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Abstract

histological processing.

Background: Restoration of normal bladder volume and function (i.e, bioequivalent bladder) are observed within
8 weeks of performing subtotal cystectomy (STC, removal of ~70 % of the bladder) in 12-week old rats. For analysis
of bladder function in rodents, terminal urodynamic approaches are largely utilized. In the current study, we
investigated the potential for Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) scans to
noninvasively track restoration of structure and function following STC.

Methods: Twelve week old female Fisher F344 rats underwent STC and were scanned via CT and/or MRI 2, 4,
8, and 12 weeks post-STC, followed by urodynamic testing. After euthanasia, bladders were excised for

Results: MRI scans demonstrated an initial decline followed by a time-dependent increase to normal bladder
wall thickness (BWT) by 8 weeks post-STC. Masson’s trichrome staining showed a lack of fibrosis post-STC, and
also revealed that the percent of smooth muscle in the bladder wall at 2 and 4 weeks positively correlated
with pre-operative baseline BWT. Moreover, increased BWT values before STC was predictive of improved
bladder compliance at 2 and 4 weeks post-STC. Cystometric studies indicated that repeated MRI manipulation
(i.e. bladder emptying) apparently had a negative impact on bladder capacity and compliance. A “window” of
bladder volumes was identified 2 weeks post-STC via CT scanning that were commensurate with normal
micturition pressures measured in the same animal 6 weeks later.

Conclusions: Taken together, the data indicate some limitations of “non-invasive” imaging to provide insight into
bladder regeneration. Specifically, mechanical manipulation of the bladder during MRI appears to negatively impact
the regenerative process per se, which highlights the importance of terminal cystometric studies.
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Background

Tissue engineering and regenerative medicine technolo-
gies represent a promising approach for development
of novel therapeutics for diverse lower urinary tract
pathologies [1, 2]. In fact, many different animal models
have been employed to evaluate the effectiveness of

* Correspondence: gjc8wa@virginia.edu

'Wake Forest Institute for Regenerative Medicine, 391 Technology Way,
Winston-Salem, NC 27101, USA

’Departments of Biomedical Engineering and Orthopaedic Surgery, and
Laboratory of Regenerative Therapeutics, University of Virginia, 415 Lane
Road, Charlottesville, VA 22908, USA

Full list of author information is available at the end of the article

( BioMed Central

different cell/scaffold combinations in augmentation of
the bladder [3—15]. However, a recent clinical report on
bladder augmentation with autologous cell seeded bio-
degradable scaffolds clearly indicates that current tech-
nologies are not yet ready for widespread clinical
applications [16]. Such developments speak to the im-
portance of improved understanding of mechanisms of
bladder regeneration, repair and remodeling per se as
an important prerequisite to improved clinical applica-
tions of regenerative medicine/tissue engineering tech-
nologies to bladder dysfunction and disease.
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Several studies have suggested that removal of a large
part of the bladder without replacement results in some
degree of functional bladder regeneration in both rats
[17-22] and humans [23-32]. As such, we have focused
our recent efforts on developing rodent models and
methods that can provide additional insight into the
cellular and molecular mechanisms responsible for func-
tional bladder regeneration in mammals. In rodents,
however, examining functional regeneration using uro-
dynamic approaches is invasive and limited to evaluation
of a single time point [33]. While voiding pattern assays
provide an opportunity for longitudinal analysis of blad-
der function [34, 35], they are also limited in the amount
of mechanistic physiological detail they can provide. As
such, non-invasive imaging may permit longitudinal
analysis of the bladder, providing additional morpho-
logical information over time, and potentially leading to
novel insights on bladder functional restoration. The
goal of this study was to evaluate the potential utility of
non-invasive methods for improved understanding of
the time course of functional bladder restoration fol-
lowing STC.

Furthermore, if successful, non-invasive imaging
could also have great prognostic value in the clinic. Im-
aging techniques have already been applied to tissue
engineering in, for example, cardiac, cartilage and bone
regeneration [36-38]. Although a few studies have used
Magnetic Resonance Imaging (MRI) and Computerized
Tomography (CT) to evaluate the utility of grafts in the
bladder, little is known about how changes in the
morphology of the bladder relate to bladder function
[39-41]. The current study explores the utility of both
CT and MRI to inform understanding of bladder func-
tion during regrowth/regeneration induced by subtotal
cystectomy (STC) in a well-characterized rodent model.
The results of this study demonstrate a potential for
non- invasive imaging as a prognostic indicator for the
functional success or failure of bladder regeneration.

