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Introduction

Glioblastoma multiform  (GBM) is a malignant brain tumor 
that affects many people every year. Despite the new treatment 
options, its mortality is high. Moreover, due to the late diagnosis 
of  asymptomatic patients in the early phase, cancer advances to 
an advanced stage, and as a result, treatment is difficult or even 
ineffective.[1,2] Another challenge is the blood‑brain barrier (BBB) 
that makes it difficult for the medication to pass through. In 
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Abstract

Background and Aim: Glioblastoma multiform (GBM) is considered as one of the malignant brain tumors that affect a wide range of people 
every year. Cancer stem cells, as essential factors, are resistant to chemotherapy drugs and complicate treatments. Therefore, finding 
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approaches for GBM. Method: In this study, using RNA‑Seq data, we performed continuous bioinformatics analyses and examined the 
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and extracellular space. We then examined the candidate genes and the approach of the drugs that target these genes. Chlorambucil, 
cyclosporine A, doxorubicin, and etoposide were selected as the drug agents. Conclusion: Using integrated bioinformatics analyses, 
it was found that prominent genes in the cell cycle and cytoskeletal pathways are more expressed in cancer stem cells and that 
Chlorambucil, cyclosporine A, doxorubicin, and etoposide can be effective compounds to attenuate these cells.
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addition, tumor cells have shown resistance to drug compounds 
during several chemotherapy sessions, and one of  the main 
factors for this is the stem cells derived from cancerous tissues.[3]

Cancer stem cells constitute 1% of  the total population of  
cancer cells. Despite chemotherapy, these cells can survive due 
to their small size and form new tumor cells, which due to their 
differentiation and automotive properties, are more resistant 
to drugs.[4,5] In one study, it was found that temozolomide was 
ineffective against GBM‑derived stem cells.[2] Therefore, new 
strategies in the study of  signaling pathways and molecules 
involved in cancer stem cells may help in identifying more suitable 
drug compounds to overcome cancer stem cells.

In the past few years, bioinformatics has proven to be very 
effective in identifying essential elements in cell physiology and 
their pathways that play a beneficial role in predicting molecular 
functions and the nature of  genes and protein products.[6‑8] 
Therefore, this study aimed to investigate the pathways of  cancer 
stem cells derived from GBM patients. Finally, our attempt was to 
select the required genes in the development and progression of  
GBM and to determine the effective drug agents in this regard.

Methods and Materials

Selection of databases
In this study, we selected the RNA‑Seq dataset  (GSE92459) 
from the SRA database. This dataset contained 21  samples 
from stem cells derived from GBM patients and several cells as 
a control sample.

Classifying the data and performing bioinformatics 
analyses
In this step, we uploaded the GSE92459 to the Biojupies database 
and then separated the signaling pathways from the wiki pathway 
database and the gene ontology from the Enrichr database. In this 
section, all routes were classified according to the P value <0.05.

Investigation of protein association
In this section, we isolated the genes that were closely related to 
tumorigenesis and the progression of  GBM, loaded them into 
the STRING database; and finally, isolated the protein network 
of  the upregulated genes.

Choosing effective medications
Following bioinformatics analysis, we entered the critical genes, 
both in terms of  ontology genes and the relationship between 
their proteins, in the Drug matrix database and then listed the 
drugs associated with cancer pathways along with their dosage.

Examining and plotting essential genes in the 
pathway of various cancers
In this section, essential genes associated with cancer were 
isolated and uploaded to the GEPIA database for testing with 

other common cancers and GBM. Also, a Kaplan Meyer box 
plot diagram was drawn to show the survival rate.

Results

Tumor‑dependent neuronal migration, axon guidance, and 
cell cycle phase‑dependent pathways were significantly 
expressed.

