 
detailed search strategies for PubMed and Embase are 
shown in Additional file 1: Table S1 and Additional file 2: 
Table S2, respectively. In addition, we manually searched 
the reference lists of major research journals and review 
papers to identify additional relevant studies.

Eligibility criteria
Two investigators (Y-M.D. and L-R.M.) independently 
screened potentially eligible studies. Any disagreement 
was resolved by discussion and consensus among review-
ing authors. The inclusion criteria were (1) original ani-
mal studies on bone defects, (2) comparisons of Sr-doped 
and Sr-free (CaP)-based bone substitutes; and (3) out-
comes of histological, micro-CT, or histomorphometric 
data.

Study selection and data extraction
Two authors independently reviewed studies considered 
for inclusion in the meta-analysis and performed data 
extraction. We used an existing data extraction method 
to retrieve data regarding the basic characteristics. For all 
included papers, the outcome data for the experimental 
and control groups were extracted if the mean, standard 
deviation (SD) or standard error (SE), and the number of 
defects per group (N) were reported or could be recalcu-
lated. If the data were presented only in graphical form, 
pictures were converted to data using the WebPlotDigi-
tizer tool (available online at https:// autom eris. io/ WebPl 
otDig itizer/), which was considered to have high levels of 
intercoder reliability and validity [21].

Quality assessment
The risk-of-bias assessment was based on SYRCLE’s Risk 
of Bias (RoB) tool, which is specifically designed for ani-
mal studies. Two authors independently assessed the risk 
of bias.

Statistical analysis
The primary outcome of interest was the pooled overall 
NBF. Bone volume/tissue volume (BV/TV) and remain-
ing material (RM) were the second outcomes of interest. 
Quantitative meta-analysis was performed when more 
than one study presented relevant data. Standardized 
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mean differences (SMD) or mean differences (MD) and 
95% confidence interval (95% CI) were calculated. Het-
erogeneity was assessed using  I2. An  I2 value greater than 
50% was considered to indicate significant heterogene-
ity. However, because of the underlying methodological 
heterogeneity (e.g. baseline characteristics of the ani-
mals, sample sizes, and implantation periods), we used 
the DerSimonian and Laird random-effects model for 

all analyses. Potential sources of between-study hetero-
geneity were explored by subgroup analyses according 
to the following factors, whenever appropriate: physical 
condition (health vs disease); animals (e.g. rat, rabbit, or 
sheep); materials; and implantation periods. We reported 
p-values for each covariate. Publication bias was inves-
tigated through a funnel plot. Analyses were conducted 
using Review Manager (version 5.4.1, The Cochrane Col-
laboration, 2020).

Results
Paper identification and selection
Through the search, a total of 600 related articles were 
retrieved, including 281 from Pubmed, 290 from Embase, 
and 29 from reference lists. After removing duplicates 
and screening all titles and abstracts, 78 potential studies 
were selected for full-text evaluation. Finally, 35 papers 
[10, 11, 13–17, 22–49] met the inclusion criteria and 
were included in the systematic review (Fig. 1).

Characteristics of included studies
The 35 included studies were published from 2001 to 
2020, and the curve of the cumulative number of papers 
included in the systematic review each year is shown in 
Fig. 2, indicating the increasing amount of attention this 
topic has received in the past decade.

Among these studies, one used a dog model [48], 
one used a mouse model [46], three used sheep models 
[26, 39, 41], thirteen used rabbit models [11, 13, 15, 28, 
30, 31, 33–35, 37, 38, 45, 47], and seventeen used rat 

Fig. 1 Search flowchart
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models [10, 14, 16, 17, 22–25, 27, 29, 32, 36, 40, 42–44, 
49]. There were nineteen studies focused on healthy 
animals [15, 23, 28–31, 33, 35–41, 45–49], one on albi-
nism [24], one on osteonecrosis [34], and thirteen on 
osteoporosis [10, 11, 14, 16, 17, 22, 25–27, 32, 42–44]. 
The main characteristics of the included studies are 
listed in Table 1.