Methods

Animals

Twenty-eight 12-week old (170-200 g) female Fisher
F344 rats underwent subtotal cystectomy (STC), and the
experimental design is shown in Fig. 1. All animals
underwent MRI scanning pre-operatively, with cohorts
of animals also scanned at 2, 4, 8, and 12 weeks post-
STC. For cystometric studies, 5 animals were designated
for analysis at 2, 4, and 12 weeks, while 10 were desig-
nated for analysis at 8 weeks. Of these 10 animals at
8 weeks post-STC, half (n = 5) were utilized for CT scan-
ning in addition to MRL. MRI procedures were com-
pleted the day before CT scanning and catheter
implantation. Additionally, retrospective analysis was
performed on previously published data from animals of
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the same strain, age, and gender [21]. All methods were
approved by the Animal Care and Use Committee,
Wake Forest University.

Trigone-sparing cystectomies

Animals underwent trigone-sparing STC as previously
described [21, 22, 42]. Briefly, two stay sutures were
made on either side of the bladder, just above the
uretero-vesical junction, using 6-0 polyglycolic acid.
The dome portion of the bladder was excised and the
remaining portion of the bladder was then sutured con-
tinuously using one of the original stay sutures. Animals
were allowed to recover and given food and water ad
libitum.

Magnetic resonance imaging (MRI)

All MRI experiments were performed in a 7 T horizon-
tal bore magnet (Bruker Biospin, Billerica, MA)
equipped with an actively shielded gradient insert. RF
signal transmission and reception was performed with a
50 mm LD. quadrature Litzcage RF coil (Doty Scien-
tific, Columbia, SC) tuned and matched with each rat
to 300.2 MHz. Rats were anesthetized with oxygen
(2 L/min) and isoflurane (2 %) and the bladder was
manually expressed. The animal was then placed in the
RF coil in the prone position with the bladder centered
in the RF coil. Anesthesia was maintained during the
scan via nose cone which provided oxygen (1 L/min)
and isoflurane (1.5 %). Body temperature was kept
constant by thermostatically controlled warm air (SA
Instruments, Stoney Brook, NY). A three plane locali-
zer scan was acquired using a Rapid Acquisition with
Relaxation Enhancement (RARE) spin echo pulse se-
quence with an echo train of 8 echos to ensure that the
bladder of each rat was centered in both the RF coil
and the magnet. A 3D FLASH pulse sequence allowed
for the acquisition of 8 slices, each 250 microns thick.
The low slice thickness reduced partial volume effects,
thus allowing for better detection of the inner and
outer surfaces of the bladder wall. The coronal 3D
FLASH slab was positioned using the tri plane locali-
zers as scout images so that the slices in the center of
the slab were perpendicular to the surface of the
bladder wall. Scanning parameters were as follows:
TR =50 ms, TE =6 ms, flip angle =15 degrees, FOV =
3 cm, matrix = 256x256, giving an in-plane resolution of
117um, NEX = 8. Acquisition was also respiratory gated to
avoid breathing motion artifacts. Analysis of bladder wall
thickness was performed using TeraRecon 3D
visualization and image analysis software using the linear
measurement tool. This was performed in triplicate, on
five different locations of the bladder wall, denoted “base”
to “dome”.
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Fig. 1 Schematic showing experimental design. Of the 28 rats undergoing STC, 3 died post-operatively, and the baseline scans of those animals
were omitted. All rats underwent MRI at every timepoint, while 5 of those rats had CT scans performed at every timepoint until 8 weeks. 5 rats
were used for terminal urodynamic studies at 2, 4, and 12 weeks. 10 rats had urodynamic testing at 8 weeks, including the 5 rats that received
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CT imaging

The day after MRI testing, CT Scans of the animals were
taken with a Siemens MicroCATII @ 70 kV, 500 pA (BIN
Factor of 4, 200° rotation, 500 steps, 73 micron cuts), and
the scans were centered on the bladder. Contrast medium
(288 mg/ml Iothalamate Meglumine, diluted 1:3) was ap-
plied via transurethral catheterization and injected until
bladder was full. All images were reconstructed using
COBRA EXXIM version 4.9.52, and converted to DICOM
images with Amira version 3.1. Analysis was done after
transfer of images to TeraRecon Aquarius Workstation.
Briefly, the entire image except the bladder was removed
using the erase function. A bladder template was opti-
mized with the following parameters: Window Width
(WW) of 1116, Window Level (WL) of 657, and 11 %
opacity. Finally, the volume measurement tool was used
for quantification of bladder volume.

