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Abstract Prediction of the interactions between small molecules and their targets play important roles

in various applications of drug development, such as lead discovery, drug repurposing and elucidation of

potential drug side effects. Therefore, a variety of machine learning-based models have been developed to

predict these interactions. In this study, a model called auxiliary multi-task graph isomorphism network

with uncertainty weighting (AMGU) was developed to predict the inhibitory activities of small molecules

against 204 different kinases based on the multi-task Graph Isomorphism Network (MT-GIN) with the

auxiliary learning and uncertainty weighting strategy. The calculation results illustrate that the AMGU

model outperformed the descriptor-based models and state-of-the-art graph neural networks (GNN)

models on the internal test set. Furthermore, it also exhibited much better performance on two external

test sets, suggesting that the AMGU model has enhanced generalizability due to its great transfer learning

capacity. Then, a naı̈ve model-agnostic interpretable method for GNN called edges masking was devised

to explain the underlying predictive mechanisms, and the consistency of the interpretability results for 5

typical epidermal growth factor receptor (EGFR) inhibitors with their structure‒activity relationships

could be observed. Finally, a free online web server called KIP was developed to predict the kinome-

wide polypharmacology effects of small molecules (http://cadd.zju.edu.cn/kip).
571 88208412.

.cn (Yu Kang), oriental-cds@163.com (Dongsheng Cao), yukang@zju.edu.cn (Tingjun Hou).

s to this work.

se Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences.

al Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting

rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://cadd.zju.edu.cn/kip
mailto:tingjunhou@zju.edu.cn
mailto:oriental-cds@163.com
mailto:yukang@zju.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apsb.2022.05.004&domain=pdf
https://doi.org/10.1016/j.apsb.2022.05.004
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.elsevier.com/locate/apsb
http://www.sciencedirect.com
https://doi.org/10.1016/j.apsb.2022.05.004
https://doi.org/10.1016/j.apsb.2022.05.004


Kinome-wide polypharmacology profiling of small molecules by AI model 55
ª 2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical

Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The human kinome contains around 500 kinases, accounting for
roughly 1.7% of the whole human genome1. Protein kinases can
catalyze the transfer of the terminal phosphate group of adenosine
triphosphate (ATP) to substrate proteins, which plays a pivotal role
in signal transductions and regulation of a wide range of cellular
processes2.Moreover, aberrant kinase signaling has been linked to a
variety of diseases, such as cancer, autoimmune disorders, diabetes,
and neurological disorders3. The US Food and DrugAdministration
(FDA) has approved 71 small molecule kinase inhibitors by May
20214. Despite the significant progress made in recent years, some
challenges still need to be overcome in the field of kinase drug
discovery.On the one hand, previous studieswere focusing on only a
small subset of human kinases, while most others were over-
looked5,6. Thus, new techniques to reveal the activities of these
understudied kinases and discovery of new small-molecule in-
hibitors for the treatment of associated complicated indications are
urgently required6,7. On the other hand, most kinase inhibitors bind
to the highly conserved ATP binding pockets in a competitive
manner, which may lead to undesirable off-target effects6,8.
Certainly, inhibiting numerous kinases at the same time may
improve the efficacy of a kinase inhibitor and its ability to treat
several types of cancers and many incurable diseases5,6. Hence,
detecting the interactions between small molecules and kinase tar-
gets is quite critical to elucidate potential off-target effects, facilitate
drug repurposing and discover new kinase inhibitors9

With the rapid accumulation of experimental bioactivity data
for small molecules against kinases, many machine learning
(ML)-based ligand-centric models have been developed to predict
the kinome-wide polypharmacology of small molecules10e16. For
example, in 2017, Merget et al.17 developed a series of single-task
ligand-based kinase inhibition classification models based on the
connectivity-based and feature-based Morgan fingerprints for over
280 kinases using random forest (RF), naı̈ve Bayes (NB), K-
nearest neighbor (KNN), and deep neural network (DNN). The
single-task RF models achieved the best performance with an
average Area Under the Receiver Operating Characteristic curve
(AUROC) of 0.76. In 2018, Sorin et al.18 created the single-task
RF models for 104 kinases based on the extended connectivity
fingerprints (ECFPs) and pharmacophoric fingerprints (PFPs),
which were then used to predict the inhibitory activities of small
molecules against 104 kinases retrieved from ChEMBL. The
models yielded good predictions with median sensitivity and
specificity of higher than 0.8 for 90 kinase tasks and a median
AUROC higher than 0.9 for 96 kinase tasks. Later, Janssen et al.19

proposed the Drug Discovery Maps (DDM) method, which used
the t-distributed stochastic neighbor embedding (t-SNE) algo-
rithm to generate a visualization map of chemical similarity based
on molecular fingerprints and biological similarity. DDM was also
employed to find a novel inhibitor toward FMS-like tyrosine ki-
nase 3 (FLT3), which was confirmed by biochemical assays.
Recently, multi-task learning has attracted extensive attention and
it is an inductive transfer approach that improves generalization
by utilizing domain information contained in the training data of
multiple related learning tasks as an inductive bias20. In 2019,
Rodrı́guez-Pérez et al.21 developed the single-task support vector
machines (SVM), single-task RF, and multi-task DNN (MT-DNN)
models based on the ECFPs and Molecular ACCess System
(MACCS) fingerprints to predict the inhibitory activities of small
molecules against 103 kinases. The MT-DNN models achieved
the best prediction performance with a median Balanced Accu-
racy (BA) exceeding 0.8 and a median Matthews correlation co-
efficient (MCC) exceeding 0.75. Following that, Li et al.22

developed the MT-DNN model based on the ECFPs to predict
the inhibitory effects of small molecules against 391 kinases using
the large-scale bioactivity data. In the internal test set, the model
outperformed the standard single-task RF models with an
AUROC of 0.90, especially for these kinases with limited activity
data.

