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ABSTRACT

TFmiR is a freely available web server for deep and
integrative analysis of combinatorial regulatory in-
teractions between transcription factors, microRNAs
and target genes that are involved in disease patho-
genesis. Since the inner workings of cells rely on
the correct functioning of an enormously complex
system of activating and repressing interactions that
can be perturbed in many ways, TFmiR helps to
better elucidate cellular mechanisms at the molec-
ular level from a network perspective. The provided
topological and functional analyses promote TFmiR
as a reliable systems biology tool for researchers
across the life science communities. TFmiR web
server is accessible through the following URL: http:
//service.bioinformatik.uni-saarland.de/tfmir.

INTRODUCTION

Among many genetic regulators, transcription factors (TFs)
and microRNAs (miRNAs) are the essential key players for
regulating gene expression (1). Together they play impor-
tant roles in regulating virtually all cellular processes such
as differentiation, proliferation, survival and apoptosis (2).
Also genetic disorders and complex diseases including can-
cer are mostly associated with perturbations of the interwo-
ven regulatory circuit between TFs and miRNAs (3,4). TFs
and miRNAs frequently form Feed Forward Loops (FFLs)
and other network motifs to regulate cellular transcription
in a connective manner (4,5). Therefore, utilizing the com-
bined regulatory information on TFs and miRNAs as well
as their target genes could shed light on key driver genes
and miRNAs in human diseases and, in turn, suggests novel
therapeutic strategies in disease treatment (5,6).

Several databases have been developed in order to facili-
tate research on transcriptional and post-transcriptional in-
teraction types between TFs, miRNAs and target genes. For
instance, TransFac (7), OregAnno (8) and MsigDB (9) pro-
vide compilations of TFs regulating genes (TF → gene).

TransmiR (10) provides information on which TFs regu-
late miRNAs (TF → miRNA). mirTarBase (11), TarBase
(12) and miRecords (13) collect target genes of miRNAs
(miRNA → genes) in different organisms. Although still lit-
tle is known about miRNA-mediated miRNA regulations,
recent studies reported plausible evidences that miRNAs
may regulate the expression of other miRNAs as well as
their target genes (5,14). Thus, miRNA → miRNA interac-
tions were computationally predicted and made available in
the PmmR database (15).

Despite the general availability of such databases, gen-
eralized repositories integrating different kinds of molec-
ular interactions and enabling to analyze their contribu-
tions to diseases are still missing. To this end, we present
TFmiR, a web server that allows for integrative and com-
prehensive analysis of interactions between a set of deregu-
lated TFs/genes and a set of deregulated miRNAs within
the relevant pathways of a certain disease. The tool un-
ravels the disease-specific co-regulatory network between
TFs and miRNAs and performs over representation anal-
ysis (ORA) for the involved TFs/genes and miRNAs. Our
web server also detects FFLs consisting of miRNAs, TFs
and co-targeted genes (TF–miRNA co-regulatory motifs)
and statistically assesses the functional homogeneity be-
tween the co-regulated targets. Furthermore, TFmiR uti-
lizes seven different methods for identifying key network
players that could possibly drive oncogenic processes of dis-
eases and thus could act as potential drug targets. Espe-
cially when combined with experimental validation, these
putative key players as well as the novel TF–miRNA co-
regulatory motifs could promote novel insights to develop
new therapeutic approaches for human diseases.

MATERIALS AND METHODS

Description

TFmiR integrates genome-wide transcriptional and post-
transcriptional regulatory interactions to elucidate human
diseases. For a specified disease and based on user-supplied
lists of deregulated genes/TFs and miRNAs, TFmiR in-
vestigates four different types of interactions, TF → gene,
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Figure 1. A system level overview of the TFmiR architecture describing the incorporated databases, data flows and output downstream analysis.