After bioinformatics analysis, mitotic prometaphase, 
resolution of  sister chromatid cohesion, cel l  cycle, 
mitotic, gastric cancer network 1, cell cycle, M phase, and 
mitotic anaphase pathways showed up‑regulation. The 
neuronal system, GABA synthesis, release, reuptake and 
degradation, axon guidance, neurotransmitter release cycle, 
and extracellular matrix organization showed down‑regulation 
when GBM‑derived stem cells were compared to normal 
cells [Table 1, Figure 1].

Investigation of gene ontology
We evaluated three general approaches to molecular 
functions, biological processes, and cellular components 
after examining the gene expression profile. Accordingly, 
in terms of  molecular procedures and biological processes, 
transcriptional activator activity, RNA polymerase II 
transcription regulatory region sequence‑specific binding (GO: 
0001228), spindle (GO: 0005819), RNA polymerase II 
regulatory region sequence‑specific DNA binding  (GO: 
0000977), mitotic sister chromatid segregation (GO: 0000070), 
antigen processing and presentation of  exogenous peptide 
antigen via MHC class  II  (GO: 0019886), microtubule 
cytoskeleton (GO: 0015630), and chromosome, centromeric 
region (GO: 0000775) showed up‑regulation, while nervous 

Figure  1: Volcano Plot. The figure contains an interactive scatter 
plot that displays the log2-fold changes and statistical significance 
of each gene calculated by performing a differential gene expression 
analysis. Every point in the plot represents a gene. Red points indicate 
significantly up-regulated genes; blue points indicate down-regulated 
genes
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system development  (GO: 0007399), chemical synaptic 
transmission  (GO: 0007268), calcium ion transport into 
the cytosol  (GO: 0060402), anterograde trans‑synaptic 
signaling (GO: 0098916), neuron projection morphogenesis 
(GO: 0048812), amyloid‑beta binding  (GO: 0001540), 
dendrite  (GO: 0030425), and Wnt‑activated receptor 
activity  (GO: 0042813) demonstrated down‑regulation. 
The presence of  protein products of  genes in different cell 
locations can also be seen in [Figure 2].

Correlation between protein networks
We examined 41 up‑regulated genes that showed a more critical 
role and formed 54 nodes and 73 edges in the protein network. 
This network showed acceptable communication in cell adhesion 
molecules, TNF, and P53 signaling pathways [Figure 3].

Evaluation of  drugs that can be effective in 
treatments of GBM
We isolated important genes that play a significant role in 
the main processes of  tumorigenesis and GBM progression. 
Azathiprine  (20  mg/kg), doxorubicin  (3  mg/kg), cyclosporin 
A  (350  mg/kg), chlorambucil  (0.6  mg/kg), etoposide 
(100 mg/kg), leflunomide (30 mg/kg), thioguanine (12 mg/kg), 
cyclophosphamide (25 mg/kg), daunorubicin (3.25 mg/kg), and 
clobetasol propionate (17 mg/kg) were the top 10 drugs with 
high significance P value [Table 2].

Discussion

In this study, the main purpose was to find essential 
signaling pathways in GBM‑derived stem cells to select effective 

Table 1: Top 10 up/downregulated signaling pathways
Pathways P Genes 
Upregulated pathways

Mitotic Prometaphase 1.60E‑10 ZWILCH, PLK1, CDCA8, SMC4, CENPA, NCAPH, SKA1, CDC20, CCNB2, 
CENPE, CCNB1, KIF18A, CENPF, BIRC5, KIF2C, CENPN, BUB1, MAD2L1

Resolution of  Sister Chromatid Cohesion 3.07E‑09 ZWILCH, PLK1, CDCA8, CENPA, SKA1, CDC20, CCNB2, CENPE, CCNB1, 
KIF18A, CENPF, BIRC5, KIF2C, CENPN, BUB1, MAD2L1