Despite the advances made in this field, there are still flaws and
issues that need to be addressed. First, almost all models
mentioned above were developed based on expert-crafted de-
scriptors as molecular representation, which may not fully exploit
the data’s characteristics. As a novel form of deep learning (DL)
algorithm, GNN can produce task-specific representation for
molecules from data in an adaptable manner. In many molecular
property prediction tasks, GNN models show better performances
than descriptor-based models23e27. However, the GNN algorithms
have never been utilized to predict protein kinase inhibition pro-
files. Therefore, it is quite valuable to explore the application of
these state-of-the-art methods in predicting kinase inhibitory ac-
tivities. Secondly, while multi-task learning has been effectively
implemented in this field, previous researches have failed to ac-
count for task conflicts during the training process, which may
result in inferior model performance28,29. To address these issues
in multi-task learning, dynamic weighting strategies were sug-
gested, but it is unknown whether these dynamic weighting al-
gorithms are useful in multi-task learning for drug discovery.
Third, the reported studies have never provided any interpret-
ability to explain the underlying predictive mechanisms for the
prediction models.

In this study, we proposed auxiliary multi-task graph isomor-
phism network with uncertainty weighting (AMGU), a new multi-
task GNN model that can predict the inhibition profiles for small
molecules against 204 kinases. As a comparison, four different
descriptor-based models and five GNN-based models were also
built. In both the internal and external testing, the AMGU model
beat the other 9 models, highlighting its superiority in the pre-
diction of kinase inhibition profiles. Compared with single-task
models, the AMGU model could effectively enhance the perfor-
mances of the separate tasks from related tasks, and the advan-
tages were more noticeable for the tasks with fewer data. In
addition, AMGU has the potential to uncover the relevance be-
tween the inhibition data of different kinases, which could aid in
the discovery of “group-selective” kinase inhibitors. Moreover, we
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proposed a naı̈ve model-agnostic explanation method named
edges masking to interpret the underlying predictive mechanisms
behind the AMGU model. Finally, a web server for the kinome-
wide polypharmacology profiling of small molecules was devel-
oped and freely accessible at http://cadd.zju.edu.cn/kip.
Table 1 Summary of the datasets.

Dataset Classification Regression

Total Positive Negative Task Total Task

Training

set

260,183 116,515 143,668 204 122,676 202

PKIS 46,179 2758 43,421 131 / /

PKIS 2 116,052 10,509 105,543 186 / /
2. Material and methods

2.1. Dataset collection and preparation

The “Human and mouse protein kinases: classification and
index” file was downloaded from the UniProt database (https://
www.uniprot.org/docs/pkinfam) to extract a list of the specified
UniProt identifiers of human kinases (organism: “Homo sapi-
ens”)30. The ChEMBL database (Release 27) was searched for
the experimental bioactivity data (i.e., IC50, Kd and Ki) by
querying the UniProt identifiers of human kinases on the
ChEMBL website15. Five independent kinase assays were addi-
tionally collected, including the Davis dataset12, Anastassiadis
dataset11, Metz dataset14, Published Kinase Inhibitor Set
(PKIS)16, and Published Kinase Inhibitor Set 2 (PKIS 2)13. The
inhibitory activity data points in the Anastassiadis dataset were
transformed to IC50 values via the equation previously defined31.
The dataset was then processed through the following steps to
assure data quality:

(1) The organic molecules without biological activity records
or clear chemical structures (SMILES string) and the
inorganic compounds were removed. For each molecule,
additional salts and solvents in the structure were removed
using the Python script from Merget et al.17

(2) High-confidence biochemical assays were kept (confidence
level �8, ensuring that there was a reported direct inter-
action between the ligand and its protein target), while the
assays for mutated kinase targets were removed32.

(3) For the classification tasks, a reasonable threshold of
1 mmol/L was defined to distinguish active and inactive
compounds according to the previous study22. For the PKIS
and PKIS 2 datasets, an inhibition rate over 50% at 1 mmol/
L was defined as the active threshold22. The Davis dataset,
Metz dataset, Anastassiadis dataset, and ChEMBL dataset
were integrated as the training set. The compound-kinase
pairs with both positive and negative labels in all datasets
were eliminated due to data conflict. Moreover, the tasks
with less than 40 positive and 40 negative samples were
excluded from the training dataset to ensure data quality.
The PKIS and PKIS 2 datasets were served as the external
test sets for further evaluation. The external test datasets
were also stripped of the compound-kinase pairs found in
the training set. Furthermore, only the tasks on the external
test sets with at least one positive and one negative sample
were evaluated.

(4) For the regression tasks, the bioactivity data points with
exact IC50 values were further extracted from the ChEMBL
dataset and Anastassiadis dataset. The geometric mean of
all the potency values was determined as the final potency
annotation for any inhibitor that has multiple IC50 values
for the same kinase33. At last, the negative logarithm values
of IC50 of the bioactivity data points were recorded in the
datasets. These bioactivity data for the regression tasks
were also used in the auxiliary learning.
A summary for all the datasets can be seen in Table 1. The
detailed information for each task in the dataset can be found in
Supporting Information Table S1. All datasets can be accessed at
http://cadd.zju.edu.cn/kip.

2.2. Molecule graph representation

In GNN, a molecule can be seen as a topological molecular graph
with hydrogen-depleted nodes and edges, where nodes represent
atoms and edges represent bonds. In this study, molecules were
converted to molecular graphs and utilized as the inputs for the
GNN-based models. As indicated in Tables 2 and 3, eight types of
atom features and four types of bond features were used as the
initial features of atoms and bonds. All atomic information was
represented by the one-hot form except that the formal charge was
in the integer form. All bond information was encoded in the one-
hot form. According to the study reported by Kip et al.34, self-
connected undirected edges were added to the atoms for the
GNN-based models except for the Directed Message Passing
Neural Network (DMPNN) model. The DGL-LifeSci (version
0.2.5)35 was used to transform molecules into bi-directed molec-
ular graphs.

2.3. AMGU

AMGU is a multi-task GNN with the uncertainty weighting (UN)
and the auxiliary learning strategy. The graph neural network
layers employed in AMGU are Graph Isomorphism Network
(GIN). The extra regression tasks functioned as the auxiliary
learning components were incorporated and embedded in the last
layer of the model to improve the generalization ability of the
classification tasks. Then the uncertainty weighting strategy was
utilized to resolve the potential conflicts between tasks by
dynamically adjusting the weight for each task. The AMGU
model is schematically depicted in Fig. 1.