Cystometric analysis

Bladder catheters were implanted and cystometric stud-
ies were performed 3 days after catheter implantation in
conscious, freely moving rats as previously described
[21, 42, 43]. Briefly, the indwelling catheter was con-
nected to a pressure transducer and infusion pump. The
pressure transducer was connected to an ETH 400 (CD
Sciences, Dover, New Hampshire) amplifier and read
with a MacLab/8e (Analog Digital Instruments, New
South Wales, Australia) acquisition board. Equipment
was calibrated in cmH,0 before each experiment. Room
temperature saline was infused at a rate of 10 mL/h.
Voided fluid was diverted into a collection tube at-
tached to a force displacement transducer. The follow-
ing cystometric parameters were investigated: basal
pressure (BP, lowest pressure between voids), maximum
pressure (MP, the highest pressure during micturition),
threshold pressure (TP, pressure which initiates a voiding
contraction), bladder capacity (Bc,p, residual volume plus

amount of saline infused), micturition volume (MYV,
amount of expelled urine), residual volume (RV, Be,p —
MYV), and bladder compliance (Bcom = Beap/(TP-BP)).

Histology

An additional subset of bladders were preserved for
histological analysis of smooth muscle content (1 =4/
timepoint). Bladders distal to the UV] were fixed in 10 %
buffered formalin overnight, processed, embedded in
paraffin and then cut into 7 uM axial slices. Slides were
cleared in xylene and rehydrated to water. Masson’s tri-
chrome stain (Newcomer Supply Catalog #9176A) was
performed on at least 2 different areas of the bladder
(i.e. a section closest to the base or UVJ/original plane
of excision, and a section taken towards the dome or
more distally). Four high magnification images were
taken in each section, and image analysis was per-
formed with ImagePro software 6.3 (Media Cybernetics,
Bethesda, MD). The color selection tool was used to
determine quantity of red (muscle) and blue (collagen)
pixels, and the percentage of muscle corresponds to the
number of red pixels/total number of selected pixels.

Statistical analysis

Non-invasive image reconstruction was performed with Ter-
aRecon AquariusNET software version 4.4.549 (TeraRecon,
Inc,, San Mateo, CA). Statistical evaluations and regression
analysis were performed using GraphPad Prism software.
(GraphPad software Inc.) One-way ANOVAs with
Neumann-Keuls post testing were performed on blad-
der wall thickness, cystometric parameters, and Tri-
chrome analysis. Additionally, t-tests were performed
on cystometric parameters obtained at 8 weeks in order
to determine the effect of MRIL. A two-way ANOVA
was used to determine any regional variations in bladder
wall thickness. P values less that 0.05 were considered
significant. All results are expressed as the mean + SEM.
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Results

Subtotal cystectomy

Of the 28 rats that underwent STC, three animals died
within three days after surgery due to urine leakage into
the peritoneum (10.7 % mortality rate).

MRI scanning

An example of a sagittal bladder slice and associated
measurements are shown in Fig. 2a, with demonstra-
tion of measurements in Fig. 2b. Analyzable scans were
attained in 24/25, 22/25. 18/20, 14/15, and 4/5 possible
scans at the 0, 2, 4, 8, and 12 week time points, re-
spectively. Analysis of sagittal slices of MRI scans re-
vealed an initial decrease in bladder wall thickness
(BWT) after STC, which normalized to control values
by 8 weeks post-STC (Fig. 2c). Values for BWT were
402.1 + 18.82 microns, 269.6 + 12.21 microns, 315.3 +
17.55 microns, 384.7 £19.11 microns, and 399.8 +
25.12 microns at the 0, 2, 4, 8, and 12 week time
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points, respectively. Analysis of BWT variations from
the bladder base to the bladder dome revealed no
significant differences between any of the time points
studied (8 weeks shown in Fig. 1d).