TF → miRNA, miRNA → miRNA and miRNA → gene. It
also unravels the circuitry between miRNAs, TFs and target
genes with respect to specified diseases. For each interaction
type, TFmiR utilizes information provided by established
and curated regulatory databases of both predicted and ex-
perimentally validated interactions (Figure 1) whereby all
duplicate interactions were removed. For TF → miRNA in-
teractions, we also integrated manually curated regulatory
relationships from (∼5000) published papers (16). From
the predicted miRNA → miRNA interactions in the PmmR
database (15), we considered only the best hits having score
<0.2, which was computed as the normalized path length
between the two involved miRNAs. The incorporated pre-
dicted miRNA → gene interactions were retrieved from star-
Base (17) by selecting only those predictions confirmed by
three out of five prediction algorithms (targetScan (18), pic-
Tar (19), RNA22 (20), PITA (21) and miRanda (22)). Sup-
plementary Table S1 lists the included databases and the
number of regulations available for each interaction type.
In total, TFmiR currently integrates information on almost
10 000 genes, 1856 miRNAs, ∼3000 diseases including sub-
types and more than 111 000 interactions.

TFmiR user input scenarios

TFmiR can be called through two scenarios. If the user sub-
mits two RNA sets (a set of deregulated mRNAs/genes and
a set of deregulated miRNAs), the tool will return regula-
tory interactions based on the provided deregulated genes
and deregulated miRNAs. In the second scenario, a user

submits only a set of deregulated genes. In this case, TFmiR
identifies the set of miRNAs whose target genes as well
as regulator TFs are significantly enriched within the in-
put deregulated genes using the hypergeometric distribu-
tion function followed by the Benjamini–Hochberg (BH)
adjustment with a cutoff value of 0.001. Sample input files
of the deregulated genes and miRNAs are provided in Sup-
plementary Figures S1 and S2. The user can optionally set
the P-value cutoff (default is 0.05) for ORA on the resulting
network nodes (genes/miRNAs). Finally, the user can con-
trol the evidence level (experimentally validated, predicted
or both) for the constructed regulatory interactions that will
be used in the subsequent network analysis.

Functionality of TFmiR

TFmiR pools all four interactions types based on the in-
put deregulated genes and miRNAs and accordingly gener-
ates the entire combinatorial regulatory network. If a dis-
ease was selected, TFmiR uses data retrieved from the hu-
man miRNA disease database (HMDD) (23) as well as Dis-
GeNET (a database for gene-disease association) (24) as
sources for disease-associated miRNAs and genes, respec-
tively. Interactions whose target nodes or regulator nodes
are known to be associated with the disease compose the
putative disease-specific network. TFmiR then offers three
levels of downstream analysis: (i) the regulatory subnetwork
of the four interaction types, (ii) the combined network of
all interaction types and (iii) the disease-specific network (if
disease was selected).
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For each interaction type subnetwork of regulator → tar-
get links, we display the total number of targets and regu-
lators in the corresponding interaction databases, a Venn
diagram depicting the overlap between the input deregu-
lated targets (miRNAs/genes) and the targets of the in-
put deregulated regulators (genes/miRNAs) available from
the database. The significance of overlap is computed us-
ing the hypergeometric distribution test as an indicator how
representative the provided deregulated inputs are for the
known cellular targets of the considered regulators. This
measure suggests whether the follow-up downstream anal-
ysis is likely to yield meaningful functional enrichments or
disease associations. To avoid the effect of false-positives in
the regulator → target databases and to account for a dif-
ferent number of targets for the input deregulated regula-
tors, a randomization test is conducted (n = 1000). Further-
more, TFmiR carries out ORA for both gene analyses and
miRNA sets comprising the interaction subnetwork.

For gene set analysis, TFmiR employs DAVID (25)
to check for enrichment of GO terms (BP subcategory),
KEGG pathways and OMIM diseases as well as for clus-
tering the genes based on their functional similarities. For
miRNA set analysis, we used the miRNA-functional as-
sociation data and miRNA-disease association data from
HMDD to statistically relate the functional and disease
terms to the miRNA set.

For levels 2 and 3, TFmiR calculates for each network ba-
sic topological features, relevance to the disease-associated
genes/miRNAs by testing the overlap significance with the
network nodes, degree distribution plot, ORA analyses for
both gene and miRNA nodes, network key nodes, and de-
tects 3-node motifs. To measure the strength of correlation
between the potential disease-specific network, the input
disease and the input deregulated genes and miRNAs, we
compute a coverage ratio (CR) between the nodes of the
disease-specific network and the nodes of the entire com-
bined network.

