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Abstract

Repetitive head impact (RHI) exposure in collision sports may contribute to adverse

neurological outcomes in former players. In contrast to a concussion, or mild trau-

matic brain injury, “subconcussive” RHIs represent a more frequent and asymptom-

atic form of exposure. The neural network-level signatures characterizing

subconcussive RHIs in youth collision-sport cohorts such as American Football are

not known. Here, we used resting-state functional MRI to examine default mode net-

work (DMN) functional connectivity (FC) following a single football season in youth

players (n = 50, ages 8–14) without concussion. Football players demonstrated

reduced FC across widespread DMN regions compared with non-collision sport con-

trols at postseason but not preseason. In a subsample from the original cohort

(n = 17), players revealed a negative change in FC between preseason and

postseason and a positive and compensatory change in FC during the offseason

across the majority of DMN regions. Lastly, significant FC changes, including

between preseason and postseason and between in- and off-season, were specific to

players at the upper end of the head impact frequency distribution. These findings

represent initial evidence of network-level FC abnormalities following repetitive,

non-concussive RHIs in youth football. Furthermore, the number of subconcussive

RHIs proved to be a key factor influencing DMN FC.
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1 | INTRODUCTION

Repetitive head impacts (RHI) in collision sports, such as American

Football, may contribute to adverse long-term neurological outcomes

(Baugh et al., 2012; Gavett, Stern, & McKee, 2011; Huber, Alosco,

Stein, & McKee, 2016; McKee et al., 2009; McKee et al., 2013;

McKee, Alosco, & Huber, 2016; Montenigro et al., 2017; Stern

et al., 2011). RHIs may encompass a combination of symptomatic mild

traumatic brain injury (mTBI), or concussion, as well as more frequent,

asymptomatic “subconcussive” impacts (Bailes, Petraglia, Omalu,

Nauman, & Talavage, 2013). The frequent and repetitive nature of

these so-called subconcussive head impacts may have more detrimen-

tal effects on brain function and neuropathology (Tagge et al., 2018).

However, the effects of subconcussive RHIs on the youth brain

remain poorly understood. At the youth football level, players may

sustain hundreds of subconcussive head impacts over the course of a

single season, many at high-magnitude forces on the order of high-

school and collegiate levels (Cobb et al., 2013; Daniel, Rowson, &

Duma, 2012; Kelley et al., 2017; Urban et al., 2019). Early exposure to

RHIs in tackle football during a high brain maturation period

(≤ 12 years) may be a key contributing factor to later-life neuro-

behavioral decline, especially with cumulative exposure over the

course of a playing career (Alosco et al., 2018; Stamm et al., 2015).

A deeper understanding of the neural mechanisms underlying

subconcussive RHI exposure is central to refining sport safety policies

and developing targeted interventions to counteract adverse neuro-

logical events. Functional connectivity (FC), based on the synchronic-

ity of spontaneous blood-oxygen-level dependent (BOLD) signal

during resting-state functional MRI (rsfMRI), is advantageous for

detecting changes in functional brain architecture (Biswal, Yetkin,

Haughton, & Hyde, 1995; Fox & Raichle, 2007). The default mode

network (DMN) (Buckner, Andrews-Hanna, & Schacter, 2008;

Raichle, 2015; Raichle et al., 2001), a spatially distributed set of corti-

cal regions involved in the mediation of task-independent mental

states, is amongst the most extensively studied resting-state networks

(RSN) with high test–retest reliability (Cole, Pathak, & Schneider,

2010; Shehzad et al., 2009). Using rsfMRI, greater emphasis has been

placed on understanding the network-level connectivity changes of

the DMN following concussion (Borich, Babul, Yuan, Boyd, &

Virji-Babul, 2015; Czerniak et al., 2015; Iraji et al., 2015; Johnson

et al., 2012; Mayer, Mannell, Ling, Gasparovic, & Yeo, 2011; Militana

et al., 2016; Slobounov et al., 2011; Zhou et al., 2012; Zhu

et al., 2015). An emerging body of work has pointed to abnormal

DMN FC outcomes following repetitive, non-concussive head impact

exposure in high-school and collegiate collision-sport cohorts (Abbas

et al., 2015; Abbas et al., 2015; Johnson, Neuberger, Gay, Hallett, &

Slobounov, 2014; Manning et al., 2020; Reynolds et al., 2018;

Slobounov et al., 2017). However, an understanding of the underlying

changes in network-level connectivity of the DMN following sub-

concussive impact exposure at the youth level is not yet clear.

To address this issue, we performed a prospective and longitudi-

nal cohort study to examine changes in rsfMRI FC of the DMN in

youth tackle football players (n = 50; ages 8–14 years). Employing

seed-based correlation and a combination of voxel-wise and region-

of-interest (ROI) approaches, the primary aim was to test the hypoth-

esis that football-related exposure to subconcussive RHIs over the

course of a single season leads to aberrant network-level connectivity

of the DMN relative to healthy non-collision sport controls. Second,

we performed an exploratory analysis contrasting in- and off-season

changes in DMN FC in football player subsample (n = 17) with seven-

month follow-up data availability (i.e., beginning of the subsequent

season). Lastly, we tested the hypothesis that a higher number of

experienced head impacts is associated with more adverse FC

outcomes in football players.

2 | METHODS

2.1 | Participants

Football players were recruited from nine local youth football teams

in Forsyth County, NC between 2015 and 2017. Four to five teams

were selected to participate each year. A trained research technician

was present at all practice and game sessions for the acquisition of

head impact sensor and video data. During recruitment, study staff

attended pre-season parent/player meetings and presented study

objectives. A total of 313 players across nine teams were recruited for

participation. Of the 313 total players, 149 elected to enroll in the

study. A total of 112 players completed both preseason and

postseason MRI acquisition sessions and the remaining 37 were

excluded. An additional set of 28 players were removed due to enroll-

ment exclusion criteria, which included self/parent-reported history of

neurological and/or psychiatric illness, concussion within the last year,

and MRI contraindication (i.e., motion and susceptibility artifacts). Of

the remaining 84 pairs of the preseason and postseason scans,

34 included sessions by the same player across multiple seasons. We

opted to only use the first enrollment season to limit the inclusion of

multiple sessions by the same player. A total of 50 male football

players were ultimately retained for study inclusion (average

age = 11.5 [SD = 1.2] years) (Figure 1). Of note, of the 50 total players,

17 had availability of multiple MRI acquisition sessions across back-

to-back seasons. These player scans were retained for an exploratory

analysis and the basis for this analysis is described in Section 2.3. Two

football players included in the study had self/parent-reported history

of a single concussion more than a year prior to the season and none

were diagnosed with a concussion during the season.

