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Background.  Differential etiologies of pediatric acute febrile respiratory illness pose challenges for all populations globally, but 
especially in malaria-endemic settings because the pathogens responsible overlap in clinical presentation and frequently occur to-
gether. Rapid identification of bacterial pneumonia with high-quality diagnostic tools would enable appropriate, point-of-care anti-
biotic treatment. Current diagnostics are insufficient, and the discovery and development of new tools is needed. We report a unique 
biomarker signature identified in blood samples to accomplish this.

Methods.  Blood samples from 195 pediatric Mozambican patients with clinical pneumonia were analyzed with an aptamer-
based, high-dynamic-range, quantitative assay (~1200 proteins). We identified new biomarkers using a training set of samples from 
patients with established bacterial, viral, or malarial pneumonia. Proteins with significantly variable abundance across etiologies 
(false discovery rate <0.01) formed the basis for predictive diagnostic models derived from machine learning techniques (Random 
Forest, Elastic Net). Validation on a dedicated test set of samples was performed.

Results.  Significantly different abundances between bacterial and viral infections (219 proteins) and bacterial infections and 
mixed (viral and malaria) infections (151 proteins) were found. Predictive models achieved >90% sensitivity and >80% specificity, 
regardless of number of pathogen classes. Bacterial pneumonia was strongly associated with neutrophil markers—in particular, de-
granulation including HP, LCN2, LTF, MPO, MMP8, PGLYRP1, RETN, SERPINA1, S100A9, and SLPI.

Conclusions.  Blood protein signatures highly associated with neutrophil biology reliably differentiated bacterial pneumonia 
from other causes. With appropriate technology, these markers could provide the basis for a rapid diagnostic for field-based triage 
for antibiotic treatment of pediatric pneumonia.

Keywords.   malaria; pediatric; pneumonia; biomarker; diagnostic.

Pediatric febrile respiratory illness is a leading cause of mortality 
and morbidity globally. Identifying the etiology—bacterial [1], 
viral, or (less commonly) malaria [2, 3]—is crucially impor-
tant but difficult due to similar clinical presentations. The crit-
ical need globally is to identify bacterial infections [3] so they 
can be treated appropriately and reduce mortality [4, 5]. Rapid 

bacterial diagnosis is challenged by current diagnostic tests: la-
borious microbiological culture or molecular testing methods, 
if available, often lack sensitivity to detect bacterial pathogens 
[6] as do radiological evaluations (through chest-X-ray or ultra-
sound), with equal limitation in availability. Malaria or viral in-
fections and bacterial secondary coinfections occur commonly 
together, increasing the challenge of a specific, treatable diag-
nosis [7, 8].

Host cellular responses to bacterial, viral, and malaria in-
fections are distinct, being chiefly neutrophilic, lymphocytic, 
or monocytic, respectively, and represent prime targets as di-
agnostic indicators. To date, these approaches are not suffi-
ciently reliable [9–13], based on a recommended benchmark 
[14] of thresholds for sensitivity (desirable, ≥95%; acceptable, 
≥90%) and specificity (≥90% and ≥80%). We hypothesized 
that the distinctive cellular host responses could be detected 
at the protein level. We test this hypothesis based on the dif-
ferential expression of proteins in pediatric febrile respira-
tory illness blood specimens from southern Mozambique, 
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where malaria is endemic. Febrile respiratory illness cases 
were classified by available gold standards, and using highly 
specific case definition, to 1 of 3 underlying causes—bacteria, 
viruses, or malaria—or to a combination (“mixed infec-
tions”). Proteins were assayed with SOMAScan technology 
(Somalogic, Boulder, CO), an array-based modified aptamer 
platform covering a range of biological pathways including 
inflammation, signal transduction, and immune processes. 
This quantitative assay of approximately 1200 proteins si-
multaneously offers a high dynamic range and has modest 
sample requirements (150 μL plasma) [15].

The resulting protein expression data were used to create ma-
chine learning–based models for distinguishing bacterial from 
viral or malaria infections. The same data, along with data from 
our prior RNA- and protein-based studies [9, 13], provided the 
basis for pathway analyses, to help confirm the underlying bi-
ology of the host response.