Cell Cycle, Mitotic 2.21E‑08 TOP2A, ZWILCH, CDCA8, FOXM1, SMC4, CENPA, NCAPH, SKA1, AURKA, 
CDC20, CCNB2, CCNB1, PTTG1, NEK2, MYBL2, BUB1, NEK9, CDKN2C, 
BORA, UBE2C, PLK1, KIF23, CDC25C, CCNA2, CENPE, TPX2, CENPF, 
KIF18A, DBF4, BIRC5, CENPN, KIF2C, KIF20A, MAD2L1

Gastric Cancer Network 1 2.28E‑08 TOP2A, TPX2, CENPF, UBE2C, MYBL2, ECT2, E2F7, AURKA, KIF15
Polo‑like kinase mediated events 5.51E‑08 CCNB2, CENPF, CCNB1, PLK1, MYBL2, FOXM1, CDC25C
Cell Cycle 1.12E‑07 TOP2A, ZWILCH, CDCA8, FOXM1, SMC4, CENPA, NCAPH, SKA1, AURKA, 

CDC20, CCNB2, CCNB1, TERT, PTTG1, MYBL2, NEK2, NBN, BUB1, NEK9, 
CDKN2C, BORA, UBE2C, PLK1, KIF23, CDC25C, CCNA2, CENPE, TPX2, 
CENPF, KIF18A, DBF4, DKC1, BIRC5, CENPN, KIF2C, KIF20A, MAD2L1

RHO GTPases Activate Formins 1.63E‑07 ZWILCH, PLK1, CDCA8, CENPA, SKA1, CDC20, CENPE, KIF18A, CENPF, 
DIAPH 3, BIRC5, KIF2C, CENPN, BUB1, MAD2L1

M Phase 3.05E‑07 NEK9, ZWILCH, UBE2C, PLK1, CDCA8, KIF23, SMC4, CENPA, NCAPH, 
SKA1, CDC20, CENPE, CCNB2, CENPF, CCNB1, KIF18A, PTTG1, BIRC5, 
KIF2C, CENPN, KIF20A, BUB1, MAD2L1

MHC class II antigen presentation 1.76E‑06 SEC23A, SEC24A, KIF23, KIF15, CENPE, KIF18A, RACGAP1, KIF4A, 
KIF2C, KIF20A, OSBPL1A, SEC24D, SEC31A

Activation of  HOX genes during differentiation 2.16E‑06 EGR2, HOXA3, HOXB4, HOXA2, HOXB3, HOXC4, HOXA1, PAX6, HOXB2, 
HOXD4, HOXD3, HOXA4

Downregulated pathways
Arrhythmogenic right ventricular 
cardiomyopathy (ARVC)

2.81E‑07 CACNB2, GJA1, CACNB3, TCF7L1, CACNB4, ITGB5, CDH2, JUP, 
CACNA2D1, CACNA1C, SLC8A1, ITGA9

Transmission across Chemical Synapses 3.75E‑07 GABRB3, GRIA1, BCHE, SNAP25, SLC32A1, KCNJ12, CACNA2D1, 
GABRA4, GAD1, CHRNA7, CACFD1, RASGRF2, GAD2, SLC6A1, SYN2, 
GRIP2, GRIN2D, CACNB2, CACNB3, CACNB4

Neuronal System 2.29E‑06 GABRB3, GRIA1, BCHE, SNAP25, KCND1, KCNH5, SLC32A1, KCNJ12, 
CACNA2D1, GABRA4, GAD1, CHRNA7, CACFD1, RASGRF2, GAD2, 
KCNAB2, SLC6A1, SYN2, GRIP2, GRIN2D, CACNB2, CACNB3, CACNB4

Phase 1 ‑ inactivation of  fast Na+channels 3.37E‑06 CACNB2, CACNB3, KCND1, CACNB4, CACNA2D1, KCNIP4, CACNA1C
Depolarization of  the Presynaptic Terminal 
Triggers the Opening of  Calcium Channels