Trichrome analysis and regression

A representative trichrome image is shown in Fig. 3 and
analysis revealed no changes in percent smooth muscle
values at any time after STC, which were 66.16 + 1.41,
64.14 + 3.35, 65.46+2.09, 59.10+1.67, and 6348
1.35 % at 0,2,4,8, and 12 weeks post-STC, respectively.
However, the percent smooth muscle in the bladder
wall at the 8 and 12-week time points was positively
correlated with MRI-determined bladder wall thickness
at those same time points.

Cystometric analysis
All cystometric parameters are displayed in Fig. 4. Blad-
der capacity was higher at 8 weeks compared to every

microns

o

Wall Thickness (um)

Fig. 2 Bladder wall thickness normalizes thickness 8 weeks after STC. a Example of a sagittal view of a control (pre-STC) bladder visualized by
magnetic resonance imaging (MRI), magnified in b. ¢ 1 Way ANOVA analysis of quantified bladder wall thickness using MRI scans reveals that the
bladder wall is thinner than pre-STC values 2 and 4 weeks post-STC (P < 0.01). The number of observations at each timepoint represent the
number of successful scans at each timepoint, as instances of gating artifact did lead to some unsuccessful scans. The ratio of unsuccessful
scans to total number of possible scans was 1/25, 3/25, 2/20, 1/15, and 1/5 at 0, 2, 4, 8, and 12 weeks, respectively. d Analysis of regional wall
thickness shows no differences from control (n = 24) and 8 weeks post-STC (n = 14)
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Fig. 3 Quantification of smooth muscle to collagen ratios using semi-quantitation of Masson's trichrome staining. a Representative image of
excised STC bladder used for quantification by choosing pixel intensity b. ¢ Analysis shows no differences accross time, however linear regression
d reveals that the amount of smooth muscle is correlated with bladder wall thickness determined via MRI (P < 0.05)

other time point post-STC. Consistent with previous point at which CT was also performed). Subdivision of
studies, the average measured bladder capacity increased  the animals at the 8-week time point into those animals
until the 8-week time point, however in contrast to that received both CT and MRI vs. those that received
those studies, bladder capacity declined afterwards. MRI alone revealed statistically significant increases in
Upon closer inspection, there was significant variation in  bladder capacity, micturition volume and bladder com-
bladder capacity at the 8-week time point (the only time  pliance in CT-scanned animals when compared to
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Fig. 4 Urodynamic parameters as determined by in vivo cystometry. Top table shows mean (SEM) for animals 2, 4, 8, and 12 weeks post-STC.

*- Bladder capacity was higher 8 weeks post-STC compared with all other timepoints (P < 0.05). Cystometric parameters at 8 weeks post-STC are
further broken down into animals that were imaged via CT, and those that only underwent MRI scanning. T- Bcap, MV, and Bcom are significantly
different between animals with MRI alone (P < 0.05). Bcap- Bladder Capacity, MV- Micturition Volume, RV- Residual Volume, BP- Basal Pressure,
TP- Threshold Pressure, MP- Maximal Pressure. Bcom- Bladder Compliance. Lower panels show representative cystometrograms from animals
at 8 weeks subjected to MRI alone revealing abnormal readings in the form of non-voiding contractions (arrows)
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animals that had MRI alone. Importantly, bladders still
emptied completely in all animals as evidenced by low
residual volume.

Linear regression of urodynamic parameters and MRI
Scans

Linear regression analysis revealed that BWT, as deter-
mined via MRI (see Fig. 5), correlated with some cysto-
metric parameters early post-STC (i.e., 2 and 4 weeks).
Specifically, BWT at the time of sacrifice was nega-
tively correlated with bladder capacity at that same
time point (Fig. 5a). Additionally, pre-operative (base-
line) BWT values were positively correlated with the
bladder compliance and percent smooth muscle seen
at 2 and 4 weeks post-STC (P=0.049, and 0.016,
respectively).