METHODS

Study Design

The study recruited 2 groups of children (<10 years of age) at the 
Manhiça District Hospital in Mozambique as follows: (1) chil-
dren with febrile respiratory illness admitted to the hospital ful-
filling the “clinical pneumonia” criteria (as defined by the World 
Health Organization [WHO]) and (2) afebrile and asympto-
matic healthy community controls used to establish a baseline. 
Febrile respiratory illness cases were assigned by all available 
gold-standard tests to 1 of 3 underlying causes—bacteria, vir-
uses, or malaria—or to a combination (“mixed infections”).

Study Population and Sample Classification Procedure

Children with fever at admission (>37.5°C axillary tempera-
ture) or prior 24-hour history of fever meeting the WHO case 
definition for clinical pneumonia (increased respiratory rate 
and cough or difficulty breathing) [16] were selected for the 
study. Informed consent was obtained from parents/guardians. 
All children underwent anteroposterior chest radiography; 
images were independently interpreted following the WHO-
recommended guidelines for pneumonia diagnosis by 2 expe-
rienced clinicians [17].

Patients were classified as having clinical pneumonia asso-
ciated with bacterial, malaria, or viral infection using the cri-
teria described in Valim et al [13], with minor modifications. 
In brief, patients were classified as bacterial pneumonia when 
pathogenic bacteria were isolated (or detected through reverse 
transcription–polymerase chain reaction [RT-PCR]) from 
blood or pleural exudate, and after confirming the absence of 
malarial infection. Viral pneumonia required the detection in 
the nasopharyngeal aspirate (NPA) of a viral respiratory path-
ogen, no isolated bacteria in the blood culture or RT-PCR, no 
“endpoint pneumonia” in the chest X-ray, and negative malaria 

microscopy. Finally, a malaria case required a positive malaria 
smear microscopy (according to predetermined parasitemia 
thresholds in relation to age [18]), normal chest X-ray, and 
no detectable bacterial infection. We analyzed our case defin-
itions against ALMANACH criteria (Supplementary Material, 
Supplementary Methods and Supplementary Table 7).

To address the known insensitivity of blood culture for bacte-
rial pneumonia, cases were also assigned a bacterial etiology if 
the NPA was negative for virus but the patient had leukocytosis 
and a dense radiographic consolidation (endpoint pneumonia) 
based on consensus of 2 independent experts. Since NPAs are 
often positive on RT-PCR for potential viral respiratory patho-
gens even in clinically well children, the detection of a virus in 
the NPA did not alter the class assignments for confirmed bac-
terial or malarial cases. See Supplementary Figure 1 for a com-
prehensive flowchart for patient classification.

In addition, patient samples with mixed infections were also 
included in the study (for details see Supplementary Table 3). 
“Virus and probable bacterial secondary coinfection” samples 
were virus positive, culture- and PCR-negative for bacteria but 
with leukocytosis and radiographic endpoint pneumonia, sug-
gestive of a secondary bacterial infection.

SOMAScan Protein Assay

The SOMAScan assay uses SOMAmers (Slow Off-rate Modified 
Aptamers) to capture proteins and translates binding events 
into signals measured in relative fluorescence units, which are 
directly proportional to target protein abundance in the sample, 
calculated by a standard curve generated for each protein–
SOMAmer pair. The dynamic range is enhanced by 3 serial 
dilutions, with the least concentrated dilution used to quantify 
the most abundant proteins (approximate micromolar concen-
tration in the original sample), and the most concentrated used 
for the least abundant proteins (femtomolar to picomolar con-
centration) [15]. Samples were assayed in 2 batches (15 samples 
replicated to verify consistency); the SOMAScan assays used 
in the first set of 167 samples quantified 1129 proteins and the 
SOMAScan assay used in the second set of 49 samples quanti-
fied 1279 proteins. In the 2 batches, 96.4% (161/167) and 100% 
(49/49) of samples passed Somalogic normalization acceptance 
criteria.

We use Somalogic protein marker labels throughout this ar-
ticle (Supplementary Data File 1 provides full protein names).