1.04E‑05 CACNB2, CACNB3, CACNB4, CACFD1, CACNA2D1

NCAM1 interactions 3.14E‑05 CACNA1I, CACNB2, CACNB3, CACNB4, ST8SIA2, GFRA1, CACNA1C
Nicotine addiction 5.34E‑05 GABRB3, GRIA1, SLC32A1, CHRNA7, GABRA4,
GABA synthesis, release, reuptake and degradation 8.33E‑05 SNAP25, SLC32A1, GAD1, GAD2, SLC6A1
Mecp2 and Associated Rett Syndrome 0.000177379 GRIA1, RBFOX1, DLX5, GAD1, OPRK1, FGF3, CDON
Phase 2 ‑ plateau phase 0.000407637 CACNB2, CACNB3, CACNB4, CACNA2D1, CACNA1C
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drugs by finding important genes and molecules in these 
pathways.

For the past decade, researchers have been interested in studying 
cancer stem cells that are necessary for the treatment of  a wide 
range of  cancers. Studies on brain cancers have shown that cancer 

stem cells have a high potential for tumorigenesis under hypoxia.[9] 
Safari et al.[10] demonstrated that GBM‑derived stem cells have a 
high expression of  O6‑methylguanine methyltransferase, which 
plays a vital role in chemotherapy resistance. In addition, Warrier 
et al.[11] showed that GBM‑derived stem cells have a significant 
expression for ABC family genes highly resistant to chemotherapy. 

Figure 2: Gene ontology enrichment analysis results. The figure contains interactive bar charts displaying the results of the gene ontology enrichment 
analysis generated using Enrichr. The x-axis indicates the -log10 (P-value) for each term. Significant terms are highlighted in bold. Additional 
information about enrichment results is available by hovering over each bar. a: Biological processes; b: Molecular functions; c: Cellular component
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b
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Limited drugs have been used to address the GBM‑derived stem 
cells that have not been very successful, including temozolomide, 
carboplatin, and 1,3-bis (2-chloroethyl)-1-nitroso-urea BCNU.[12]

In the current study, we isolated the most relevant and significant 
genes with high differential expression to find more accurate 
pathways of  GBM‑derived stem cells by bioinformatics analysis 
on RNA‑Seq data.

CCNA2 is an essential gene in cell division that plays a significant 
role in the transition of  G1/S to G2/M. A microarray data study 
showed that TAF7/CCNA2 could play a high pathogenic role in 
GBM and there is a close relationship between them.[13] Another 
survey found that miR‑219 could control the CCNA2 gene and 
play a significant role in inhibiting cancer cells’ growth [Figure 4a].[14]

CDKN2C is another candidate gene in this study, which was 
part of  the INK4 family and is associated with CDK4/6, and 
acts by inhibiting CDK activity on cell division in the G1 phase. 
Various studies were performed on this gene, the high expression 
of  which has been noticed and proven in the sample of  GBM 
compared to normal brain tissue.[15] In the GBM xenograft model, 
CDKN2C expression was significantly higher than in the control 
group, playing a pathogenic role in GBM.[16] Previous studies 
on the GBM cell line using microarray analysis showed that 
25 genes could be sensitive to chemotherapy drugs, including 
CDKN2C.[17,18] Evidence demonstrated that CDKN2C is not 
directly involved in the development of  tumor cells but may be 
included in the event of  cancer by affecting cyclin D.[19] Mutations 
in CDKN2C can also be involved in the development of  cancer 
cells [Figure 4b].[20]