Graph Isomorphism Network. Graph Isomorphism Network
(GIN) is a simple graph neural network proposed by Xu et al36.
The Xu’s study illustrates that its discriminative/representational
ability is equal to the power of the Weisfeiler-Lehman test36. As
shown in Fig. 1A, the architecture of GIN can be divided into
three different parts: (1) message-passing layer, (2) read-out layer,
and (3) fully connected layers36,37.

In the message-passing layer, the GIN model follows a
recursive neighborhood aggregation scheme, where each node
aggregates the feature vectors of its neighbors to form the new
feature vector through nonlinear transformation. Specifically, for
every node v, the node features hlv are updated as Eq. (1):

hlþ1
v ZReLU

 
Wl

g�
 
hlvþ

X
u˛NðvÞ

hlu

!
þblg
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ð1Þ
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Table 2 The atom initial features used in GNN.

Atom feature Size Description

Atom symbol 43 [C, N, O, S, F, Si, P, Cl, Br, Mg, Na, Ca, Fe, As, Al, I, B, V, K, Tl, Yb,

Sb, Sn, Ag, Pd, Co, Se, Ti, Zn, H, Li, Ge, Cu, Au, Ni, Cd, In, Mn, Zr,

Cr, Pt, Hg, Pb] (one-hot)

Atom degree 11 Number of covalent bonds [0,1,2,3,4,5,6,7,8,9,10] (one-hot)

Implicit valence 6 The implicit valence of an atom [1,2,3,4,5,6] (one-hot)

Hydrogens 7 The number of implicit Hs on the atom [0,1,2,3,4,5,6] (one-hot)

Atom

Hybridization

5 [SP, SP2, SP3, SP3D, SP3D2] (one-hot)

Aromaticity 1 Whether this atom is part of an aromatic system [0/1] (one-hot)

Formal charge 1 ‒2‒2 (integer)

Chirality 4 The chirality type of an atom [unspecified, tetrahedral CW, CCW, or other] (one-hot)
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where hlþ1
v is the node features of node n after lþ 1 iterations,

NðvÞ denotes the set of the neighbors of node n, Wl
g and blg are the

weight and bias, respectively, and ReLU denotes the rectified
linear activation function. After k iterations, the node features
vector hkv captures the structural information within the node’s k-
hop network neighborhoods. Followed by the message-passing
layer, a permutation invariant function as the readout function is
designed to aggregate all features hkv in the final iteration into the
graph embedding hG of the entire graph G. Here, a summation
function was used to directly aggregate the node features to gain
the graph embedding hG as Eq. (2):

hGZ
X
v˛G

hlv ð2Þ

where G denotes the whole molecular graph.
Subsequently, the graph embedding hG is fed to the fully

connected layers and undertakes the nonlinear transformation as
follows:

hlþ1ZReLU
�
hlW l þbl

� ð3Þ

where Wl is the weights of lth layer in neural network, bl is the
bias of lth layer in neural network, hl denotes the input layers, and
hlþ1 denotes the output layer. Then the output of this layer is fed to
the subsequent unit in the next layer and performs the same
operation. The result of the final output layer is used as the so-
lution for the problem38. For the regression task, the output is
calculated as the same as Eq. (3) but without the ReLU activation
function. While for the binary classification task, the sigmoid
activation function is applied in the last layer to ensure getting the
probability output in the range [0,1] for a particular task as Eq. (4):

hlþ1Zs
�
hlW l þbl

� ð4Þ
Table 3 The initial edge features used in GNN.

Edge

feature

Size Description

Bond type 4 [single, double, triple, aromatic]

(one-hot)

Conjugation 1 Whether the bond is conjugated [0/1]

(one-hot)

Ring 1 Whether the bond is part of a ring [0/1]

(one-hot)

Stereo 6 [none, any, E/Z or cis/trans] (one-hot)
where s denotes the sigmoid activation function. Finally, a loss
function is used to compute the losses between the neural network
outputs and true labels, which is used to guide the updating of
neural network parameters. The loss function for each task is the
weighted binary cross entropy, which imposes a higher penalty for
the misclassification of the minority class and aids in the devel-
opment of a discriminative model to handle the imbalanced dis-
tribution of the active and inactive points in our datasets39. The
expression is as Eq. (5):

LjZ
1

Nj

X
i

�Nj
neg

Nj
yi;j logðbyi;jÞ �Nj

pos

Nj
ð1� yi;jÞlogð1�byi;jÞ ð5Þ

where byi;j is the output of the model for sample i in task j, yi;j is the
ground-truth value for sample i in task j, Nj denotes the number of
the samples in task j, Nj

neg is the number of the negative samples in
task j and Nj

pos is the number of the positive samples in task j.
For single-task Graph Isomorphism Network (ST-GIN), the

weighted binary cross entropy was used as the loss function and
ST-GIN only outputted one prediction value. While for multi-task
Graph Isomorphism Network (MT-GIN), the loss function and
network structure were slightly different from that for ST-GIN. In
the MT-GIN, the hard-parameter sharing architecture was used
(Fig. 1A)40. The shared chunk, which was the layer preceding the
last layer in the network, shared parameters between tasks. The
last layer in MT-GIN, on the other hand, had its own set of task-
specific parameters and could predict several targets at once. The
loss function of every task was set as mentioned above Eq. (5) and
the final loss of all tasks was commonly set to be an average of the
single tasks’ losses Lj. The loss function of multi-task is as Eq. (6):

LallZ
1

C

XC
jZ0

wj,Lj ð6Þ

where C is the number of total tasks, and wj is the task-specific
weight for task j which is set to be uniform in common multi-
task learning models.

In addition to the previously mentioned primary components in
the architecture of neural networks, the batch norm (BN) and
dropout sections were added and shown in Fig. 1B. The batch
norm component was used to speed up and improve the stability of
neural networks41. The dropout portion was employed to keep the
neural networks from overfitting42.

Uncertainty weighting (UN). Uncertainty weighting is a dy-
namic weighting strategy that can adaptively change task-specific
weights wjðtÞ during the training process to balance these potential
conflicts and it may achieve high performance. As shown in Eq.