Protein Marker Selection and Predictive Model Building

Selection was based on statistical significance of differences 
in marker abundance between the bacteria versus virus (BvV) 
and bacteria versus malaria or virus (BvVM) comparisons. 
Classifiers discriminated (1) BvV and (2) BvVM using the 219 
and 151 statistically significant (false discovery rate [FDR] 
<0.01) markers, respectively, and their corresponding surro-
gates. Using optimal subsets of N-protein markers (n = 5, 10, 
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15, 25, 50, 100)  identified using genetic algorithms, 2-class 
Random Forest (RF) and Elastic Net (EN) models were con-
structed, achieving predictive results with high sensitivity and 
specificity with a small subset of markers (see Figure 1) (details 
in the “Data Analysis Pipeline” in the Supplementary Appendix 
and Supplementary Figure 3).

Biological Processes and Pathways

To better understand the biological significance of the differ-
entially expressed proteins, differential markers were used as 
input to the Metascape Gene Annotation and Analysis Resource 
(http://metascape.org) to query multiple ontology resources in-
cluding KEGG (Kyoto Encyclopedia of Genes and Genomes) 
pathway, Gene Ontology (GO) Biological Processes, Reactome 
Gene Sets, Canonical Pathways, and CORUM. Both 3-way 
(bacteria vs malaria vs virus) and binary (BvV) comparisons 
were explored (see Supplementary Appendix for details).

Comparative Marker Analysis Between Technologies

To assess whether markers identified as indicating bacterial in-
fection were consistent across technology platforms, extensive 
comparisons were made between this and 2 previous marker 
studies of the same patients (RNA-sequencing and multiplex 
bead-based protein immunoassays); both studied different but 
overlapping samples within the same study population (see de-
tails in the Supplementary Appendix).

RESULTS

Patient Characteristics

Between July 2010 and November 2014, 576 patients were re-
cruited as inpatients, along with 117 community controls. 
A  total of 195 patients under 10  years of age with acute fe-
brile respiratory illness met the stringent inclusion criteria 
and were included in this analysis. To identify differentially 
expressed proteins between underlying etiologies, patients 

Figure 1.  Data analysis workflow. A total of 210 samples passed QC on the SOMAScan assay to quantify 1107 proteins. The 171 single etiology samples were classified as 
malaria, virus, or bacteria and included 12 repeats that were randomly split between the training and validation datasets; the 4 repeats that ended up in the validation dataset 
were excluded from downstream analysis. The remaining 39 samples consisted of 16 healthy community controls and 23 samples with mixed etiology. Single etiology sam-
ples were divided into a training set of 120 and a validation set of 47 samples. The training data were used for identifying differentially expressed markers between bacteria 
and virus, or bacteria and malaria or virus samples. Genetic algorithms were used to select the best 5, 10, 15, 25, 50, and 100 markers. Classifiers for BvV and BvVM were 
trained using RF and EN algorithms. Models were tuned using cross-validation, and final model performance was assessed using the validation data. In order to contend with 
the situation where a marker is unavailable (eg, due to difficulty in measuring the marker in a clinical setting), we determined a set of surrogate markers for each differential 
marker using information correlation, a criterion based on mutual information. We then assessed model performance when 10% or 20% of differential markers were substi-
tuted with their corresponding surrogates. Abbreviations: BvV, bacteria vs virus; BvVM, bacterial vs malaria or virus; EN, Elastic Net; QC, quality control; RF, Random Forest.
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were characterized as having bacterial (69 patients), malaria 
(42 patients), viral (48 patients), or mixed (23 patients) infec-
tions (for details see Supplementary Table 3). Thirteen healthy 
subjects were included as controls. The classification scheme 
was similar, as previously described (see Supplementary Figure 
1 for a patient classification flowchart) [9, 13]. No significant 
differences in age, sex, weight, height, nutritional status, or du-
ration of hospital admission were observed between bacterial, 
viral, and malaria sample sets (see Table 1 and Supplementary 
Table 1 for patient demographic and disease characteristics). 
Case-fatality rates were high (6%) for the bacterial group, but 
none of the malaria cases or viral cases died. Malnutrition was 
highly prevalent among the 3 groups, and human immunode-
ficiency virus (HIV) prevalence was also high, although signif-
icantly higher among the bacterial group. Bacterial cases had 
the highest leukocyte count and respiratory rates. Malaria cases 
were the most anemic, had the highest mean axillary temper-
ature, and had the lowest respiratory rates. Viral cases had the 
lowest leukocyte count, had lower mean axillary temperature, 
and were less anemic. Neutrophil levels were statistically higher 
for the bacterial etiology, but the overlap between etiologies 
was too great for this to serve as a classifier.