CT scanning

A previous report documented that the anterior bladder
circumference measured via CT scans positively corre-
lated with maximum pressures generated by the bladder
post-STC [21]. Here, we conducted a retrospective ana-
lysis to further examine CT-determined bladder volume
with other cystometric parameters from the same ani-
mal. Retrospective analysis revealed a negative correl-
ation between total bladder volumes measured by CT
scans 2 weeks post-STC and the maximum pressures
generated in vivo 8 weeks post-STC (Fig. 6). A bladder
volume of less than 0.2 mls at 2 weeks post-STC was
associated with high pressures and detrusor overactivity
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at 8 weeks (i.e., the appearance of non-voiding contrac-
tions). Conversely, a bladder with a large volume at
2 weeks (>0.8 mls) resulted in significantly diminished
pressure generation during micturition at 8 weeks post-
STC. Bladders in which volumes ranged between 0.2 and
0.6 mls 2 weeks post-STC estimated by CT imaging were
subsequently observed to have normal urodynamic pro-
files at 8 weeks post-STC.

Discussion

The present study investigated the utility of Magnetic
Resonance Imaging (MRI) and Computerized Tomog-
raphy (CT), in conjunction with traditional measures,
to provide longitudinal mechanistic insight into restor-
ation of bladder structure and function. MRI can be
challenging in rodent models because of the small size
of organs/tissues (rat bladder). We were able to over-
come difficulties by using a 7 Tesla magnet coupled
with respiratory gating, although a few instances of mo-
tion artifact prevented acquisition of analyzable images
(8/90 possible scans). We noted that bladder wall thick-
ness (BWT) drastically decreased immediately after
STC, but returned to normal pre-operative values by
8 weeks post-STC (Fig. 2). Although absolute values of
BWT reported here with MRI (=400 pm) are lower
than our previous report based on histological evalu-
ation (=550 pm), it is still within the normal range re-
ported for BWT [21, 44]. Discrepancies between tissue
thickness via MRI and histology have been shown pre-
viously in, for example, the retina [45, 46]. Although
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Fig. 6 Retrospective regression analysis of animals subjected to STC reveals a predictive value for CT Scanning. This graph represents 2 week CT
and 8 week cystometric data from 4 animals in this study, along with 3 animals from a previous study (Burmeister et al,, 2010). a X-axis represents
bladder volume 2 weeks post-STC as determined by CT Scanning, and Y-axis represents maximum pressure (MP) generated by bladders 8 weeks
post-STC as determined by in vivo urodynamic studies in the SAME ANIMAL. b Representative cystometrograms at 8 weeks and (c) CT scans at
2 weeks of 3 individual animals. This analysis displays that animals with minimal bladder growth seen upon CT scanning 2 weeks post-STC (left of
the dashed lines) display bladder overactivity (arrows show non-voiding contractions), while the animal with a large bladder volume 2 weeks
post-STC (right of the dashed lines) generates low maximum pressures (i.e. ~13 cmH,0). Normal bladder function was seen in animals with
intermediate bladder volumes determined by CT 2 weeks post-STC. y = —46.65x + 52.12, r=0.82, P=0.02

statistically thinner at 2—4 weeks after STC, the bladder
did not display any significant fibrosis at any time
point, as illustrated by the percent smooth muscle in
the bladder wall displayed in Fig. 3c.

Urodynamic studies revealed increased bladder capaci-
ties 8 weeks post-STC similar to our prior report [21];
however this was not maintained 12 weeks post-STC
(Fig. 4). Significant variability in cystometric parameters
8 weeks post-STC prompted subdivision of the animals
based on whether they had an MRI only or MRI plus
CT on the day following MRI. Manual bladder emptying
during MRI apparently had an adverse impact on the
regeneration process leading to instances of non-voiding
contractions, abnormal basal pressures, and small blad-
der capacities (Fig. 4). At all time points, animals
assessed via MRI showed diminished recovery of normal
bladder volumes. Conversely, animals in which MRI
scanning/bladder emptying was followed by bladder fill-
ing during CT scanning showed complete restoration of
bladder volume and improved bladder compliance.
While the precise mechanism(s) responsible for this

observation remain unclear, it is interesting to speculate
that it may be related to untoward mechanical manipu-
lation of the bladder emptying during critical periods of
bladder regrowth and regeneration. Consistent with this
supposition is recent data in a murine model of STC
(Christ et al., unpublished observations) that indicates
that MRI without bladder emptying results in normal
recovery of bladder volume. Despite diminished recovery
of bladder volume in this study, residual volume never
increased in any animal, and there was no decrease in
bladder wall thickness (Fig. 2) or smooth muscle per-
centage in the bladder wall (Fig. 3).