Youth male control athletes with no prior tackle football experi-

ence were also recruited for this study. Controls were recruited from

local non-collision sports teams during a scheduled player/parent

meeting. Control participants were represented across six different

sports (seven basketball, seven baseballs, two soccer, two tennis, one

swimming, one karate). Of the 33 control athletes who elected to

enroll in the study, 20 (average age = 11.4 [SD = 1.2] years) were

retained for study inclusion based on the aforementioned exclusion

criteria. Demographic variables for football and control participants

are presented in Table S1.
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This study was conducted in compliance with the Health Insur-

ance Portability and Accountability Act. All participants and their

parental guardians provided signed assent and consent, respectively,

and were in full understanding of experimental objectives. All experi-

mental procedures were approved and monitored by the Wake Forest

School of Medicine Institutional Review Board Committee and con-

ducted in ethical accord with the Declaration of Helsinki.

2.2 | Head impact telemetry system data
acquisition

Football participants were fitted with helmet-based accelerometers

using the Head Impact Telemetry System (HIT System: Simbex, Leba-

non, NH) (Beckwith, Greenwald, & Chu, 2012; Crisco, Chu, &

Greenwald, 2004) for real-time acquisition of head impact kinematics

during all practice and game sessions. Only those players who were

enrolled in the study were equipped with the HIT System. Only

players with a head circumference that could adequately fit a medium

or large size Riddell Speed® or Riddell Revolution® helmet were per-

mitted to participate, as the head impact sensor system was not com-

patible with smaller helmet sizes. The HIT System measures the

location and magnitude of head impacts using an array of six spring-

mounted single-axis accelerometers in contact with the head surface.

Data acquisition was initiated upon detection of peak resultant linear

acceleration of the head above 10 g. An important consideration is

that indirect head impacts (e.g., direct impacts to the torso) can initiate

data acquisition due to the associated change in peak resultant accel-

eration of the head above this threshold. All games and practices were

video recorded and any accelerations due to activities other than head

impacts (e.g., dropped helmet) were excluded from the analysis. For

the current study, we calculated the total number of head impacts,

head impact severity based on percentiles calculated from the distri-

bution of linear (measured in g) and rotational acceleration (measured

in rad/s2), and risk-weighted exposure (RWECP). RWECP represents a

measure of cumulative head impact exposure encompassing the num-

ber and severity of experienced head impacts, in which the peak resul-

tant linear and rotational accelerations of each impact are non-linearly

weighted using the combined probability risk function and summed

for each player over the course of the season (Rowson et al., 2012;

Rowson & Duma, 2013; Urban et al., 2013).

2.3 | MRI acquisition and processing

All 50 football players included in this study were scanned at two sep-

arate time points, including up to 1 month preceding (i.e., preseason)

and following (i.e., postseason) the season. The average time between

preseason and postseason acquisition sessions was 4.7 (SD = 0.8)

months. This sample of 50 players is henceforth referred to as Cohort

1. Players were asked to enroll across multiple seasons if they

remained on a team selected to participate in the study. Of the

F IGURE 1 Flowchart of study
enrollment. The left panel shows the
number of teams and respective
players who were recruited for the
study between 2015 and 2017. The
right panel describes the process of
recruitment to final enrollment for
Cohorts 1 and 2
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50 players who were included in the study, a subsample (n = 17) was

scanned during the subsequent season. This provided the opportunity

to examine, on an exploratory basis, DMN FC dynamics between the

postseason acquisition scan of the first enrollment season and the

preseason acquisition scan of the subsequent season (i.e., off-season).

The average time between these MRI acquisition sessions was 7.2

(SD = 0.6) months. This subsample of 17 players, representing four dif-

ferent teams, is henceforth referred to as Cohort 2. Control partici-

pants were scanned at two-time points an average of 4.0 (SD = 0.9)

months apart. The timing of initial and follow-up acquisition scans did

not always coincide with the preseason and postseason of their

respective sport.

MRI sequences were acquired on a 3 Tesla Siemens Skyra MRI

scanner using a 32-channel head/neck radiofrequency coil (Siemens

Medical, Erlangen, Germany). Participants laid supine and were

instructed to remain still with their eyes closed and free of external

thought for the experimental duration. The rsfMRI data were acquired

using a gradient EPI sequence with the following parameters: repeti-

tion time (TR) = 2,000 ms, repetitions = 190, echo time (TE) = 25 ms,

flip angle = 90�, field of view (FOV) = 61 × 64, 3.5 mm3 isotropic reso-

lution. Structural T1-weighted images were acquired for spatial nor-

malization using a 3D-MPRAGE sequence with the following

parameters: TR = 2,300 ms, TE = 2.98 ms, flip angle = 90�,

FOV = 256 × 256 mm, 1 mm3 isotropic resolution.

2.4 | Functional MRI data preprocessing

Processing of rsfMRI data was carried out using afni_proc.py in Analy-

sis of Functional NeuroImages (AFNI: Version 13.0.3). Preprocessing

for each scan included removal of three base volumes to account for

scanner magnetization equilibrium, de-spiking of extreme time-series

outliers, acquisition-dependent slice-timing correction, and rigid-body

volume registration. Anatomical and functional images were co-regis-

tered, skull stripped, and non-linearly warped to the MNI avg152 tem-

plate with a resampled isotropic resolution of 2 mm. Functional

volumes were spatially smoothed to improve the signal-to-noise ratio

using a 4 mm Gaussian FWHM kernel. Nonspecific or spurious

sources of variance from the BOLD time series, including six head

motion derivatives describing rigid-body transformations, as well as

mean global, CSF, and local white matter signals, were regressed. The

regression step also included censoring of consecutive functional vol-

umes >0.5 mm in relative motion and time points with >10% of total

voxels identified as signal outliers. Across pre- and postseason scans

the average number of censored volumes was 11.62 (SD = 12.21,

3.1% of total TRs) and 11.35 (SD = 15.12, 3.03% of total TRs) for foot-

ball and control participants, respectively. Lastly, the BOLD time

series data was bandpass filtered between 0.008 and 0.1 Hz.

2.5 | Functional connectivity statistical analysis

A seed-based correlation approach was used to examine FC using an

a priori selected spherical seed region within the posterior cingulate

cortex (PCC [MNI coordinates: 0, −53, 25; radius = 6 mm]), a central

node of the DMN (Fox et al., 2005; Greicius, Krasnow, Reiss, &

Menon, 2003). For each residual time series (preseason, postseason),

Pearson correlation coefficients were computed between the seed

time series and that of all other voxels and converted to Z-scores

using the Fisher r-to-z transformation. Preseason Z-score maps for

each participant were subtracted from their postseason counterpart

to compute in-season delta FC maps.