Figure 1 (A) The schematic overview of the AMGU model. The molecule is first represented by its initial atom and edge features and then fed

into the AMGU model. The atom and edge features are fed into the message-passing layer to transform their features from the previous adjacency

layer. The outputs from the final message-passing layer are reduced to vectors by the readout function (summation here), which is then used for

predicting the inhibitory activities of molecules towards different kinases via the stacked fully connected layers. The extra regression tasks (in

purple) are served as the auxiliary learning component to improve the generalization of the classification tasks. The total loss of AMGU is the

linear weighted average of the tasks with the task weights updated by the uncertainty weighting strategy. The task-specific parameters from the

last layer of the model are retrieved to capture the relevance between tasks. (B) The details of the AMGU model. The GIN module is solely used

to aggregate the data from the nearby nodes and perform linear transformations (without nonlinear activation function), while the ReLU module

serves as the activation function in the network.
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(6), the final loss function is often assumed to be a linear weighted
average of the single tasks’ losses Lj in multi-task learning. When
using stochastic gradient descent to minimize this loss function,
the network parameters in the shared layers W sh are updated as
Eq. (7):

WshZWsh � h
1

C

XC
jZ0

wj,
vLj

vWsh

ð7Þ

where Wsh denotes shared parameters and h denotes learning rate
in the neural network. According to Eq. (5), we can draw the
following conclusions that the network parameters updated may
be suboptimal when the task gradients conflict, or dominated by
one task when its gradient magnitude is much higher than those
for the other tasks29,43. To deal with this difficulty, some ap-
proaches by setting the task-specific weights wj in the loss44.
However, searching for appropriate task-specific weights by hand
is a difficult and expensive process. Hence, uncertainty weighting
was proposed as a dynamic weighting strategy by Kendall et al.44.
During the training process, the homoscedastic uncertainty was
exploited to balance the task-specific weights optimally. The
relative confidence between tasks can be captured using homo-
scedastic uncertainty as task-dependent uncertainty. Uncertainty
weighting strategy would automatically assign high task-specific
weights for the tasks with low homoscedastic uncertainty. In
their study, the loss function of multi-task classification tasks can
be written in Eq. (8):
LallZ
1

C

XC
jZ0

 
1

s2
j

Ljþ logs2
j

!
ð8Þ

where sj is jth task’s noise parameters, which is relevant to the
task’s homoscedastic uncertainty in task j. Here, sj, as a learnable
parameter for task j, is updated through standard backpropagation
in every batch and can essentially balance the task-specific losses
during training process. Large value sj denotes high task’s ho-
moscedastic uncertainty hence reducing the task weight for task j.
In all tasks, 1=s2j was initialized initialize to 1, which meant that
each task weight was uniform at first and then updated according
to the homoscedastic uncertainty of tasks.

Auxiliary learning with regression tasks. Auxiliary learning is
similar to multi-task learning but aims to improve the perfor-
mance on some primary tasks40. The auxiliary module is opti-
mized in tandem with the multi-task learning network during
training, and it serves as additional regularization by applying an
inductive bias to the shared layers. In the testing phase, only the
original multi-task learning network was retained45. With the
goal of improving the generalization of these classification tasks,
the regression tasks were used as the auxiliary tasks, and a new
model termed Aux-MT-GIN was constructed. The mean squared
error loss (MSE) was used as the loss function and as shown in
Eq. (9):

LrZ
1

Nr

X
i

ðyi;r �byi;rÞ2 ð9Þ
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where Lr denotes the loss of regression task r, Nr denotes the
number of the samples in regression task r, yi;r is the true label andbyi;r is the predicted value of the model. The total loss of auxiliary
learning can be calculated as Eq. (10):

LallZ
1

C

XC
jZ1

Lj þ 1

R

XR
rZ1

Lr ð10Þ

where R denotes the number of the regression tasks.
Furthermore, to handle potential conflicts between the classi-

fication tasks and regression tasks, the uncertainty weighting
strategy was introduced and a new model named AMGU was
developed, and the total loss was recast as Eq. (11):

LallZ
1

C

XC
jZ1

 
1

s2
j

Ljþ logs2
j

!
þ 1

R

XR
rZ1

�
1

2s2
r

Lrþ logs2
r

�
ð11Þ

where sr denotes the homoscedastic uncertainty in regression
task. All 1

s2j
and 1

s2j
are initialized as 1 at the beginning.

2.4. Model construction and evaluation protocols

For the classification task, the training data were split into the
training set, validation set, and internal test set with the ratio of
8:1:1 by using the “random stratified shuffle split” strategy to
ensure that the percentage of the samples for each class was
approximately preserved in each subset. In each task, the data
from the training set, validation set, and internal test set were
blended to be used for the multi-task learning. For the regression
tasks in the auxiliary learning, the regression labels were provided
if the same compound-kinase pair can be found in the classifica-
tion tasks otherwise removed from the training set, validation set
and internal test set. The training set was used to train the model,
the validation set was used to search for the best combination of
hyperparameters, and the internal test set and two external test sets
were further used to evaluate the performance of each model.

The AMGU model was developed by using PyTorch (version
1.5.0)46 and Deep Graph Library package (version 0.6.0)47. The
total loss of AMGU was the linear weighted average of the
weighted cross entropy for every task with task weight updated
according to the uncertainty weighting strategy. The Adam algo-
rithm was used to optimize the parameters in the model and the
task weights48. To avoid overfitting, an early stop was utilized
with the patience of 20 based on the average AUROC of all tasks
in the internal validation set. If there is no improvement on the
average AUROC in 5 consecutive epochs, the learning rate halves.
The maximum number of the training epochs was set to 500. The
detailed hyperparameters of different models can refer to Sup-
porting Information. The final results were given as the mean and
standard deviation for all models, which were performed with the
seeds ranging from 0 to 9. For all models, the open-source library
scikit-optimize was used to search for hyperparameters based on
the average AUROC for all tasks in the internal validation sets49.
To achieve acceptable performance, the model was subjected to
100 trials of hyperparameters search.