A limitation of the current study involves technical diffi-
culties in standardizing the state of the bladder during im-
aging (i.e. how full/empty the bladder is during scanning).
Ideally, the bladder would be filled to a standard pressure
during scans to atone for dynamic BWT due to filling.
However, these MRI scans lasted approximately one hour,
and starting from empty presumably minimizes the effect
on BWT due to physiological filling. Similarly, CT scan-
ning requires filling the bladder with contrast medium,
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and clamping of the catheter to prevent emptying. It is lo-
gistically difficult to ensure a consistent pressure during
these scans, resulting in comparison of thoroughly and
comparably full bladders. Regardless, there is reasonable
consistency in these procedures as reflected in small vari-
ability shown in MRI and CT parameters. While we ac-
knowledge these technical limitations, as noted above, the
BWT measurements derived from MRI were still a rea-
sonable approximation of prior reports using more stand-
ard measures [21, 44].

Given these considerations, MRI studies still yielded
potentially interesting relationships between BWT and
bladder capacity and compliance (Fig. 5). Specifically,
during the first month of bladder regeneration, BWT
was negatively correlated with bladder capacity, perhaps
due to non-optimal cellular proliferation/organization in
the regenerating bladder wall at early time points. We
also found that baseline BWT (i.e., pre-STC) was posi-
tively correlated with both bladder compliance and the
percent of smooth muscle found in the bladder during
the first month post-STC. These correlations point to an
overall improved outcome of bladder regeneration in
animals that have a thicker bladder wall pre-STC, and
earlier recovery of BWT post-STC. While these metrics,
as well as their putative mechanism(s) require further
investigation, they may provide valuable insight into
important correlates of successful regenerative responses
in the bladder.

A previous report documented that bladder volumes
estimated by CT imaging accurately tracked bladder
capacity measured via cystometry [21]. Here we report a
retrospective analysis of those results, illustrating a
significant correlation observed between CT-determined
bladder volumes 2 weeks post-STC and maximal pres-
sure determined cystometrically in the same animal
8 weeks post-STC. This suggests that there may be a
normal volume range for bladder re-growth during the
first two weeks post-STC, such that bladder volumes
outside this range may result in abnormal bladder func-
tion (Fig. 6b). Specifically in the 2 weeks post-STC, a
small increase in bladder capacity (<0.2 mls) results in
bladder overactivity (i.e. high pressure and non-voiding
contractions), while a large amount of bladder growth
(>0.8) results in a substantial deficiency for pressure
generation in vivo. If further validated as an index for
the eventual success of bladder regeneration, the use of
CT scans at early time points during bladder regrowth
may provide a critical opportunity for intervention(s) to
correct an otherwise failed therapeutic recovery.

Conclusions

To summarize, we have demonstrated that although non-
invasive imaging may be a useful tool for obtaining mech-
anistic insight into bladder regeneration during the first 3
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months post-STC, these methods alone are not yet ready
to replace well-established functional analyses (i.e. cysto-
metry), as well as more descriptive measures of bladder
voiding patterns [35, 36]. Specifically, the impact of mech-
anical emptying of the bladder during critical stages of re-
generation using these modalities must be carefully
monitored to ensure that their utilization does not affect
the remodeling response being measured. Further investi-
gation will hopefully identify appropriate boundary condi-
tions such that both CT and MRI can be more effectively
used and provide important noninvasive mechanistic
insight into functional bladder regeneration. While
current urodynamic approaches (i.e. cystometry and void-
ing pattern analysis) must still be employed, non-invasive
imaging may eventually allow researchers to follow im-
portant aspects of the morphogenesis/bladder regener-
ation longitudinally. Ultimately, this approach could
identify noninvasive metrics early on in the regenerative
process where one might be able to not only predict the
extent and outcome of regeneration/re-growth, but also
develop effective interventions for therapeutic restoration
of bladder re-growth/regeneration.
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