Group-level analyses were anatomically constrained to regions

comprising the DMN using a masking procedure derived from control

participants. To this end, voxels that demonstrated a positive time

series correlation with the seed location (p < .05 uncorrected) were

obtained across control participants, separately for both preseason

and postseason scans. Positive correlation maps were then

concatenated across scans and averaged across control participants to

generate a single uncorrected DMN mask. Positive cerebellar correla-

tions were discarded due to variable and incomplete spatial coverage

across participants. To refine the mask, a one-sample t test in AFNI

with the Clustsim option was performed on control datasets at pre-

season. The Clustsim option provides the cluster-extent volume

required to limit false-positive correlations with the seed location.

This option advised a cluster-extent volume ≥ 400 mm3, equivalent to

p < .005 (p < .05 FWER-corrected). Positive correlation maps were

then re-obtained using the advised cluster-extent threshold,

concatenated across scans, and averaged across participants. As

shown in Figure 2a, the resultant mask is in agreement with previous

literature, comprising established DMN regions that exhibit positive

time-series correlations with the PCC under task-negative conditions

(Fox et al., 2005; Greicius et al., 2003).

Group-level DMN FC differences between Cohort 1 football

players and controls were examined using two separate approaches.

In the first analysis, voxel-wise independent-sample t-tests in AFNI

(3dttest++) were used to compare FC maps, separately for preseason,

postseason, and in-season delta. Age and BMI were entered as

covariates for preseason and postseason tests and time between

acquisition sessions was entered as an additional covariate when com-

paring delta maps. Group-level effects were considered significant at

a minimum cluster volume of 400 mm3 (p < .05 FWER-corrected), in

accordance with the aforementioned Clustsim output.

A drawback of the voxel-wise approach is that test statistics are

computed across thousands of voxels and significant group-level

effects depend on a rigorous cluster-extent threshold in accounting

for multiple comparisons. Limiting statistical tests to a condensed set

of defined regions is advantageous in reducing the severity of the

alpha level adjustment for multiple test statistics (Poldrack, 2007). To

this end, a region-of-interest (ROI) approach was used in a second

analysis to examine group differences in mean Z-score values within

subregions of the DMN. In this approach, clustered voxels from the

FWER-corrected DMN mask with a minimum cluster-extent volume

of 400 mm3 were delineated a posteriori and used as individual ROIs

to compute mean preseason and postseason for each participant. As

shown in Figure 2b, this approach yielded 12 individual ROIs compris-

ing the ventromedial/medial prefrontal cortex and left dorsal frontal

cortex (PFC/l-DFC), right dorsal frontal cortex (r-DFC), left inferior
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frontal gyrus (l-IFG), right middle frontal gyrus (r-MFG),

PCC/precuneus, right/left temporoparietal cortex (r- and l-TPC),

right/left lateral temporal cortex (r- and l-LTC), right parahippocampal

formation (r-PHF), and two separate clusters in the left para-

hippocampal formation (l-PHF I/II). Preseason Z-scores for each ROI

and each participant were subtracted from their postseason counter-

part to compute in-season delta Z-scores. For each time point (pre-

season, postseason, in-season delta), group-level differences in mean

Z-score values across all ROIs were examined using a multivariate

analysis of covariance (MANCOVA) model in R (Version 4.0.0; R Core

Team, 2020). Age and BMI were entered into the model as covariates.

Delta comparisons included time between acquisition scans as an

additional covariate. Significant multivariate group main effects were

further decomposed using univariate tests across all ROIs and consid-

ered significant at p < .05 FDR-corrected.

2.6 | Longitudinal connectivity changes in football
players

In Cohort 2 football players, we tested whether in-season delta FC,

representing a 4-month period of RHI exposure, differed from that of

off-season delta FC, representing a 7-month withdrawal from

football-related activity. A first step included the previous ROI

analysis to identify group-level differences between Cohort 2 football

players and controls. The purpose of this first step was to determine

whether Cohort 2 football players were representative of the group

as a whole, as well as identify a subset of ROIs that best-characterized

football and control participants according to in-season delta

FC. Second, regions identified as displaying significant in-season delta

FC group effects in the ROI analysis were decomposed longitudinally

in Cohort 2 football participants. To this end, postseason Z-scores for

each identified ROI and each participant were subtracted from their

subsequent preseason counterpart scan to compute off-season delta

Z-scores. Separately for each region, a two-way linear mixed model

was used to examine differences between in- and off-season delta Z-

scores, with time (in-season, off-season) and participants as the

within- and between-subjects random factors, respectively. Age and

BMI were included in the models as covariates. The main effects of

time across ROIs were considered significant at p < .05 FDR-

corrected.

2.7 | Effect of head impact frequency on
connectivity outcomes in football players

In a final exploratory analysis, we sought to examine whether a high

and the low number of cumulative head impacts in football players

F IGURE 2 Control default mode network and ROI clusters. (a) Three-dimensional rendering of the default mode network (red) comprising
voxels that exhibit a significant positive time-series correlation with that of the seed region in the posterior cingulate cortex for control
participants (p < .05 FWER-corrected). (b) Axial, sagittal, and coronal color-coded depiction of architectural hubs comprising the FWER-corrected
default mode network used in the ROI analysis. PFC/l-DFC (yellow), PCC/precuneus (orange), l-TPC (red), r-TPC (light blue), r-DFC (lime green), r-
MFG (navy), l-IFG (white), l-LTC (dark blue), r-LTC (cyan), l-PHF I and II (salmon), and r-PHF (pink)
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yielded differential FC outcomes. In Cohort 1, football participants

were partitioned into low and high impact groups according to the

lower and upper third percentiles, respectively, of the head impact

frequency distribution across participants. This split resulted in

18 low impact players with head impact values ranging from 22 to

151 and 18 high impact players with head impact values ranging

from 349 to 2016. Due to the small sample size in Cohort 2 and to

preclude further player exclusion, low and high impact groups were

partitioned according to the 50th percentile of the head impact fre-

quency distribution (413 impacts). This split resulted in eight players

in the low impact group with head impact values ranging from 43 to

341 and nine players in the high impact group with head impact

values ranging from 413 to 2016. Players who experienced

413 impacts (i.e., 50th percentile) were included in the high impact

group. Table 1 provides descriptive statistics of head impact

kinematics based on each respective partition. Specifically, for

Cohort 1, we examined whether the number of head impacts differ-

entially influenced the change between preseason and postseason

FC in a subset of ROIs that distinguished football and control partici-

pants according to significant postseason group effects. For Cohort

2, we examined whether the number of head impacts differentially

influenced in- and off-season delta FC in a subset of ROIs that dis-

tinguished football and control participants according to significant

in-season delta group effects. ROI Z-scores were decomposed based

on the number of impacts using a two-way linear mixed model, with

time and participants as the within- and between-subjects factors,

respectively. Age and BMI were included in the model as covariates.