Several binary classification evaluation metrics were used to
evaluate the performance of the classification models, including
accuracy, precision (P), recall (R), F1-measure (F1), Matthews
correlation coefficient (MCC), balanced accuracy (BA), the area
under the receiver operating characteristic (AUROC) and the area
under the precision-recall curve (AUPRC)50. These metrics are
defined as Eqs. (12)‒(17):
AccuracyZ
TNþTP

TNþTPþ FPþ FN
ð12Þ

RecallZ
TP

TPþ FN
ð13Þ

PrecisionZ
TP

TPþ FP
ð14Þ

F1Z
2�Recall� Precision

ðRecallþ PrecisionÞ ð15Þ

MCCZ
TP�TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþTNÞ � ðTPþ FNÞ � ðTNþ FPÞ � ðTNþ FNÞp

ð16Þ

Balanced accuracyZ
1

2
�
�

TP

TPþ FN
þ TN

TNþ FP

�
ð17Þ

where TP, TN, FP and FN are the numbers of true positives, true
negatives, false positives and false negatives, respectively. The
AUROC was usually used to illustrate the model’s ability to
discriminate between positive samples and negative samples.
When the dataset is imbalanced, especially when there are very
few positive samples, AUROC may provide an optimistic view
towards the model and AUPRC may be a better choice than
AUROC.

For the regression tasks, coefficient of determination (R2) was
used to evaluate the performance of these tasks and defined as
follows for every task as Eq. (18):

R2Z1�
P ðyi;r �byi;rÞ2P ðyi;r � yi;rÞ2 ð18Þ

where yi;r is the average of all yi;r.
Pearson correlation coefficient (PCC) was used to evaluate the

relevance between the task-specific parameters in the classifica-
tion models, and it is defined as Eq. (19):

PCCX ;Y Z
covðX ;Y Þ
sXsY

ð19Þ

where covðX ; Y Þ is the covariance between X and Y , sX is the
standard deviation of X , and sY is the standard deviation of Y .

Other four descriptor-based models and five GNN-based
classification models were established and evaluated in the same
way. The uncertainty weighting strategy was not applied in these
models and the total loss was the average cross entropy for all
tasks. The descriptor-based models include single-task random
forest (ST-RF)51, single-task extreme gradient boosting (ST-
XGBoost)52, single-task Deep Neural Networks (ST-DNN) and
multi-task Deep Neural Networks (MT-DNN)38, and the GNN-
based models include single-task Graph Isomorphism Network
(ST-GIN)36, multi-task Graph Attention network (MT-GAT)53,
multi-task Attentive FP (MT-Attentive FP)54, multi-task Directed
Message Passing Neural Network (MT-DMPNN)55 and multi-task
Graph Isomorphism Network (MT-GIN). The detailed information
of these ML models can be seen in Supporting Information.

2.5. Interpretation for models

Although DL has posed a considerable impact in chemistry, one
important issue that cannot be overlooked is the lack of



Figure 2 The computation method of the importance score for a

specified atom.
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interpretability in this field. Interpretability is essential because it
guarantees our trust and transparency in the decision process of
ML models24. Hence, we designed a strategy called edges
masking to understand the results of the models in order to ensure
that the conclusion derived from the model is rational. The edges
masking was designed to offer the interpretability results for the
molecular property prediction tasks in the GNN model, and it was
inspired by the idea from this article56.

As seen in Fig. 2, the concept behind this strategy is simple and
straightforward. The importance score for each atom in the
molecule was calculated as follows. First, an original molecular
graph is fed into a GNN model to get a base prediction value.
Then, by masking out some chemically significant substructures in
the molecule, a modified molecular graph is created. Briefly, the
edges around a specified atom are masked out to construct the
modified molecule graph, which is roughly equivalent to masking
out the related functional groups at the molecular level with some
Table 4 The performances of all the models on the internal test set

Dataset Model

Internal test set ST-RF

ST-XGB

ST-DNN

ST-GIN

MT-DNN

MT-Attentive_FP

MT-DMPNN

MT-GAT

MT-GIN

AMGU

PKIS ST-RF

ST-XGB

ST-DNN

ST-GIN

MT-DNN

MT-Attentive_FP

MT-DMPNN

MT-GAT

MT-GIN

AMGU

PKIS 2 ST-RF

ST-XGB

ST-DNN

ST-GIN

MT-DNN

MT-Attentive_FP

MT-DMPNN

MT-GAT

MT-GIN

AMGU

aThe maximum values of AUROC and AUPRC for different datasets are
bThe low AUPRC values in two external test sets due to low positive ra
rationality in chemistry. The modified molecule graph is fed into
the GNN model and it gets a masking prediction value. The
Important score of this specified atom is the difference between
the base prediction value and the masking prediction value as Eq.
(20):

Importance scoreai Z ðFðGÞ�F
�
Gi

1�mi
�� ð20Þ

where G represents the original molecule graph, ai represents the
ith atom in the molecule, Gi

1�mi represents the modified molecule
graph by masking out the edges around ai, and F represents any
GNN model. The importance score of each atom in a molecule is
calculated. Then, by dividing by the largest absolute importance
score value, these importance scores of all atoms in the molecule
are normalized. The more important the contribution of the
chemical environment around an atom to the model’s output, the
higher its importance score.

3. Result and discussion

3.1. The overall performance of AMGU on 204 kinases

The average AUROC and average AUPRC are used to assess the
performances of AMGU and the other ML models. The perfor-
mances of all the tested models are summarized in Table 4, and
the detailed information of each model performance is presented
in Supporting Information Table S2. We can observe that the
and external test setsa.