Various forms of biomaterials were reported in these 
studies, including cylindrical, granular/powder, spheri-
cal, and disc-shaped. The sites of the bone defects were 
widely distributed, including the vertebra in one study, 
humerus in one study, femur and tibia in one study, man-
dible in two studies, maxilla in two studies, radius in 
three studies, tibia in three studies, calvaria in four stud-
ies, and femur in 18 studies.

Biomaterial characteristics
The included studies contained multiple types of cal-
cium phosphate materials. Different synthesis meth-
ods, crystallinities, particle sizes, implant morphologies, 
porosities, stoichiometries, and thermal treatments could 
influence the biological properties and in vivo efficacy of 
these materials. Table 2 summarizes the characteristics of 
all materials used in the included research.

Risk of bias and quality assessment
The risk of bias of the included studies was relatively high 
(Fig.  3A). Among them, only one paper [29] provided a 
sufficient and reasonable description of the generation of 
random sequences. Furthermore, it was difficult to con-
firm the accurate baseline characteristics in each group 
as none of the studies offered complete baseline informa-
tion. None of the papers reported on the ‘allocation con-
cealment’ and ‘blinding of performance bias’. ‘Random 
housing’ was considered as a ‘low risk of bias’ in six pub-
lications [10, 24, 33, 42, 43, 46] (17%), and only five of the 
articles [30, 31, 34, 37, 48] (14%) reported ‘random selec-
tion for outcome assessment’. Eight articles [15, 23, 26, 
34, 39, 44, 47, 48] (23%) were considered to have a ‘low 
risk of bias’ in terms of the ‘blinded outcome reviewers’, 
while two papers [22, 44] were considered to have a ‘high 
risk of bias’ in terms of ‘incomplete data reporting’. More-
over, in terms of ‘selective outcome reporting’ and ‘other 
sources of bias’, a majority of the articles were defined as 
having a ‘low risk of bias’.

Another three quality indicators for the 35 studies are 
presented in Fig. 3B. For 17 studies (less than 50%), it was 
reported that the experimental groups were randomized 
in some way. Less than 1/4 of the studies reported ‘blind-
ing of the experiment’, and only two articles [23, 48] men-
tioned the ‘power/sample size calculation’.

Meta‑analysis of new bone formation from histological 
outcomes
A total of 18 articles were included in our meta-analysis, 
covering 31 comparisons and 445 defects. In this analysis, 
the pooled effect for NBF was 2.25 (95% CI 1.61–2.90), 
indicating a significantly higher NBF for Sr-doped mate-
rials (Fig. 4).

Table  3 shows the outcomes of the subgroup analysis 
for NBF. In both the healthy animal group and osteo-
porosis models, the Sr-enriched material significantly 
increased NBF, with (SMD: 1.85 [0.95, 2.76],  I2 = 81%) 
and (SMD: 2.73 [1.94, 3.52],  I2 = 71%), respectively. 
According to the included studies, a superior bone 
repairing effect could be found in healthy animals. A for-
est plot of this is provided in Additional file 3: Fig. S1. For 
animal models, one rat study [23], one rabbit study [47], 
and one sheep study [39] reported lower NBF in the Sr-
doped group without statistical significance during short 
implantation periods (1 week–30 days). Results of other 
studies and meta-analyses all suggested that Sr doping 
could significantly promote NBF (Additional file  3: Fig. 
S2). Sub-group analyses of different calcium phosphates 
(HA, β-TCP, CPC, and CPP) and different follow-up 
periods (1  month, 2  months, 3  months, and 4  months) 
both supported the conclusion that Sr-doping enhanced 
NBF. However, high heterogeneity could be observed 
in all subgroups, with  I2 values ranging from 52 to 87% 
(Additional file 3: Fig. S3 and Additional file 3: Fig. S4).

Meta‑analysis of new bone formation from micro‑CT 
assessment
Micro-CT measurements of bone volume/tissue vol-
ume (BV/TV) were performed in five of the articles 
included in the meta-analysis. The overall effect of BV/
TV was 1.42 (95% CI 0.65–2.18, p < 0.05), suggesting that 
Sr enrichment promoted NBF and bone regeneration 
(Fig. 5).