Separately for each cohort and impact allocation, the main effects of

time across ROIs were considered significant at p < .05 FDR-

corrected.

TABLE 1 Descriptive statistics of head impact kinematics

All football players

Cohort 1 All players (n = 50)

Variable Mean Median 95% confidence

Total number of head impacts 327.7 257 161–383

Median peak linear acceleration (g) 18.9 18.3 17.5–18.9

95th percentile linear acceleration (g) 51.7 49.7 46.6–52.5

Median peak rotational acceleration (rad/s2) 928.3 925.5 901–948

95th percentile rotational acceleration (rad/s2) 2,485 2,440 2,310–2,570

RWECP 0.53 0.19 0.13–0.35

High and low impact partitions

Cohort 1 Low impact players (n = 18) High impact players (n = 18)

Variable Mean Median 95% confidence Mean Median 95% confidence p-value (MW)

Total number of head impacts 81.5 79 54.8–107 640.1 489.5 362–612 < .0001

Median peak linear acceleration (g) 18.2 17.8 17–18.5 19.8 19.7 17.9–21.3 < .02

95th percentile linear acceleration (g) 50.3 46.9 40.8–52.1 53.4 50.8 45.1–56 ns

Median peak rotational acceleration (rad/s2) 904.8 912 878–949 956.6 962.6 925–1,010 ns

95th percentile rotational acceleration (rad/s2) 2,616.6 2,466.7 2,120–2,730 2,492.6 2,534.6 2,350–2,770 ns

RWECP 0.12 0.06 0.0003–0.11 0.92 0.54 0.14–0.88 < .0001

Cohort 2 Low impact players (n = 8) High impact players (n = 9)

Variable Mean Median 95% confidence Mean Median 95% confidence p-value (MW)

Total number of head impacts 236.1 270.5 191–384 847.2 837 528–1,290 < .001

Median peak linear acceleration (g) 18.7 18.1 15.6–19.7 20.2 20.6 18.8–22.5 ns

95th percentile linear acceleration (g) 50.5 50.6 45.5–55.7 54.3 52 40.9–60.5 ns

Median peak rotational acceleration (rad/s2) 933.2 901.8 804–980 950.5 969.6 878–1,070 ns

95th percentile rotational acceleration (rad/s2) 2,343.5 2,274.4 2060–2,480 2,492.8 2,461.6 2,100–2,840 ns

RWECP 0.53 0.29 0–0.48 1.16 0.55 0–1.25 ns

Note: Descriptive statistics of head impact kinematics for all football players (Cohort 1) not partitioned according to the number of head impacts (top), as

well as Cohort 1 (middle) and 2 (bottom) football player partitions based on the cumulative number of experienced head impacts during the season. In

Cohort 1, football players were partitioned into low and high impact groups based on the lower and upper third percentiles of the head impact frequency

distribution, respectively. In Cohort 2, football players were partitioned according to the median of the head impact frequency distribution. Confidence

intervals were computed at the 95% level on the median value for each metric using the bootstrap method (5,000 permutations). Median values for each

metric were compared across low and high impact football players using Mann–Whitney U tests and considered significant at p < .05.

Abbreviations: MW, Mann–Whitney U test; ns, not statistically significant; RWECP, combined probability risk-weighted exposure.
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3 | RESULTS

3.1 | Reduced DMN functional connectivity in
youth football players

In the voxel-wise analysis (Figure 3), DMN FC did not differ between

Cohort 1 football and control participants at preseason. At

postseason, football participants demonstrated reduced FC compared

with controls in four clusters comprising the r- and l-LTC, the angular

gyrus region of the r-TPC, and left PCC/precuneus. Postseason

group-level effects were significant at p < .05 FWER-corrected. No

significant group-level effects were revealed when comparing in-

season delta FC maps between control and football participants.

A second analysis examined group-level differences in FC within

a set of 12 DMN ROIs using a MANCOVA model (Figure 4a). A signifi-

cant group main effect was uncovered at preseason (F12,55 = 2.12,

p = .03), indicating that mean Z-score values in the l-IFG were reduced

in football compared with control participants (p < .05 FDR-

corrected). Results for postseason FC yielded a significant group main

effect (F12,55 = 4.39, p = .00007), such that football players demon-

strated reduced FC compared with controls across 10 of 12 ROIs,

including the PFC/l-DFC, r-DFC, r-MFG, PCC/precuneus, r- and l-

TPC, r- and l-LTC, r-PHF, and l-PHF I (p < .05 FDR-corrected). Results

for in-season delta FC yielded a significant group main effect

(F12,55 = 2.98, p = .003), such that football players demonstrated a

reduced change in mean Z-score values between preseason and

postseason, including the PFC/l-DFC, r-DFC, l-IFG, r-MFG, r-TPC, r-

and l-LTC, r-PHF, and l-PHF I (p < .05 FDR-corrected). Except for l-

IFG delta FC, which yielded a negative mean delta score in both

groups, football and control participants demonstrated negative and

positive mean delta scores across these ROIs, respectively. In other

words, FC of the DMN became stronger during the 4-month interscan

interval in the control group but weaker during the in-season months

for football players.

3.2 | Longitudinal connectivity changes in football
players

We next examined longitudinal changes in FC across DMN ROIs in

Cohort 2 football players with off-season follow-up data availabil-

ity. A first step included an ROI analysis to examine group-level dif-

ferences between Cohort 2 football players and controls at

preseason, postseason, and in-season delta. As shown in Figure 4b,

this analysis yielded consistent effects with the ROI analysis for

Cohort 1 (Figure 4a), suggesting that the players in Cohort 2 were

representative of the group as a whole. Significant group main

effects were observed for the postseason (F12,21 = 2.98, p < .001)

and in-season delta (F12,21 = 2.58, p = .03) FC. Postseason FC was

reduced in 10 of 12 ROIs in football players compared with controls

(p < .05 FDR-corrected). In-season delta FC was reduced in seven

of 12 ROIs in football compared with control participants (p < .05

FDR-corrected), such that the change in FC across these ROIs was

negative and positive in football and control participants,

respectively.