CR = Nd

Nt

Here, Nd represents the number of disease-specific network
nodes and Nt represents the total number of nodes in the
entire network. We also calculate the CR ratio between the
edges of the two networks. All resulting networks are visu-
alized using the interactive Cytoscape-web viewer (26).

Identification of network key nodes

We defined the key nodes as the top 10% highest central-
ity nodes of the TFs, miRNAs and genes in the disease-
specific and whole network. TFmir uses degree centrality,
closeness centrality, betweenness centrality and eigenvector
centrality as well as the common and union sets of the key
nodes identified by these four measures. We also determine
the minimal set of dominating nodes that regulate the entire
network. This can be modeled as the following optimization
problem: Let graph G(V,E) be a connected graph, n = |V|,
adj is the adjacency matrix of G, and adj(i, i) = 0, X is a bi-
nary array of size n, such that X(i) = 1 if node i was marked
as a key node, and 0 otherwise. Then the objective function

Figure 2. Schematic illustration of the four motif types detected in
TFmiR. All motifs contain a TF, a miRNA and a common target gene.

is:

min
n∑

i=1

X(i )

subject to ∀i
n∑

i

ad j (i, j ).X( j ) >= 1.

The last constraint guarantees that every node in the net-
work must have at least one key node in its neighborhood.
To solve such an optimization problem, we apply the algo-
rithm presented by Rai et al. 2009 (27) to search for the min-
imum dominating node set.

Identification of TF–miRNA co-regulatory motifs

FFLs are interconnection patterns that recur in many dif-
ferent parts of a network and form key functional mod-
ules (5,28). They have been demonstrated as one of the
most important motif patterns in transcriptional regula-
tion networks (28) that govern many aspects of normal cell
functions and diseases (29,30). Here, TFmiR identifies four
types of 3-nodes motifs (three FFLs and one co-regulation
motif) consisting of a TF, a miRNA and their co-targeted
gene and defines them as TF–miRNA co-regulatory mo-
tifs (Figure 2). (i) The Coregulation-FFL includes only TF
regulation of a target gene as well as miRNA repression of
that target gene. (ii) The TF-FFL includes TF regulation
of the expression of both a miRNA and a target gene and it
also includes miRNA repression of that target gene. (iii) The
miRNA-FFL includes miRNA repression of both a TF and
a target gene, as well as TF regulation of this target gene.
(iv) The Composite-FFL describes TF regulation of both a
miRNA and a target gene as well as miRNA suppression of
that TF and that target gene.

Identifying significant TF–miRNA co-occuring pairs. We
identified statistically significant TF and miRNA pairs that



W286 Nucleic Acids Research, 2015, Vol. 43, Web Server issue

cooperatively regulate the same target gene using the hyper-
geometric distribution and evaluated P-values:

P-value = 1 −
x∑

i=0

(k
i

)(M−k
N−i

)
(M

N

)

where k is the number of target genes of a certain miRNA,
N is the number of genes regulated by a certain TF, x is
the number of common target genes between these TF and
miRNA, and M is the number of genes in the union of all
human genes targeted by human miRNAs and all human
genes regulated by all human TFs in our databases. Then,
multiple test correction was done by determining the false
discovery rate according to BH (31) method and only those
pairs with a adjusted P-value <0.05 were selected as signif-
icant TF–miRNA pairs.

Construction of candidate TF–miRNA-gene FFLs. All in-
teractions associated with the significant TF–miRNA pairs
are represented as connectivity matrix, M, such that Mij = 1
if regulator i regulates target j where i ∈ (TF, miRNA) and j
∈ (TF, miRNA, gene). Then, we scan all the 3*3 submatrices
of M that represent each type of the four considered FFL
topologies (Figure 2).