Meta‑analysis of the remaining materials
In terms of material absorption, the histological out-
comes were extracted from six articles, among which 
four comparisons found that material remained for less 
than 1 month, six comparisons between 1 and 3 months, 
and four comparisons for more than 3  months. The 
results showed that, in the early stages (≤ 1 month), the 
absorption of the Sr-doped material was less than that 
of the non-Sr-doped group (3.11 [− 0.38, 6.60]). In the 
middle (1–3  months) and longer (> 3  months) periods, 
the absorption of the Sr-doped material was significantly 
higher than that of the Sr-free group (Fig. 6).

Subgroup analysis was also conducted for different 
material types (HA, β-TCP, CPC, and CPP). The results 
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showed that the absorption of Sr-doped HA materials 
was slower than that of Sr-free materials, albeit with no 
statistical significance. For the other three types of mate-
rials, the absorption of Sr-doped materials was faster 
than that of the control group. The differences between 
β-TCP and CPC were statistically significant (Fig. 7).

Publication bias
Funnel plots showed no significant publication bias, as 
no significant asymmetry was detected (Additional file 3: 
Fig. S5).

Discussion
Synthetic calcium phosphate bone substitutes have been 
widely used for bone defect regeneration. To overcome 
the limitations of calcium phosphate materials, research-
ers are continuously proposing new methods. In recent 
years, many researchers have focused on adding inor-
ganic ion Sr to calcium phosphate materials to improve 
their in  vivo performance. However, at present, there is 
no consensus on whether Sr supplementation can signifi-
cantly promote the biological and in vivo efficacy of bone 

replacement materials, to the best of our knowledge. 
Therefore, this paper systematically reviewed relevant 
in vivo studies and conducted a quantitative meta-anal-
ysis. The results showed that the Sr-enhanced material 
significantly promoted the formation of new bone in 
the bone defect area, and the material was more easily 
absorbed. This is similar to the results of a previous study 
[50].

Bone formation
The specific mechanism by which Sr-containing materi-
als promote osteogenesis is still unclear. Bone morphoge-
netic protein-2 (BMP-2)/Smad-1 and the osteoprotegerin 
(OPG)/receptor activator of the nuclear factor-κB ligand 
(RANKL) are two important signalling pathways for reg-
ulating osteogenesis. Previous studies have shown that 
bone remodelling regulates osteoblasts and osteoclasts 
through the BMP-2/Smad1 and OPG/RANKL signalling 
pathways, and is capable of bi-directional signalling [51, 
52]. Sr is believed to have both osteogenic (anabolic) and 
antiabsorptive (catabolic) effects [36, 53]. Many studies 
have shown that the addition of Sr could stimulate the 

Fig. 3 Risk of bias (Graph A displays the risk of bias in all included studies which were assessed using SYRCLE’s bias risk tool. Graph B displays the 
reporting of three key quality indicators)
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differentiation of MSCs or other osteoblast lineages [54, 
55]. The expression of osteoblast markers (alkaline phos-
phatase [ALP], bone sialoprotein, and osteocalcin) was 
increased to promote the formation of bone nodules [53, 
56], while reducing the differentiation and proliferation 
of osteoclasts [57].

Osteoporosis is a systemic bone disease characterized 
by bone loss and structural destruction. Owing to osteo-
blastic degeneration, increased osteoclast function, and 
insufficient bone formation ability, the treatment of bone 
defects in patients with osteoporosis is very challeng-
ing [1] In this study, a meta-analysis of nine studies [10, 
14, 16, 22, 25, 26, 32, 43, 44] using osteoporosis models 
was conducted, and the results showed that the addition 
of Sr could significantly promote NBF in animals with 
osteoporosis.

Sr has been shown to promote NBF by activating 
CA-sensitive receptors and inhibit bone resorption by 
blocking the expression of receptor activators of the 
nuclear factor κB ligand (RANKL) [58, 59]. Animal 

studies on Sr-doped materials have shown that the 
enhancement of bone formation could be related to the 
release of Sr ions during the degradation process [45]. 
Biomaterials containing Sr exhibit high expression of 
physiologically active signalling molecules, such as 
OPG, NFkB 105, ALP, Col-1α, osteocalcin, osteopon-
tin, and BMP 2/4 [57, 60–63]. This means that Sr-rich 
materials stimulated the release of these molecules 
more than calcium phosphate alone or simply the 
trauma itself.