The seven regions identified as displaying significant group

effects for in-season delta FC in the ROI analysis were decomposed

longitudinally in football players. As shown in Figure 5, in-season delta

Z-scores yielded a negative mean across all ROIs, whereas off-season

delta Z-scores yielded a positive mean. Five ROIs, including the

PFC/l-DFC, r-DFC, r-TPC, and r and l-LTC demonstrated a trend

toward significantly increased off-season delta FC relative to in-

season (p = .064 FDR-corrected). However, no significant main effects

of time were observed following FDR correction, indicating that in-

season and off-season delta FC did not reliably differ across these

regions.

3.3 | Head impact frequency differentially
influences connectivity outcomes

A linear mixed model was used to examine whether a high and low

total number of cumulative head impacts over the course of the sea-

son differentially influenced FC outcomes. In the first analysis

F IGURE 3 Cohort 1 group-level voxel-wise differences. Axial
slice representation demonstrating significant postseason group-level
voxel-wise differences in functional connectivity of the default mode
network between control and Cohort 1 football participants. Group
averaged Z-score correlation maps in control and football participants
are displayed in the left and center panels, respectively, whereas
significant group-level t-statistic maps between control and football

participants are displayed in the right panel. Red and blue voxels in
the average Z-score correlation maps demonstrate a significant
positive and negative correlation with the posterior cingulate cortex
seed, respectively, whereas the blue voxels in the t-statistic maps
represent significantly reduced functional connectivity in football
players compared with controls. All maps are thresholded at p < .05
FWER-corrected
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(Figure 6a), we examined whether a high and the low number of

impacts differentially influenced the change between preseason and

postseason FC in Cohort 1 football players. The 10 ROIs identified as

displaying significant group effects at postseason (Figure 4a), as well

as the global DMN were decomposed according to impact exposure.

No significant main effects of time were uncovered for low impact

players, indicating that preseason and postseason FC did not differ

across these regions. The analysis yielded significant time effects for

high impact players, such that mean postseason Z-scores in the r and

l-LTC were reduced relative to preseason (p < .05 FDR-corrected).

Several other ROIs, including the r and l-TPC, PFC/l-DFC, r-DFC, and

r-MFG, as well as the global DMN showed a trend of reduced

F IGURE 4 Region-of-interest functional connectivity. Grouped bar plots demonstrating group-level differences in mean Z-score values
(± SEM) between controls (blue bars) and football players (red bars) in (a) Cohort 1 and (b) Cohort 2. The mean Z-score values for preseason,
postseason, and in-season delta are shown in the upper, middle, and lower sub-plots, respectively. Each panel displays a set of 12 a posteriori
delineated ROIs of the default mode network (Figure 2b). Asterisks represent a significant group-level difference between control and football
participants (p < .05 FDR-corrected)
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postseason FC relative to preseason for high impact players (p < .1

FDR-corrected).

In the second analysis (Figure 6b), we examined whether a high

and low total number of head impacts differentially influenced in- and

off-season delta FC in Cohort 2 football participants. The seven ROIs

identified as displaying significant in-season delta FC between-group

effects (Figure 4b), as well as the global DMN were decomposed

according to impact exposure. No significant main effects of time

were uncovered for low impact players, indicating that in- and off-

season delta FC did not differ in these regions. Conversely, high

impact players demonstrated significant time effects for PFC/l-DFC,

r-DFC, r-TPC, r- and l-LTC, and the global DMN, such that the posi-

tive off-season delta FC mean was increased compared with the nega-

tive in-season delta FC mean (p < .05 FDR-corrected).

4 | DISCUSSION

This study represents an original report of the underlying FC changes

characterizing cumulative exposure to subconcussive head impacts in

youth tackle football players. The primary objective was to determine

whether a single season of youth football in the absence of concus-

sion imparts changes in DMN FC compared with a non-collision sport

control group. Football players demonstrated network-level changes

in FC across widespread hubs of the DMN at the postseason in both

the voxel-wise and ROI-based analyses. A secondary aim was to

examine longitudinal changes in DMN FC during in- and off-season

months in a subsample of football players with imaging data availabil-

ity at a 7-month follow-up time-point. In a subset of ROIs, football

players demonstrated a negative in-season delta FC but a positive,

compensatory off-season delta FC. A final aim was to examine

whether the number of head impacts over the course of the season

differentially influenced the change in DMN FC between preseason

and postseason, as well as the change in delta DMN FC between in-

and offseason months. Significant changes in DMN FC between pre-

season and postseason, as well as between in- and off-season delta

were specific to football players at the upper end of the head impact

frequency distribution.

4.1 | Reduced DMN functional connectivity in
youth football players

Football players in Cohort 1 revealed reduced FC of widespread DMN

regions at postseason, but not preseason, compared with non-collision

sport controls. Specifically, football players demonstrated reduced FC

between the PCC and four clusters in the voxel-wise analysis, includ-

ing the PCC/precuneus, r-TPC, and r- and l-LTC (Figure 3). In the

postseason ROI analysis, football players demonstrated reduced FC

across all regions except for the l-IFG and l-PHF II (Figure 4a). In the

ROI analysis, in-season delta FC for football players was reduced in all

regions except for the PCC/precuneus, l-TPC, and l-PHF II (Figure 4a).

Except for a single region (l-IFG), which demonstrated a negative FC

change between preseason and postseason in both groups, the wide-

spread in-season delta FC group-level effects were driven by a posi-

tive and negative delta score for control and football participants,

respectively. In other words, FC of the DMN became stronger during

the 4-month interscan period in the control group but weaker during

the 4-month interscan period for football players.