AUROC AUPRCb

0.8777 � 0.0659 0.7974 � 0.1621

0.8666 � 0.0747 0.7831 � 0.1719

0.8677 � 0.0750 0.7891 � 0.1649

0.8643 � 0.0762 0.7723 � 0.1766

0.9403 � 0.0321 0.8849 � 0.1032

0.9345 � 0.0345 0.8778 � 0.1059

0.9380 � 0.0330 0.8831 � 0.1026

0.9347 � 0.0353 0.8788 � 0.1033

0.9415 � 0.0332 0.8879 � 0.1005

0.9425 ± 0.0321 0.8907 ± 0.1003

0.7699 � 0.1150 0.2601 � 0.2153

0.7611 � 0.1131 0.2504 � 0.1990

0.7842 � 0.1110 0.2709 � 0.1923

0.7820 � 0.1176 0.2554 � 0.1913

0.8323 � 0.0900 0.3266 � 0.1922

0.8431 � 0.0833 0.3136 � 0.1999

0.8526 � 0.0820 0.3291 � 0.2038

0.8387 � 0.0779 0.3208 � 0.1948

0.8455 � 0.0769 0.3319 � 0.2045

0.8708 ± 0.0773 0.3773 ± 0.2097

0.7071 � 0.0744 0.2352 � 0.1290

0.6921 � 0.0741 0.2273 � 0.1240

0.6951 � 0.0786 0.2379 � 0.1300

0.7029 � 0.0787 0.2273 � 0.1270

0.7482 � 0.0663 0.3015 � 0.1463

0.7607 � 0.0722 0.3039 � 0.1440

0.7594 � 0.0701 0.3090 � 0.1503

0.7573 � 0.0692 0.3040 � 0.1442

0.7619 � 0.0704 0.3188 � 0.1539

0.7796 ± 0.0741 0.3436 ± 0.1607

bold.

te in these datasets.



Table 5 The performances of different methods on the different dataset in terms of main classification metricsa.

Dataset Metric ST-GIN MT-GIN AMGU

Internal test set AUROC 0.8643 � 0.0762 0.9415 � 0.0332 0.9425 ± 0.0321

AUPRC 0.7723 � 0.1766 0.8879 � 0.1005 0.8907 ± 0.1003

P 0.6795 � 0.1878 0.7888 ± 0.1348 0.7849 � 0.1401

R 0.7613 � 0.1293 0.8564 � 0.0712 0.8571 ± 0.0724

F1 0.7077 � 0.1639 0.8140 ± 0.1074 0.8122 ± 0.1109

Accuracy 0.8163 � 0.0650 0.8854 ± 0.0330 0.8846 � 0.0330

BA 0.7930 � 0.0785 0.8720 � 0.0427 0.8716 ± 0.0433

MCC 0.5653 � 0.1653 0.7222 ± 0.1002 0.7204 ± 0.1030

PKIS AUROC 0.7820 � 0.1176 0.8455 � 0.0769 0.8708 ± 0.0773

AUPRC 0.2554 � 0.1913 0.3319 � 0.2045 0.3773 ± 0.2097

P 0.1560 � 0.1038 0.1732 � 0.1137 0.2020 ± 0.1249

R 0.6181 � 0.2147 0.7438 ± 0.1700 0.7390 � 0.1929

F1 0.2303 � 0.1243 0.2610 � 0.1350 0.2938 ± 0.1427

Accuracy 0.7874 � 0.0942 0.7853 � 0.0832 0.8157 ± 0.0866

BA 0.7077 � 0.1072 0.7659 � 0.0832 0.7797 ± 0.0926

MCC 0.2138 � 0.1141 0.2673 � 0.1050 0.3007 ± 0.1185

PKIS 2 AUROC 0.7029 � 0.0787 0.7619 � 0.0704 0.7796 ± 0.0741

AUPRC 0.2273 � 0.1270 0.3188 � 0.1539 0.3436 ± 0.1607

P 0.1974 � 0.1125 0.2340 � 0.1265 0.2631 ± 0.1409

R 0.4745 � 0.1555 0.5822 ± 0.1519 0.5693 � 0.1682

F1 0.2575 � 0.1127 0.3133 � 0.1278 0.3346 ± 0.1329

Accuracy 0.7744 � 0.0893 0.7904 � 0.0730 0.8139 ± 0.0757

BA 0.6381 � 0.0658 0.6954 � 0.0660 0.7027 ± 0.0720

MCC 0.1859 � 0.0970 0.2601 � 0.1041 0.2844 ± 0.1145

aThe maximum values of metrics for different datasets are bold.

Table 6 The comparison of the performances between our

model and the Li’s model.

Dataset AMGU Li’s Model P valuea

PKIS 0.8724 � 0.0777 0.8203 � 0.1017 0.000

PKIS 2 0.7740 � 0.0700 0.7073 �0.0756 0.000

aThe significance differences for the Mann‒Whitney U test.
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multi-task learning models significantly outperform the single-
task learning models across all the three sets, with a 6.48%e
10.97% absolute gap in the average AUROC and a 9.33%e
12.69% absolute gap in the average AUPRC between the multi-
task learning models and single-task learning models across the
three test sets, demonstrating that the multi-task learning models
are more superior for kinase inhibition prediction. In addition, the
AMGU model outperforms the other multi-task learning models,
with an average AUROC of 0.9425 and an average AUPRC of
Table 7 The performances of the Auxiliary leaning.

Dataset Model AUROC AUPRC

Internal

test set

MT-GIN 0.9415 � 0.0306 0.8877 � 0.0967

MT-GIN-UN 0.9384 � 0.0320 0.8824 � 0.1007

Aux-MT-GIN 0.9379 � 0.0329 0.8826 � 0.1045

AMGU 0.9425 � 0.0321 0.8907 � 0.1003

PKIS MT-GIN 0.8455 � 0.0769 0.3319 � 0.2045

MT-GIN-UN 0.8546 � 0.0756 0.3436 � 0.2043

Aux-MT-GIN 0.8303 � 0.0872 0.3182 � 0.1966

AMGU 0.8708 � 0.0773 0.3773 � 0.2097

PKIS 2 MT-GIN 0.7619 � 0.0704 0.3188 � 0.1539

MT-GIN-UN 0.7661 � 0.0701 0.3187 � 0.1550

Aux-MT-GIN 0.7522 � 0.0686 0.2919 � 0.1478

AMGU 0.7796 � 0.0741 0.3436 � 0.1607
0.8907 for the internal test set, an average AUROC of 0.8708 and
an average AUPRC of 0.3773 for the PKIS dataset, and an average
AUROC of 0.7796 and an average AUPRC of 0.3436 for the
PKIS2 dataset. The AMGU model outperforms MT-GIN on both
the internal and external test sets, demonstrating that the auxiliary
learning and uncertainty weighting strategy have favorable con-
tributions the multi-task learning in kinase inhibition prediction.