Significance of the FFL motifs. To evaluate the significance
of each FFL motif type, we compare how often they appear
in the real network to the number of times they appear in
randomized ensembles preserving the same node degrees. In
order to retain stronger attachment of biological key driver
nodes, we applied a degree preserving randomization algo-
rithm of the ‘igraph’ R-package. For 2 × L steps, two edges
e1 = (v1, v2) and e2 = (v3, v4) are randomly chosen from the
network and rewired such that the start and end nodes are
swapped, i.e. e3 = (v1, v4) and e4 = (v3, v2) if {e3, e4} �∈ V.
The random networks were constructed 100 times and com-
pared to the real network. The P-value is calculated as

P-value = Nh

Nr

where Nh is the number of random times that a certain mo-
tif type is acquired more than or equal to its number in the
real network, and Nr is 100. We also calculate the Z score
for each motif type to examine by how many standard devi-
ations the observed real motif was above or below the mean
of the random ones.

Zscore = No − Nm

σ

Here No is the number of motifs observed in the real net-
work, whereas Nm, and � are the mean and standard de-
viation of the motif occurrence in 100 random networks,
respectively.

Functional homogeneity

In order to evaluate the biological evidence of the iden-
tified TF–miRNA co-regulatory motifs and better under-
stand their functional roles, TFmiR allows the user to ana-
lyze the GO semantic similarity for all pairs of genes tar-
geted by the same TF and miRNA pair or for all pairs

of genes regulated by the TF or the miRNAs of that TF–
miRNA pair (see Supplementary Figure S3). The GoSem-
Sim R package (32) is used to compute the semantic sim-
ilarity scores according to the Gene Ontology (GO) anno-
tations. Statistical significance is determined by randomly
selecting the same number of genes (co-targeted genes or
co-regulated genes) from all Entrez genes with GO annota-
tions, and computing their similarity scores. The permuta-
tion procedure is repeated 1000 times. Then, we carry out a
Kolmogorov–Smirnov test to check whether the functional
similarity scores of all gene pairs from the FFL motif are
significantly higher than that of randomly selected pairs.

RESULTS

Case study

TFmiR was applied to several data sets related to complex
diseases such as cancer, Alzheimer and diabetes. In a re-
cent study on breast cancer (6), we identified 1262 deregu-
lated genes and 121 deregulated miRNAs using gene and
miRNA expression data from the TCGA portal (https://
tcga-data.nci.nih.gov/tcga/). These two sets of deregulated
genes and miRNAs are the default sample input files pro-
vided by the TFmiR web server. Next, TFmiR was used to
reveal the co-regulation network between the deregulated
genes/TFs and deregulated miRNAs and to better under-
stand the pathogenic mechanisms associated with breast tu-
morigenesis. As user input parameters we set the P-value
cutoff to 0.05, disease was set to breast neoplasms, and the
evidence level was set to both experimentally validated and
predicted interactions.

For this data set TFmiR constructed a total of 427 reg-
ulatory interactions comprising 263 nodes of deregulated
miRNAs and deregulated TFs/genes. The breast cancer-
specific network involved 345 interactions and 212 nodes of
deregulated miRNAs and genes with node and edge CR of
80.6% and 80.8%, respectively. The provided ORA analysis
of the disease network nodes revealed their implications in
many cancer types as well as cancer-related KEGG path-
ways. Moreover, ORA analysis of the network miRNAs
showed their involvement in cancerogenesis of multiple or-
gans such as lung neoplasms, ovarian cancer and adeno-
carcinoma (Supplementary Table S2). Additionally, TFmiR
identified 22 key network players (10 genes and 12 miRNAs)
based on the union set of four centrality measures described
above (Supplementary Table S3). Interestingly, some of the
identified key genes such as BRCA2, ESR1, AKT1 and
TP53 were previously implicated and significantly mutated
in breast cancer samples (33). More importantly, the pro-
tein products of the genes ESR1, TP53, TGFB1, AKT1 and
BRCA2 are binding targets for anti-breast cancer drugs (6)
(Supplementary Table S4).