Reduced connectivity between the PCC and DMN regions con-

forms to previous studies following mTBI. In players from multiple

sports, Johnson et al. (2012) reported a reduced number of overall

connections during the sub-acute injury phase between the PCC and

lateral parietal areas, as well as no significant connections between

the PCC and afferents in the dorsolateral prefrontal and para-

hippocampal regions. Mayer et al. (2011) demonstrated reduced seed-

based FC of the PCC with the supramarginal gyrus and superior fron-

tal gyrus during the sub-acute phase following mTBI (Mayer

et al., 2011). Zhu et al. (2015) reported reduced DMN connections

within the superior frontal, hippocampal, and angular regions com-

pared with controls 7 days following mTBI. In another study, Iraji

et al. (2015) demonstrated reduced seed-based FC between the PCC

and precuneus but also stronger FC between the PCC and long-range

extra-DMN afferents in the frontal lobe. The transient decrease in FC

strength between the PCC and DMN nodes reported here also con-

tradicts rsfMRI literature demonstrating increased DMN FC following

TBI at varying severities (Han, Chapman, & Krawczyk, 2016; Hillary

et al., 2014; Hillary et al., 2015; Iraji et al., 2016; van der Horn

et al., 2017). As described by Hillary et al. (2014), patterns of hyper-

connectivity are predominantly observed within the first few months

following moderate to severe TBI (e.g., Bonnelle et al., 2012;

Caeyenberghs et al., 2012; Castellanos et al., 2011; Hillary

F IGURE 5 In- and off-season functional connectivity delta.
Grouped dot plots demonstrating the mean (± SEM) (horizontal lines)
change in Z-score values between preseason and postseason (i.e., in-
season delta, blue) and between postseason and follow-up scans
(i.e., off-season delta, red) in Cohort 2 football participants. The x-axis
includes a set of seven ROIs derived from significant between-group
effects in the in-season delta ROI analysis between control and
Cohort 2 football participants (Figure 4b)
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et al., 2011; Nakamura, Hillary, & Biswal, 2009). This pattern of hyper-

connectivity has been hypothesized to reflect a compensatory mecha-

nism to increase neural resource utilization and re-establish network-

level communication following severe disruption (i.e., so-called

“Hyperconnectivity Hypothesis” [Hillary & Grafman, 2017; Hillary

et al., 2015]) and may underlie more complex pathophysiological

and clinical features associated with TBI compared with

subconcussive RHIs.

Reduced connectivity strength between the PCC and short- and

long-range afferents of the DMN may derive from reduced metabo-

lism (Nakashima et al., 2007), reduced cerebral blood perfusion (Kim

et al., 2010), or diffuse axonal injury (Bonnelle et al., 2011; Kinnunen

et al., 2011) of the PCC. Recent studies have also demonstrated an

increase in neurofilament light (NF-L) following subconcussive head

impacts (Rubin et al., 2019; Shahim, Zetterberg, Tegner, &

Blennow, 2017), which has been interpreted to be a reflective marker

of axonal white matter injury (Shahim et al., 2016; Zetterberg, Smith, &

Blennow, 2013). Previously, our group has demonstrated abnormali-

ties in DTI-derived white matter metrics following subconcussive RHI

exposure in youth and high-school football players (Bahrami

et al., 2016; Davenport et al., 2014; Davenport et al., 2016). Given the

strong relationship between structural and functional connectivity

indices (Damoiseaux & Greicius, 2009; Greicius, Supekar, Menon, &

Dougherty, 2009; Straathof, Sinke, Dijkhuizen, & Otte, 2019), it is

possible that diffuse injury to white matter microstructure following

RHI exposure leads to transient hypoconnectivity of DMN

architecture.

The underlying changes in DMN FC following subconcussive RHI

exposure in collision-sport athletes with respect to a control group

has not been well characterized. A study in collegiate female rugby

F IGURE 6 Head impact frequency and default mode connectivity. Grouped bar plots demonstrating the mean (± SEM) Z-score values for
(a) preseason and postseason in Cohort 1 football participants and (b) in- and off-season delta in Cohort 2 football participants. For Cohort 1, the
x-axis denotes a set of 10 ROIs that characterized football and control participants according to group-level effects (football vs. control) in the
postseason ROI analysis, as well as the global default mode network (DMN). For Cohort 2, the x-axis denotes a set of seven ROIs that
characterized football and control participants according to group-level effects (football vs. control) in the in-season delta FC ROI analysis, as well
as the global DMN. The left and right subplots depict Z-scores obtained from players in the low and high impact frequency partitions for each
football cohort, respectively. Asterisks represent a significant time main effect (p < .05 FDR-corrected)
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players demonstrated a DMN hyper-connectivity pattern with the

PCC at both the start and 2–3 months following the season com-

pared with non-collision sport controls (Manning et al., 2020). The

respective hypo- versus hyper-connectivity pattern between our work

and their study could be explained by several factors, including age,

gender, and inter-sport differences in head impact dynamics. One

study using a whole-brain correlation approach in high-school football

players reported both an increase and decrease in the number of sig-

nificant positive connections with the PCC/precuneus at several time

points during the season compared with a baseline control value,

including an increase in postseason connections (Abbas, Shenk, Poole,

Breedlove, et al., 2015). While this study provides a perspective on

the total number of regional correlations between the PCC and ana-

tomical parcellations within and beyond the DMN, our work charac-

terized group differences with respect to the relative strength of

functional connections within a specific set of network hubs that con-

sistently show a positive correlation with the PCC under task-negative

conditions (Fox et al., 2005; Greicius et al., 2003).

While it may be unlikely that a single season of youth football

RHI exposure leads to adverse long-term clinical outcomes observed

for former career football players (McKee et al., 2009; Mez

et al., 2017; Roberts et al., 2019; Stamm et al., 2015), it is also impor-

tant to recognize the potential implications. Koerte et al. (2017) dem-

onstrated that soccer players exposed to RHIs from ball heading did

not improve in executive control performance during the season akin

to their non-contact sport control counterparts. This was posited to

reflect suppressed developmental benefit in athletes exposed to RHIs.

This finding is consistent with another study that demonstrated

impaired oculomotor executive control function following mTBI in a

college-aged cohort (Webb, Humphreys, & Heath, 2018). Functional

abnormalities within the PCC and DMN are characteristic of a broad

spectrum of neurological and psychiatric conditions (Buckner

et al., 2008; Leech & Sharp, 2014; Zhang & Raichle, 2010). Abnormal

DMN function has been shown to be related to cognitive impairment

following neurotrauma. For example, Mayer et al. (2011) demon-

strated that DMN FC predicted cognitive complaints during the sub-

acute phase following a concussion. Moreover, attentional and infor-

mation processing task performance has been shown to correlate with

DMN FC following TBI (Bonnelle et al., 2011; Sharp et al., 2011). It

remains unclear, however, whether subconcussive head impacts, inde-

pendent of concussive head injury, represent a catalyst for long-term

clinical impairment. Future, large-scale, multimodal, and longitudinal

studies will be critical to determining the neuronal mechanisms under-

lying abnormal FC changes in youth tackle football players, as well as

the potential long-term neurological outcomes.