In addition, the Sr released by bioceramics has been 
shown to stimulate angiogenesis by increasing the secre-
tion of the cytokines that promote cell angiogenesis [64, 
65]. A previous study has shown that, one week after 
SrWCP implantation in osteoporotic animals, vascular-
like structures were formed in the pores in the central 
region of the bioceramics [16]. This angiogenesis is nec-
essary for bone regeneration because these new blood 
vessels supply the oxygen, nutrients, and cells required 
for bone formation.
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In addition, different animal models, implant sites, 
and bone defect sizes may also influence the conditions 
of NBF and material degradation. It is generally believed 
that experimental research on large animals reflects clini-
cal practice more closely; however, there are few studies 
using large animals. Only three studies on sheep have 
been included in this meta-analysis on NBF, while no 
meta-analysis on remaining material could be conducted 
owing to the limited number of studies on large animals. 
The subgroup analysis of different animal types showed 
that Sr-doping significantly promoted the formation of 
new bone in sheep, dogs, rabbits, and rat. However, it 
should be noted that, although subgroup analyses were 
conducted, the results of these meta-analyses still exhibit 

significant heterogeneity among studies. This could be 
related to differences in implant sites (calvaria, femur, 
radius, etc.), bone defect sizes (3  mm, 5  mm, 10  mm, 
etc.), sample size, and experimental design.

Material degradation
Histological assessments were used to quantitatively 
determine the residual materials by conducting a meta-
analysis. The percentages of remaining materials accord-
ing to different implantation periods are shown in Fig. 6. 
At less than 1  month, the degradation rate of Sr-doped 
materials was lower than that of the control group. 
However, the degradation rate of the Sr-doped group 
was significantly higher at longer periods (greater than 

Table 3 Subgroup analysis of the included papers for outcome new bone formation (NBF; SMD)

HA: hydroxyapatite; β-TCP: beta-tricalcium phosphate; CPC: Calcium phosphate cements; CPP: Calcium polyphosphate; m: month

Subgroup Number of comparisons Number of defects Effect estimate SMD [95% CI] Heterogeneity  (I2)
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3 m 2 44 1.10 [− 0.08, 2.29] 74%
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1 month). This indicates that the degradation rate of Sr-
doped materials may gradually increase with time, and is 
significantly higher than that of the Sr-free group. Stud-
ies showed that different types of calcium phosphate 
would affect the degradation rate of materials. It is gener-
ally believed that HA is more difficult to degrade. In the 
subgroup analysis for different material types, it can be 
seen that the residual rate of Sr-doped materials in the 
HA group is higher than that in the control group. How-
ever, the three studies [23, 39, 47] in the HA group with 
high material residual rates all had shorter observation 
periods (1 w, 4 w, and 30 d). Therefore, this may suggest 
that the doping of Sr has a time-dependent effect on the 
material absorption.

Although enhanced degradations of Sr-doped materials 
were reported in studies in vitro and in vivo, the under-
lying mechanism remains unclear and requires further 
investigation. Some researchers believe that the degrada-
tion rate of CPP scaffolds in vivo is usually affected by the 
initial size of the particles during scaffold formation, the 
scaffold structure, the implantation site, and other factors 
[66]. The doping of Sr was generally carried out through 

ion substitution, where  Sr2+ could replace  Ca2+ ions. Pre-
vious studies have shown that the ion radii of bioinor-
ganic ions usually differ from those of substituted ions, 
and their supplementation could change the crystallin-
ity, lattice parameters, crystal size, morphology, stability, 
biological activity, bone conductivity, and solubility of the 
material [6, 13, 40]. These physical and chemical changes 
may alter the fragmentation and biological absorption of 
biomaterials [13, 47]. According to Chandran et  al. [25] 
and Landi et al. [67], the increased dissolution rates could 
be a result of the combined action of the increased pore 
size and the amorphous properties of SrHA particles.

In our opinion, the faster degradation rates of Sr-doped 
materials could also contribute to the improved release of 
bioinorganic substances and, thus, accelerate NBF.