Table 2: Candidate drugs associated with up‑regulated genes
Drugs and dosage P Genes
Azathioprine (20 mg/kg) 1.01E‑06 CCNA2;CENPE; CDKN2C; CDCA8;MYBL2;FOXM1;KIF15
Doxorubicin (3 mg/kg) 2.17E‑05 CCNA2;CDKN2C; DKC1;CDCA8;MYBL2;KIF15
Cyclosporin A (350 mg/kg) 2.35E‑05 CCNA2;NEK9;CDKN2C; CDCA8;MYBL2;KIF15
Chlorambucil (0.6 mg/kg) 2.40E‑05 CCNA2;CENPE; CDKN2C; CDCA8;MYBL2;KIF15
Etoposide (100 mg/kg) 2.85E‑05 CCNA2;CENPE; CDKN2C; CDCA8;MYBL2;KIF15
Leflunomide (30 mg/kg) 3.37E‑05 CCNA2;CENPE; CDCA8;MYBL2;FOXM1;KIF15
Thioguanine (12 mg/kg) 4.11E‑05 CCNA2;CENPE; CDKN2C; CDCA8;MYBL2;KIF15
Cyclophosphamide (25 mg/kg) 4.34E‑05 CCNA2;CDKN2C; DKC1;CDCA8;MYBL2;KIF15
Daunorubicin (3.25 mg/kg) 1.96E‑04 CCNA2;CDKN2C; CDCA8;MYBL2;KIF15
Clobetasol propionate (17 mg/kg) 2.00E‑04 CCNA2;CDKN2C; CDCA8;MYBL2;KIF15

Figure 3: Correlations between protein products of up-regulated genes. Cell cycle (red), cellular senescence (green), and P53 (blue) signaling 
pathway
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DKC1 is one of  the most important genes involved in telomerase, 
which plays a significant role in apoptosis and cellular aging. 
These genes have very high expression in GBM, the product of  
which can protect telomerase and cause cancer cell death. In a 
study using viral vectors on GBM, it was found that DKC1 ‑4.5 
LogFC decreased expression and positively affected the apoptosis 
of  cancer cells.[21] Miao et  al.[22] showed increased abnormal 
expression, increased angiogenesis, division, and migration of  
cadherin N, HIF‑1, and MMP2‑mediated cancer cells. DKC1 
expression has been reported in several other cancers. High 

expression of  this gene is hazardous in lung cancer cells.[23] 
Also, by affecting the HIF‑1 gene, it played a role in increasing 
the angiogenesis of  colorectal cancer and its invasion to other 
tissues.[24] In addition, studies have been developed on the 
progression of  prostate cancer [Figure 4c].[25]

The molecular dynamics of  the cytoskeleton’ also play an 
essential role in stimulating the activity of  cancer cells to grow 
and proliferate, as well as in their invasion. KIF15 was one of  
the critical items in this study that was identified. Wang et al.[26] 

Figure 4: The expression of candidate genes in GBM has been compared by the GEPIA database (right) and the survival plot of these genes is 
also shown on the left. a: CCNA2; b: CDKN2C; c: DKC1; d: KIF15; e: MYBL2
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showed that the product of  this gene in GBM cells could increase 
cell division in the G1 phase, in which inhibition or extinction 
can also reduce tumorigenesis. PBK is a member of  the MAPK 
family and is a mitogen activator. In GBM, PBK can increase cell 
proliferation by interacting with KIF15.[27] Also, Terribas et al.[28] 
indicated that KIF11/15/25 has a high expression in neural 
sheath tumors and plays a vital role in the survival of  these cells. 
Moreover, KIF15 plays a crucial role in increasing cell division 
and tumorigenesis of  cancer cells by acting on the MEK/ERK 
pathway [Figure 4d].[29]