Some other important binary classification evaluation metrics
were also utilized to evaluate the models, with the ST-GIN model
and MT-GIN as the baseline to further verify the advantages of the
AMGU model. The performances of AMGU, MT-GIN and ST-
GIN on various datasets are listed in Table 5. When compared
with the ST-GIN model, the performance of AMGU is always
better than that of ST-GIN on the different datasets under the main
classification metrics. When compared with the MT-GIN model,
the AMGU model shows close or even slightly higher perfor-
mance than the MT-GIN model in the internal test set. However,
the main advantages of the AMGU model over the MT-GIN model
are shown in two external datasets collected from the result of
high throughput screening. It is noteworthy that all metrics except
Recall of the AGMU model have been boosted. Compared with
the MT-GIN model, more stringent criteria are taken in the
AMGU model to distinguish positive samples from negative
samples, which results in the decline of Recall and the boost of
Table 8 The task weights and training loss of all tasks in

AMGUa.

Task Task weights Training loss

Regression tasks 1.1299 � 0.0266 0.0956 � 0.0478

Classification tasks 2.3144 � 0.0209 0.0616 � 0.0212

aThe task weights and training loss of all tasks are presented

mean � standard deviation.



Figure 3 The performances of ST-GIN and AMGU on the tasks with different data volumes. A bar indicates the average AUROC or AUPRC of

tasks with the number of bioactivity data points within the underlying range. The significance differences are under ManneWhitney U test and

shown in the figure according to the following standards: *0.01�P<0.05; **0.001�P< 0.01; ***P< 0.001.

62 Lingjie Bao et al.
Precision. But taking overall improvement under the main clas-
sification metrics into consideration, it is acceptable for the lower
value of Recall in the AMGU model than the MT-GIN model (but
still higher than the ST-GIN model). Hence, the AMGU model is
more suitable than the MT-GIN model for applications in real-
world scenarios to some extent. These results further illustrate
the advantages of the AMGU model.

Furthermore, we compared the performances of our model and
the Li’s model22 for the same tasks on the PKIS and PKIS 2
datasets in terms of AUROC because only the metric of AUROC
was reported by Li et al. There are 121 same targets in the PKIS
dataset and 170 same targets in the PKIS 2 dataset. The average
AUROC values of the same tasks for the AMGU and Li’s models
were calculated and compared. As shown in Table 6, on both PKIS
and PKIS 2 datasets, our model performs better in those tasks.
Furthermore, the AUROC values for the two separate external test
sets show substantial difference between our model and Li’s
model, highlighting the superiority of our model. More details of
the comparison between our model and Li’s model can be found in
Supporting Information Table S3.

3.2. The contribution of auxiliary learning and uncertainty
weighting strategy

For kinase inhibition prediction, we also investigated the role of
the auxiliary learning and uncertainty weighting strategies in the
multi-task learning. For conducting the ablation experiments, the
MT-GIN model with the auxiliary learning (Aux-MT-GIN) and
the MT-GIN model with the uncertainty weighting strategy (MT-
GIN-UN) were developed. The results of the ablation experi-
ments are shown in Table 7. The overall performances of the
different models on the two external test sets rank as follows:
AMGU > MT-GIN-UN > MT-GIN > Aux-MT-GIN. When the
auxiliary learning strategy was solely used with the regression
tasks in MT-GIN, it (Aux-MT-GIN) degrades the performances
of the classification tasks when compared with the original MT-
GIN. This might be attributed to the fact that the regression tasks
have larger-scale losses than the classification tasks, making the
Aux-MT-GIN model pay more attention to regression tasks so
that the auxiliary learning part in the model can’t really work
even downgrade the performance of original tasks. When using
only the uncertainty weighting in MT-GIN, it (MT-GIN-UN) can
achieve a minor improvement in the two independent external
test sets, demonstrating the effectiveness of the uncertainty
weighting in this dataset to some extent. When these two tech-
niques were combined in MT-GIN to generate the AMGU model,
it yields a minor improvement in all the test sets, with a
maximum absolute improvement of 3.6% in AUPRC and 2.16%
in AUROC when compared with the original MT-GIN model.
Therefore, the improved performance of the AMGU model might
be attributed to the combination of these two tactics. The losses
and task weights in the classification and regression tasks are



Figure 4 The Pearson correlation coefficient between different classification tasks. All tasks are organized by the kinase groups, which are

based on the UniProt database’s classification. The tasks against the same group begin with the name of the group and end with the name of the

other group on the axis.
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taken into account for further analysis, and their outcome is
presented in Table 8. Due to the low homoscedastic uncertainty
(training loss) in the classification tasks, the uncertainty
weighting strategy might automatically balance any conflicts
between the regression and classification tasks and provide larger
weights to the classification tasks than the regression tasks. The
classification task weights are nearly twice as high as the
regression task weights, causing our model to pay more attention
to the classification tasks and improving its performance on the
classification tasks.
Figure 5 (A) The scaffold structure of 4-anilinoquinazolines derivatives.

chemical name and the model’s anticipated value are annotated below the

inhibitors are shown in the first row and second row, respectively, and the
3.3. Tasks with small data volumes benefit more from AMGU
model

As mentioned above, the AMGU model outperforms the ST-GIN
model on nearly 90% of the tasks. Our results show that the tasks
with small data quantities benefit more than those with large data
volumes. Fig. 3 depicts the association between the training data
size and the performances of the AMGU and ST-GIN models.
Obviously, the AMGU model consistently outperforms the ST-
GIN model due to the significant transfer learning effect of
(B) The interpretability results of representative EGFR inhibitors. The

molecule structure. The first-generation and second-generation EGFR

acrylamide moiety is highlighted with a black dotted circle.



Figure 6 The illustrations of the KIP webservice. (A) Input page of the website; (B) Result page of the website.
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multi-task learning22,57, suggesting that related tasks can benefit
from the AMGU model. In addition, as demonstrated in Fig. 3, the
tasks with small data volumes benefit more from the AMGU
model than those with large data volumes. It is quite challenging
to build highly discriminative classifiers using single-task learning
methods because some kinase targets have limited activity data.
The AMGU model can exploit the domain information from
related tasks and boost the performances of these tasks with
limited data points, which may hopefully aid the discovery of new
inhibitors for these understudied kinases.