Implications and limitations
Our study is likely to be the first report that systemati-
cally reviews relevant studies on Sr-doped (CaP)-based 
materials and conducts sub-group meta-analyses accord-
ing to different influence factors. Furthermore, our study 
revealed the effect of Sr-enhanced materials in  vivo, 
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which provides a good basis for their further research 
and clinical application.

However, our study also has certain limitations. 
First, in this study, high heterogeneity was found in the 
meta-analysis of NBF and residual materials. Subgroup 
analyses based on material type, implantation period, 
experimental animal species, etc., also had high hetero-
geneity. In view of the significant heterogeneity among 
the studies included in our meta-analyses, caution 
should be exercised when generalizing our conclusions. 
It is suggested that homogenized study settings should be 
adopted in subsequent studies to provide more convinc-
ing evidence for clinical applications. Second, the quality 
of the included studies is not high enough. The details of 
sample size estimation and randomization methodology 
were not  found in most studies. Finally, although Sr has 
a beneficial effect on bone formation, its potential nega-
tive effects should also be taken into account, especially 
in high doses [29, 68, 69]. A dose-dependent effect of Sr 

on osteoblasts could be detected in some in vitro studies 
[70]. Animal studies have shown that the Sr dosage was 
very important, as high doses could cause osteomalacia 
[71]. In this study, the included studies used different 
concentrations of Sr, and some did not report relevant 
data. Therefore, it is necessary to further explore the 
optimal concentration of Sr.

Relevant studies during 2021
During the past year (2021), another four in vivo studies 
relevant to this topic were found. One of them focused 
on    strontium-doped nano hydroxyapatite-gelatin (Sr-
nHA-Gel). An in vitro study and the in vivo repair of crit-
ical-sized cranial defects confirmed that Sr-nHA gel had 
relatively effective bone regeneration ability [72]. Another 
article focused on strontium-releasing nanoscale cement. 
In  vivo and in  vitro experiments showed that SR nano 
bone cement had the dual effects of osteoclast inhibition 
and osteogenic stimulation, indicating good potential for 

Study or Subgroup
2.3.2 HA
Carmo 2018-1w
Carmo 2018-6w
Machado 2016-30d
Valiense 2016-12w
Valiense 2016-4w
Subtotal (95% CI)
Heterogeneity: Tau² = 44.92; Chi² = 34.22, df = 4 (P < 0.00001); I² = 88%
Test for overall effect: Z = 0.21 (P = 0.84)

2.3.3 β-TCP
Tao 2020-8w
Subtotal (95% CI)
Heterogeneity: Not applicable
Test for overall effect: Z = 4.03 (P < 0.0001)

2.3.4 CPC
Reitmaier 2018-26w-L
Reitmaier 2018-26w-UL
Reitmaier 2018-6w-L
Reitmaier 2018-6w-UL
Tao 2018-8w
Subtotal (95% CI)
Heterogeneity: Tau² = 0.00; Chi² = 3.19, df = 4 (P = 0.53); I² = 0%
Test for overall effect: Z = 6.02 (P < 0.00001)

2.3.5 CPP
Tian 2009-16w
Tian 2009-4w
Tian 2009-8w
Subtotal (95% CI)
Heterogeneity: Tau² = 0.13; Chi² = 3.73, df = 2 (P = 0.15); I² = 46%
Test for overall effect: Z = 0.33 (P = 0.74)

Total (95% CI)
Heterogeneity: Tau² = 4.98; Chi² = 90.59, df = 13 (P < 0.00001); I² = 86%
Test for overall effect: Z = 2.52 (P = 0.01)
Test for subgroup differences: Chi² = 48.89, df = 3 (P < 0.00001), I² = 93.9%