Another significant gene identified in this study was MYBL2, 
which is effective as a nuclear transcription factor in cell cycle 
regulation. An in‑silico study of  GBM data showed that several 
genes, including MYBL2, play a significant role in cancer survival 
and division.[30] Zhang et  al.[31] have found that by increasing 
MYBL2 expression the miR‑ 30e  increases and the growth 
and invasion of  glioblastoma cells are decreased. A  clinical 
trial on GBM patients showed that MYBL2 is downstream 
of  the AKT/FOXM1 pathway genes involved in cell division 
and apoptosis inhibition. When AKT inhibitors are active, and 
FOXM1 is silent, MYBL2 expression decreases and eventually 
results in cell cycle inhibition and apoptosis induction, indicating 
that the AKT, FOXM1, and MYBL2 are related to each other.[32] 
Another in‑silico study by gene network analysis showed that 
FOXM1 and MYBL2 play a vital role in cancer cell growth and 
proliferation.[33] In gastric adenocarcinoma, it was found that high 
expression of  MYBL2 causes cancer cells to differentiate and 
invade lymph nodes, the inhibition of  which can be a binding 
antitumor effect [Figure 4e].[34]

The next step is to identify drug agents that are able to inhibit or 
reduce the expression of  mentioned genes that have an influential 
role in attenuating cancer stem cells. Chlorambucil is used as a 
chemotherapy drug, which is mainly used for leukemia cancers. 
In a study of  297  patients, the effects of  chlorambucil and 
almethosumab were evaluated, with 55% and 43% of  cure rates 
for leukemia, respectively.[35] Hu et al.[36] studied chlorambucil with 
drug delivery and tissue engineering approach, which showed 
that when chlorambucil is combined with 1, 6‑Hexanediamine 
hydrochloride (HDH) micelles, it has a high permeability into 
the cancerous tissue and physiological barriers and could have 
an acceptable therapeutic effect. Millard et  al.[37] showed that 
chlorambucil could specifically affect the energy production 
pathways in mitochondria and increase the death of  pancreatic 
and breast cancer cells by more than 80% by acting on mtDNA. 
Luo et al.[38] revealed that chlorambucil could increase the path 
of  oxidative stress and be used as a viable treatment option for 
breast cancer.

Cyclosporine A is considered an immunosuppressive drug, and 
also plays a significant role in various cancers. A study of  the 
C6 GBM cell line found that cyclophilin A can develop drug 
resistance in tumor cells. Cyclosporine A with sanglifehrin 
combined with cisplatin can reduce the expression of  cyclophilin 
A and increase the apoptosis and the reactive oxygen species 

pathway.[39] A study on the T98G GBM cell line found that 
cyclosporine A with an effect on the morphine tolerance 
pathway could affect the NO/ERK pathway and ultimately 
play an inhibitory role in GBM cell division.[40] Sliwa et  al.[41] 
demonstrated a new route of  GBM with the use of  cyclosporine 
A. Microglia in brain tissue could contribute to higher cell 
proliferation and tumorigenesis by activating the PI3K/AKT 
pathway in conditions where the tumor tends to invade the 
brain. Cyclosporine A with effect on this pathway and inhibiting 
microglia activity prevents the invasion and progression of  the 
disease. Cyclosporine A induces apoptosis in gastric cancer by 
inhibiting the NF‑KB pathway by Dastaxel.[42] In breast cancer, 
cyclosporine A reduces the drug resistance in this cancer by 
decreasing the expression of  ABCG2.[43]

Doxorubicin is another chemotherapy drug that can induce 
apoptosis with high potency. Most studies of  these drugs 
are used in tissue engineering and pass through the BBB in the 
form of  micelles or nanoparticles of  this drug, which can have 
an acceptable effect in reducing tumorigenesis.[44‑47] It has also 
been used in other cancers, such as lung cancer.[48]

Etoposide is a very successful drug in chemotherapy. In a 
study of  a mouse model, researchers showed that low doses 
of  etoposide effectively induced apoptosis.[49] For this drug 
to have a better effect on brain tumors, the approach of  drug 
delivery with lipid particles and nanoparticles has been a good 
option so far.[50‑52]

Conclusion

In conclusion, it can be argued that the use of  appropriate 
drug regimens for GBM can be more effective in destroying 
cancer stem cells, especially in the GBM, and that etoposide, 
doxorubicin, cyclosporine A, and chlorambucil can be used and 
have good synergistic effectiveness.
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