From the 195 patients, 210 peripheral blood samples (in-
cluding 15 replicates, 4 of which were excluded from down-
stream analysis) were assayed for protein composition using the 
SOMAScan platform (see Figure 1). Sample characteristics and 
designations of single (167 samples) and mixed infections with 
controls (39 samples) can be found in Supplementary Tables 2 
and 3, respectively.

Differential Markers

Using the SOMAScan data, 219 and 151 differentially expressed 
protein markers (FDR <0.01) were identified in the BvV com-
parison (Supplementary Table 4A, heatmap in Figure 2) and 
the BvVM comparison (Supplementary Table 4B, heatmap in 
Supplementary Figure 2B), respectively. The differential pro-
tein expression signatures determined by SOMAscan are shown 
in the heatmap in Figure 2A. This signal is manifest only after 
marker selection; unsupervised clustering in the space of the 
entire 1107 protein panel does not reveal a clear dominant 
structure related to infectious etiology (Supplementary Figure 
2A). Box-and-whisker plots of the 100 top-ranked markers are 
depicted in Supplementary Figure 4.

Performance of Predictive Diagnostic Models

Our chief aim was to develop a protein-based biomarker panel to 
distinguish bacterial from other etiologies of clinical pneumonia 
with accuracy that would support clinical decision making. The RF 
and EN models had generally similar performance, with RF models 
performing slightly better overall (see Supplementary Table 5C and 
5D) and declining in performance more smoothly with fewer input 
markers. We therefore focused subsequent analyses on RF results.

In single etiology samples, the performance of the BvV 
model (evaluated on the held-aside validation samples) was 
excellent. Sensitivity and specificity for bacterial cases using 
all 219 markers were 90% and 100%, respectively, meeting 
the Foundation for Innovative New Diagnostics (FIND) pro-
posed criteria for a diagnostic test of these characteristics [14]. 
Furthermore, sensitivity and specificity remained at 90% and 
85% with only 5 markers, potentially simplifying the translation 
to a field-deployable diagnostic. Accuracy was 94% (95% con-
fidence interval [CI]: .79–.99) and 88% (95% CI: .71–.96), with 
219 and 5 markers, respectively (Table 2A and Supplementary 
Table 5A).

The BvVM RF model had an accuracy of 87% (95% CI: 
.74–.95), a specificity of 100%, and a sensitivity of 68%. When 
decreasing the panel size to only 5 markers, accuracy decreased 
to 60%, specificity to 64%, and sensitivity to 53% (see Table 2 
and Supplementary Table 5B).

On healthy controls and mixed-infection samples, the BvV 
RF model performed well, with 95% sensitivity, 84% speci-
ficity, and 90% accuracy (95% CI: .76–.97) (Table 2B). The 
model correctly predicted the majority of bacterial infec-
tions and bacterial coinfections, successfully distinguishing 
these from nonbacterial infections (malaria and/or virus). 
Supplementary Table 6 depicts BvV and BvVM RF model sta-
tistics on mixed-infection samples without controls. To com-
pare, we found that the clinical ALMANACH models were 
uniformly inferior to our molecular predictors, with a partic-
ularly dramatic loss of specificity (see Supplementary Table 7 
for details).

Genetic Algorithm-Derived and Surrogate Markers

Marker subsets (with “n” ranging from 5 to 100 markers) were 
selected using genetic algorithms. Since the results can be 
nondeterministic, the method was re-run multiple times. Across 
all runs of the genetic algorithm, interleukin 1 receptor type 1, 
high mobility group box 1, programmed cell death 1 ligand 2, 
roundabout guidance receptor 2, and pregnancy-associated 
plasma protein A were the 5 protein markers most often 
selected. For the BvVM models, the most-selected markers were 
lymphotoxin ɑ2/B1 protein (LTA.LTB1), TPI1, ɑ1-antitrypsin 
(SERPINA1), IGFBP2, and ROR1 (see Supplementary Data File 
2 for complete marker lists).