Mean

18.9
10.4
51.2

10.317
18.241

25.016

41.133
36.746
43.702
41.984
40.185

11.875
25.696
19.964

SD

1.69
2.33
14.1
6.36

9.389

2.413

10.786
16.271
17.176
22.138

5.741

0.75
0.858
0.482

Total

5
5
5
6
6

27

10
10

7
7
7
7
5

33

8
8
8

24

94

Mean

14.6
16.5
36.2

17.168
14.62

29.968

59.415
63.254

59.16
58.779
52.222

12.411
25.054
20.125

SD

2.5
2.41

8.5
7.869
5.186

3.048

10.055
10.42

12.977
12.023

7.037

0.643
1.125
0.857

Total

5
5
5
6
6

27

10
10

7
7
7
7
5

33

8
8
8

24

94

Weight

11.8%
11.1%

1.4%
3.7%
3.3%

31.3%

12.4%
12.4%

2.2%
1.4%
1.1%
0.8%
3.7%
9.3%

15.8%
15.4%
15.8%
46.9%

100.0%

IV, Random, 95% CI

4.30 [1.65, 6.95]
-6.10 [-9.04, -3.16]
15.00 [0.57, 29.43]
-6.85 [-14.95, 1.24]
3.62 [-4.96, 12.20]
0.71 [-6.04, 7.46]

-4.95 [-7.36, -2.54]
-4.95 [-7.36, -2.54]

-18.28 [-29.21, -7.36]
-26.51 [-40.82, -12.19]

-15.46 [-31.41, 0.49]
-16.80 [-35.46, 1.87]

-12.04 [-20.00, -4.08]
-16.22 [-21.51, -10.94]

-0.54 [-1.22, 0.15]
0.64 [-0.34, 1.62]

-0.16 [-0.84, 0.52]
-0.10 [-0.71, 0.50]

-2.26 [-4.02, -0.50]

Sr Control Mean Difference Mean Difference
IV, Random, 95% CI

-20 -10 0 10 20
Favours [experimental] Favours [control]

Fig. 7 Forest plot of RM‑subgroup analysis by materials



Page 19 of 21Yan et al. BMC Oral Health           (2022) 22:62  

the treatment of osteoporotic bone defects [73]. The effect 
of the scaffold degradation rate on osteogenesis has been 
widely researched. Miao et  al. [74]  prepared strontium-
doped calcium sulfate (SrCSH) and strontium-doped tri-
calcium phosphate microsphere (Sr-TCP) scaffolds. In 
the experiment on repairing osteoporotic femoral defects, 
they found that, when the degradation rate of the scaffold 
matched the growth rate of new bone, the rapid repair 
of osteoporotic bone defects was promoted. In contrast, 
the slow degradation of scaffold materials hindered the 
growth of new bone to a certain extent. This study fur-
ther clarified the importance of the scaffold degradation 
rate in the repair of osteoporotic bone defects. Vascular-
ized bone tissue engineering is of great significance for 
the reconstruction of critical bone defects. The applica-
tion of calcium phosphate cement in vascularized bone 
tissue engineering is limited due to the lack of consequent 
angiogenesis and unsatisfactory physical and chemical 
properties. Wu et  al. [75] developed a strontium-rein-
forced calcium phosphate composite cement based on the 
reported osteogenic and angiogenic properties of CPHC-
star and BaSO4-incorporated calcium phosphate hybrid 
cement; further, Sr ions could improve the biological and 
physicochemical properties of CPC. In  vivo and in  vitro 
studies have shown that the material has the dual poten-
tial of osteogenesis and angiogenesis.

The aforementioned studies exhibited the significance 
of strontium-doped bone substitute materials in pro-
moting bone regeneration, and also formed the basis for 
research into bone substitute materials.

Conclusion
According to the results of the systematic review and 
meta-analyses herein, Sr supplementation is advanta-
geous in terms of promoting NBF and accelerating mate-
rial degradation. The type of material (HA, β-TCP, CPC, 
or CPP) does not seem to affect NBF. In terms of mate-
rial degradation, HA seems to degrade slowly, while the 
other three categories degraded more rapidly. However, 
the existing meta-analysis results all suggested high het-
erogeneity and no statistical significance. Therefore, fur-
ther research is required to verify the differences between 
materials and further verify the conclusions of this study. 
Determining the optimum concentrations of Sr and the 
best Sr-doped calcium phosphate materials is an impor-
tant future research direction. In addition, the angiogenic 
potential of materials could be another research direction 
worth focusing on, in addition to osteogenesis.
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