Next, we examined the TF–miRNA co-regulatory mo-
tifs that were significantly enriched in the entire interaction
network. We identified 53 FFL motifs (three composite-
FFLs, two TF-FFLs, six miRNA-FFLs and forty-two
coreg-FFLs). An interesting motif involving the TF SPI1,
the miRNA hsa-mir-155 and the target gene FLI1 re-
veals how FFL motifs may help to better understanding
the pathogenicity of breast cancer (Supplementary Figure

https://tcga-data.nci.nih.gov/tcga/
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S4 from the tool). Recent studies reported that the onco-
gene SPI1 is involved in tumor progression and metastasis
(34,35). However, the co-regulation of the oncogene FLI1
(36) by both SPI1 and the oncomiR hsa-mir-155 was not
reported before. As the co-regulated genes of SPI1 and hsa-
mir-155 have significantly more similar cellular functions
than randomly selected genes (Supplementary Figure S5),
this FFL motif provides novel insights into SPI1-miRNA
networks alteration in breast cancer and suggests a coop-
erative functional role between SPI1 and potential miRNA
partners.

DISCUSSION

Compared to the web services of related databases and
tools such as Transmir (10), ChIPBase (37), CircuitsDB
(38), starBase (17), miR2Disease (39) and cGRNB (40),
our TFmiR web server has several distinctive features: (i)
TFmiR performs integrative analysis of molecular interac-
tions between a set of deregulated genes and a set of dereg-
ulated miRNAs within or without the pathogenic pathways
of a certain disease. In contrast, the above mentioned web
tools only search the regulatory interactions of a single gene
or a single miRNA. (ii) TFmiR performs a rich network
analysis, TF–miRNA co-regulatory motif detection, net-
work visualization, statistical significance of the extracted
interactions, and ORA analysis for each interaction type,
the combined interaction network, and the disease network.
Such an integrated analysis is not provided by other web
tools. (iii) TFmiR allows the user to retrieve either experi-
mentally validated or predicted interactions or both. Such
an option is not available using the other tools. In a some-
how similar fashion, DisTMGneT (41) was developed for
obtaining cancer-specific network based on user-selected
sets of deregulated genes and miRNAs. However, it lacks
the downstream analysis, the varieties of user input param-
eters, and it is limited to a predefined set of miRNAs and
genes as well as cancer disease. Also miRTrail (42) performs
ORA and Gene Set Enrichment analyses of interactions of
genes and miRNAs based on expression profiles. However,
it explores only miRNA → gene interactions.

CONCLUSION

We developed TFmiR as a comprehensive web server for
integrative analysis of the molecular interactions between
TFs/genes and miRNAs and their interwoven critical roles
in the pathology of human diseases. TFmiR provides an
extended downstream analysis, a variety of user param-
eters, user input scenarios and incorporates information
from various well-established regulatory databases. TFmiR
is based on user-provided sets of deregulated genes and/or
miRNAs regardless of the data producing technologies of
either microarray experiments, next generation sequencing
or PCR. We showed that unlike the traditional separate
analysis of gene expression profiles (43,44) or the aberra-
tion of miRNA expression in cancer tissues (45,46), this
integrated molecular analysis of deregulated miRNAs and
genes using TFmiR was able to uncover literature con-
firmed core regulators as well as important new aspects
of the TF/gene-miRNA interactomes, their co-regulation

mechanisms, and the underlying pathogenesis of human
breast cancer. The novel hub nodes of TFs/miRNAs could
be further experimentally investigated as new potential drug
targets. TFmiR was also able to characterize important
TF miRNA co-regulatory motifs whose co-regulated genes
form cooperative functional modules in breast oncogenesis
processes.

OUTLOOK AND PERSPECTIVE

TFmiR is planned to be integrated with other useful ORA
tools such as KeyPathwayMiner (47), GiGA (48), HotNet
(49) and jActiveModules (50) to allow the user to bene-
fit their advances within TFmiR. We also intend to allow
for submitting multi case expression data and times series
data as well as the currently supported case/control data.
Finally, expanding the TFmiR to elucidate the regulatory
mechanisms of cellular processes (ex. stem cell differentia-
tion) in addition to diseases would sort TFmiR of great in-
terest for wide range of researchers and most of life science
community.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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