4.2 | Longitudinal DMN connectivity changes in
football players

A subsample of football players with off-season follow-up data

(Cohort 2) provided the opportunity to examine whether in-season

delta FC, representing a period of RHI exposure, differed from that of

off-season delta FC, representing a 7-month withdrawal from

football-related activity. Regions identified as displaying significant

group-level in-season delta FC effects in the ROI analysis were

decomposed longitudinally in Cohort 2 football participants (i.e., in-

season vs. off-season). The results showed that in-season delta FC

yielded a negative mean across all ROIs in football players, whereas

an opposite compensatory effect was observed for off-season delta

FC (Figure 5).

The negative directional change between preseason and

postseason FC of the DMN is in agreement with prior work examining

changes in DMN FC following short- and long-term exposure to sub-

concussive RHIs. Johnson et al. (2014) reported a decrease in short-

range connectivity between the PCC and retrosplenial cortex follow-

ing a single game session in collegiate rugby players. Similarly, football

players here demonstrated a negative in-season delta FC mean for

the PCC/precuneus ROI, which also encompasses the portions of the

retrosplenial cortex. Slobounov et al. (2017) reported a shift from a

pattern of preseason positive correlation to postseason anti-

correlation between the isthmus of the cingulate cortex and a voxel

cluster comprising the fusiform/middle occipital gyri in collegiate foot-

ball players. In a pair of studies in high-school football players, Abbas

and colleagues reported a reduced number of regional correlations

between the central PCC/precuneus node of the DMN and

whole-brain anatomical parcellations at postseason compared with

preseason (Abbas, Shenk, Poole, Breedlove, et al., 2015; Abbas, Shenk,

Poole, Robinson, et al., 2015).

The positive change in off-season delta FC is in slight contrast

to the work by Abbas, Shenk, Poole, Robinson, et al. (2015), which

reported a reduced number of whole-brain connections with the

PCC at initial and 6-month postseason time points relative to pre-

season. This was interpreted to reflect a long-term repair process

underlying mechanical stress of cumulative RHI exposure. This is

consistent with prior work showing persistent long-term reduced

DMN FC in collegiate football players (Zhu et al., 2015) and adults

(Mayer et al., 2011) following a concussion. Our findings do not

support a long-term outcome, as regions displaying a negative in-

season change in FC encountered a positive rebound effect during

the 7-month off-season interval. This discrepancy could be attrib-

uted to methodological differences. Abbas, Shenk, Poole, Robinson,

et al. (2015) examined the total number of regional connections

between the PCC and whole-brain anatomical parcellations,

whereas our work examined the relative FC strength of within-

network DMN architecture. An alternative view is that additional

accrual of RHIs with increasing levels of play (Broglio et al., 2009;

Broglio et al., 2011; Broglio, Surma, & Ashton-Miller, 2012; Daniel

et al., 2012; Kelley et al., 2017; Urban et al., 2013; Urban

et al., 2019) leads to more consequential long-term recovery out-

comes. It is possible that reduced accumulation of head impacts

over a shorter participation duration in youth players better sup-

ports off-season compensation of dysfunctional connectivity pat-

terns. In support of this interpretation, a subsequent study in high-

school players by Abbas, Shenk, Poole, Robinson, et al. (2015)

reported a deviation in DMN connections from control values even
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at preseason. In contrast, football and control participants in the

present study yielded reasonably consistent preseason FC values,

demonstrating no significant group effects in the voxel-wise analy-

sis and only in one of 12 regions in the ROI analysis.

It is important to note that despite the directional change

between in- and off-season delta FC values, no statistically significant

main effects of time were observed, indicating that the negative in-

season delta FC did not reliably differ from the positive off-season

delta FC across ROIs. This may be because the sample size for Cohort

2 was small compared with the original Cohort 1, leading to high inter-

subject variability in mean in- and off-season delta Z-score values

across ROIs. Furthermore, while it is reasonable to assume that levels

of RHI exposure declined following off-season withdrawal from play,

football players were not adequately monitored for head impact expo-

sure outside of football during off-season months. Eight of the

17 football players in Cohort 2 reported participation in off-season

sports, including basketball and soccer. It is possible that continued

participation in activities with risk for head impacts during off-season

months in some players led to an attenuation of apparent off-season

positive delta FC values. Future work including larger sample size and

improved control of off-season participation variables (i.e., complete

refrain from sport) will better determine the longitudinal outcomes of

RHI exposure in youth players.

4.3 | Effects of head impact frequency on
functional connectivity outcomes

A final key issue to address is whether the number of subconcussive

head impacts in youth football players differentially influenced DMN

FC outcomes. Subconcussive head impacts have been historically

overlooked because they do not evoke clinically recognizable symp-

toms. In recent years, however, it has become increasingly clear that

subconcussive RHIs may have short- and long-term neurological con-

sequences. Abnormal diffusion tensor imaging (DTI) indices of white

matter microstructure have been shown following single- and multi-

season exposure to subconcussive head impacts (Koerte et al., 2012;

Koerte, Ertl-Wagner, Reiser, Zafonte, & Shenton, 2012; Manning

et al., 2020; Mayinger et al., 2018). Diffusion MRI studies incorporat-

ing the HIT system have pointed to an association between the num-

ber and severity of subconcussive head impact exposure and

abnormal brain microstructure in youth, high-school, and collegiate

football players (Bahrami et al., 2016; Bazarian et al., 2014; Chun

et al., 2015; Davenport et al., 2016; McAllister et al., 2014). Aside

from acute changes, age at first exposure (≤ 12 years) to RHIs in pro-

fessional football players may be associated with long-term damage of

commissural white matter and more severe neurobehavioral impair-

ment (Alosco et al., 2018; Stamm, Bourlas, et al., 2015; Stamm,

Koerte, et al., 2015). Additionally, widespread deposition of

hyperphosphorylated tau as neurofibrillary tangles, the pathological

hallmark of CTE, is associated with prolonged exposure to head

impacts, irrespective of clinical concussion (McKee et al., 2013; Stein,

Alvarez, & McKee, 2015; Tagge et al., 2018). Taken together, this

evidence underscores the critical importance of more focused

advanced imaging studies characterizing the effects of subconcussive

RHIs on underlying brain pathophysiology, especially in vulnerable

youth collision-sport athletes. A deeper understanding of the relation

between head impact exposure and FC outcomes may contribute to

refined sport safety policies and targeted intervention techniques to

counter possible neurological detriments.