3.4. AMGU can reveal the correlation between different kinases

Another advantage of our multi-task learning model is that it can
recognize data characteristics and learn the underlying
correlations between different kinases automatically. The param-
eters of the task-specific parameters of the classification tasks in
the final fully-connected layer of the AMGU model (Fig. 1) were
extracted independently to analyze the relevance between these
tasks. Every task was represented by a vector with 1001 di-
mensions. The Pearson correlation coefficient for each vector pair
was calculated. As illustrated in Fig. 4, the inhibitors within the
same group tend to be clustered more closely than those outside
the group, particularly for the CMGC, AGC, CK1, CAMK, and
Tyr kinase groups (in red box). This result is consistent with the
fact that there are some kinase inhibitors referred to as “group-
selective inhibitors” which are broadly active against a single
group of kinases but selective outside that group12. As a result, we
can deduce that multi-task learning can conceptually capture the
inherent characteristics of data.
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3.5. Interpretation for EGRF inhibitors

In addition to the model’s accuracy, it is quite important to
interpret the underlying predictive mechanisms behind the
AMGU model. Here, 4-anilinoquinazolines derivatives, one of the
most important classes of EGFR inhibitors, were selected to
interpret the prediction results of the EGFR inhibition prediction
task for the AMGU model because their quantitative
structureeactivity relationships (QSAR) have been well-estab-
lished58,59. The scaffold structure of 4-anilinoquinazolines is
shown in Fig. 5A. As proven previously, the N1 and N3 atoms in
4-anilinoquinazolines play the most critical roles in suppressing
the activity of EGFR59.

The edges masking strategy was used to interpret the predic-
tion results of the AMGU model. Two first-generation inhibitors
(i.e., gefitinib and erlotinib) and three second-generation inhibitors
(i.e., afatinib, canertinib, and dacomitinib) of EGFR were
analyzed as the representative examples. Fig. 5B depicts the re-
sults of the interpretability test. For all these inhibitors, the edges
masking interpretability approach highlights the atoms around N1

and N3, indicating the relevance of the chemical environment
around these atoms contributing to the model’s output. Moreover,
the acrylamide moiety is the key component of the second-
generation EGFR inhibitors, and it serves as an electrophilic
warhead that conducts Michael addition with the conserved C797
residue in the EGFR active region60. The removal of this sub-
structure from the molecule alters this type of inhibitors from
covalent to non-covalent, but does not significantly change its
inhibitory activity. Our model also identified these small variations
in molecules as well, as seen in Fig. 5B, but did not give this
component a high importance score.

Overall, the consistency of the interpretability results with the
QSAR of 4-anilinoquinazolines demonstrates that our model has
learned several critical molecular structures to some level, which
raises our confidence to the model.
3.6. Web server for the identification of kinase inhibitors

To share our models with other chemists and pharmacologists,
we developed a web server called Kinase Inhibition Prediction
(KIP) (http://cadd.zju.edu.cn/kip) to profile the kinome-wide
polypharmacology effects of small molecules (Fig. 6). The KIP,
which was developed based on the Django framework, is freely
available to non-commercial users. The web server is able to
predict the biological activities towards kinases for small mole-
cules, and it can also provide an interpretable explanation from
the model to the positive outcome. Given the website’s user-
friendliness, the RDKit (Release 2019.09.1)61 and Plotly
(https://plotly.com/python/) were employed for the depiction of
molecules and the visualization of results, respectively. The
datasets utilized in this study and the trained models are also
available on this website.

The workflow of KIP is as follows: (i) The client-side
(browser) submits a query molecule for bioactivity prediction by
sketching its structure from the ChemDoodle panel62 or inputting
its SMILES. Multiple-molecule Comma-Separated Values (CSV)
or Structure Data File (SDF) files are also acceptable for sub-
mission. (ii) The kinome-wide inhibitory activities against 204
kinases are predicted at the server-side based on the AMGU
model. (iii) The model’s outputs are saved in a CSV file that can
be downloaded. The visualization of the result and the explanation
of the result are also available online for inspection.

4. Conclusions

In this study, the AMGU model based on the MT-GIN method
combined with the auxiliary learning and uncertainty weighting
strategy was proposed and used to simultaneously predict the
inhibition profiles of small molecules against 204 kinases. The
calculation results illustrate that the overall performance of the
AMGU model is better than those of the other descriptor-based
and GNN-based models, including ST-XGB, ST-RF, ST-DNN,
MT-DNN, ST-GIN, MT-Attentive FP, MT-DMPNN, MT-GAT and
MT-GIN on the test datasets. The ablation studies were carried
out to further verify the effectiveness of the AMGU model. When
both the auxiliary learning and uncertainty weighting strategy
were integrated with the MT-GIN method, the corresponding
models yielded better performance, suggesting that the combi-
nation of these two strategies jointly improved the performance of
the model. The AMGU model can automatically assign higher
task weights for the classification tasks due to low homoscedastic
uncertainty in the classification tasks when analyzing the task
weights and training losses of the classification and regression
tasks. The AMGU mode has two advantages. One is that, due to
the strong transfer learning ability, it can improve the generaliz-
ability for nearly all tasks, especially those with limited data.
Another advantage is that our multi-task learning model can
comprehend the data’s characteristics and learn the potential
correlation between tasks automatically to a certain extent. The
model’s correlation is based on the kinase group, which corre-
sponds to the real-world situation where some “group-selective
inhibitors” exist that are active against a single kinase group but
selective outside of that group. Then, a simple model-agnostic
interpretable strategy for GNN called edges masking was
designed to understand the model’s potential decision-making
process. The consistency between the interpretability results of
five representative EGFR inhibitors and their QSAR showed that
our model could learn some key molecular structures. Finally, a
freely accessible webserver named KIP was developed for the
implementation of the well-trained models. Overall, our multi-
task learning model makes large-scale kinome-wide virtual
profiling of small molecular simple, which could help explain
unwanted side effects, repurpose drugs, and discover new hit
compounds.
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