As shown in Table 1, current youth football players experienced a

median of 257 head impacts (median bootstrapped 95% confidence:

161–383) over the course of the season, with median linear and rota-

tional peak resultant acceleration values of 18.3 g and 925 rad/s2,

respectively. Importantly, football players yielded a low median

RWECP, indicating that FC outcomes reflect the consequence of head

impacts on a subconcussive scale with low concussion risk. We were

interested in determining whether a high and a low number of head

impacts differentially influenced the change between preseason and

postseason FC in Cohort 1 and between in-season and off-season

delta FC in Cohort 2. In Cohort 1, low impact players revealed no dif-

ferences between preseason and postseason across all ROIs, whereas

high impact players revealed reduced postseason FC compared with

preseason in the r- and l-LTC (Figure 6a). Several other regions in the

high impact group, but not the low impact group, also showed a trend

towards significantly reduced postseason FC. Similarly, low impact

players in Cohort 2 revealed no time effects between in-season and

off-season delta FC across ROIs, whereas the positive off-season

delta FC was significantly increased compared with the negative in-

season delta FC mean of the PFC/l-DFC, r-DFC, r-TPC, r- and l-LTC,

and the global DMN in high impact players (Figure 6b).

The results from this analysis provide initial evidence that the

number of experienced head impacts at the youth football level may

be a key contributing factor to abnormal DMN FC outcomes. It is pos-

sible, however, that other factors contributed to the FC disparity

between low and high impact groups. As shown in Table 1, high

impact players in Cohort 1 were also characterized by a significant

increase in median peak resultant linear acceleration and RWECP. A

key aim for future work should include combined consideration for

both the number and severity of head impacts on FC outcomes. Posi-

tional play is also associated with differences in head impact exposure,

with fundamental tackle positions (i.e., linemen, linebackers) engaging

in more frequent collisions compared with skilled ball-handling posi-

tions (Broglio et al., 2009; Crisco et al., 2010; Crisco et al., 2011).

Youth football players in the current study were characterized by vari-

able offensive and defensive positional play and subject to recurrent

positional substitutions throughout the course of practice and game

sessions. Thus, the impact of positional play on FC outcomes could

not be adequately addressed in the present youth players. It is also

important to consider the effect of covariates such as BMI on FC out-

comes. Despite variable positional play, larger players may be more

favorably positioned in fundamental tackle positions and engage in

more frequent collisions. There is also evidence suggesting a relation-

ship between BMI and DMN FC (Kullmann et al., 2012). Players in the

high impact group for Cohort 1 (BMI = 21.3 [SD = 2.3]) showed a

trend towards increased BMI compared with the low-impact group
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(BMI = 19.7 [SD = 2.5]) (two-sample t test, p = .054). Thus, BMI may

have had an effect on the relationship between head impact fre-

quency and the changes in DMN FC between preseason and

postseason. In Cohort 2, BMI did not reliably differ between players

in the high (BMI = 21.3 [SD = 2.3]) and low impact (BMI = 20.5

[SD = 4.4]) groups (two-sample t test, p = .65), suggesting that BMI did

not have an effect on the relationship between head impacts and the

change between in-season and off-season FC delta.

The results from this analysis emphasize the importance of limit-

ing head impacts in youth football and support implementation of

targeted rule interventions and policy changes to reduce the number

of sustained head impacts in players (Kerr et al., 2015; Ocwieja

et al., 2012). These results may also serve to inform parental decision-

making regarding youth football participation. Many parents are in

support of age-related restrictions on tackling (Chrisman et al., 2019)

and have concerns about later-life neurological detriments stemming

from their children sustaining football-related head injuries (Kroshus,

Bowen, Opel, Chrisman, & Rivara, 2020). Certainly, this perspective is

understandable given widespread media attention surrounding studies

with overwhelming evidence of CTE in former professional football

players (Mez et al., 2017). It is important to emphasize, however, that

FC changes and associated short-term and long-term outcomes

related to subconcussive RHIs, especially in youth collision sport ath-

letes, are not yet fully understood. Future longitudinal studies will play

an important role in shaping our perspectives regarding the social ben-

efits and safety risks associated with youth football participation.

4.4 | Limitations

There are several important limitations of the current study. First, the

current seed-based methodology does not account for possible wide-

spread network-level responses to RHIs across other intrinsic RSNs

previously shown to be affected by sport-related neurotrauma

(Bharath et al., 2015; Mayer, Bellgowan, & Hanlon, 2015). Future

studies implementing a more comprehensive exploratory approach

(e.g., independent component analysis [e.g., Calhoun & Adalı, 2012])

are important to better characterize intrinsic functional architecture

changes underlying RHI exposure in youth sport cohorts. Second,

while the initial and follow-up scans for players coincided with the

preseason and postseason for football players, the initial and follow-

up scans did not always coincide with the preseason and postseason

of the respective sport for controls. Although the average inter-scan

MRI acquisition interval was consistent for both football and control

groups (i.e., � 4 months), the DMN connectivity profile of control par-

ticipants could have been influenced by the absence of sport-related

involvement between initial and follow-up scans. Third, the HIT Sys-

tem used for acquisition of head impact kinematic data is associated

with some individual impact detection and acceleration measurement

error. However, this device limitation has been shown to be compara-

ble with other head impact devices and well within an acceptable

range of error (Beckwith et al., 2012). A fourth limitation is the arbi-

trary grouping of high- and low-impact groups while examining the

effects of head impact frequency on DMN FC outcomes. For Cohort

1, the upper and lower 30th percentile of the head impact frequency

distribution was used to separate players, while players falling

between those cutoff points were removed. This procedure was used

to provide adequate separation of players corresponding to the head

impact frequency distribution, as well as an adequate sample size

within each impact partition. For Cohort 2, the 50th percentile was

used in order to limit the exclusion of players from an already small

pool of participants. An important step for future work may include a

sensitivity analysis to determine the number of head impacts required

to induce network-level changes in FC. Lastly, it is important to

emphasize the exploratory nature of the analyses for Cohort 2 due to

its relatively small sample size.

5 | CONCLUSION

This study represents initial evidence in a high-risk youth collision-

sport cohort that a single season of subconcussive head impact expo-

sure in the absence of concussion causes reduced network-level FC

of widespread DMN regions compared with non-collision sport con-

trols. In the longitudinal analysis, in-season delta FC was characterized

by a negative directional change between preseason and postseason,

whereas an opposite, compensatory effect was observed for off-

season delta FC between postseason and follow-up. Lastly, the num-

ber of experienced head impacts in youth football players proved to

be a key contributing factor to FC alterations. These findings extend

evidence from other neuroimaging modalities and advance our under-

standing of the underlying pathophysiology characterizing sub-

concussive head impact exposure in youth football players.
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