We next assessed whether models were robust to replace-
ment of individual markers by corresponding surrogates. This 
provides an index of model stability and has practical relevance 
when converting predictive models into diagnostics, which may 
require marker substitution for technical reasons. The RF (and 
EN) classifiers for both BvV and BvVM proved to be robust to 
the choice of specific markers: classifier accuracy did not sig-
nificantly decline even when 20% of the markers were replaced 
with surrogates (Supplementary Figure 5).
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In single etiology samples, the performance of the BvV 
model (evaluated on the held-aside validation samples) was 
excellent. Sensitivity and specificity for bacterial cases using 
all 219 markers were 90% and 100%, respectively, meeting 
the Foundation for Innovative New Diagnostics (FIND) pro-
posed criteria for a diagnostic test of these characteristics [14]. 
Furthermore, sensitivity and specificity remained at 90% and 
85% with only 5 markers, potentially simplifying the translation 
to a field-deployable diagnostic. Accuracy was 94% (95% con-
fidence interval [CI]: .79–.99) and 88% (95% CI: .71–.96), with 
219 and 5 markers, respectively (Table 2A and Supplementary 
Table 5A).

The BvVM RF model had an accuracy of 87% (95% CI: 
.74–.95), a specificity of 100%, and a sensitivity of 68%. When 
decreasing the panel size to only 5 markers, accuracy decreased 
to 60%, specificity to 64%, and sensitivity to 53% (see Table 2 
and Supplementary Table 5B).

On healthy controls and mixed-infection samples, the BvV 
RF model performed well, with 95% sensitivity, 84% speci-
ficity, and 90% accuracy (95% CI: .76–.97) (Table 2B). The 
model correctly predicted the majority of bacterial infec-
tions and bacterial coinfections, successfully distinguishing 
these from nonbacterial infections (malaria and/or virus). 
Supplementary Table 6 depicts BvV and BvVM RF model sta-
tistics on mixed-infection samples without controls. To com-
pare, we found that the clinical ALMANACH models were 
uniformly inferior to our molecular predictors, with a partic-
ularly dramatic loss of specificity (see Supplementary Table 7 
for details).

Genetic Algorithm-Derived and Surrogate Markers

Marker subsets (with “n” ranging from 5 to 100 markers) were 
selected using genetic algorithms. Since the results can be 
nondeterministic, the method was re-run multiple times. Across 
all runs of the genetic algorithm, interleukin 1 receptor type 1, 
high mobility group box 1, programmed cell death 1 ligand 2, 
roundabout guidance receptor 2, and pregnancy-associated 
plasma protein A were the 5 protein markers most often 
selected. For the BvVM models, the most-selected markers were 
lymphotoxin ɑ2/B1 protein (LTA.LTB1), TPI1, ɑ1-antitrypsin 
(SERPINA1), IGFBP2, and ROR1 (see Supplementary Data File 
2 for complete marker lists).

We next assessed whether models were robust to replace-
ment of individual markers by corresponding surrogates. This 
provides an index of model stability and has practical relevance 
when converting predictive models into diagnostics, which may 
require marker substitution for technical reasons. The RF (and 
EN) classifiers for both BvV and BvVM proved to be robust to 
the choice of specific markers: classifier accuracy did not sig-
nificantly decline even when 20% of the markers were replaced 
with surrogates (Supplementary Figure 5).
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Biological Processes and Pathway Analysis

To gain insight into the biology underlying the markers of bacterial 
and viral infection, multiple databases were queried for functional 
and pathway annotations. Terms significantly enriched in the bac-
terial or viral pneumonia marker sets were automatically clustered 
into nonredundant groups (details in Methods). Marker support 
for terms is shown in Figure 3A and the top 20 clusters in Figure 
3B. Individual terms (and therefore clusters) could be supported by 
both bacterial and viral markers. Most clusters had support from 
both etiologies, but a subset (blue or red circles in Figure 3) was 
strongly associated with a single etiology. Two GO clusters, “che-
motaxis” and “regulation of neurogenesis,” were driven almost ex-
clusively by viral markers, while “response to bacterium” (our top 
ranked GO term with 39 gene hits), “regulated exocytosis,” “anti-
microbial humoral response,” “positive regulation of response to 
external stimulus,” and “signaling by interleukins” were driven al-
most exclusively by bacterial markers.

Neutrophil-related biological processes emerged as a key 
biological theme associated with bacterial infection. In partic-
ular, the “regulated exocytosis” GO cluster (34 gene hits) rep-
resents mostly neutrophil- or leukocyte-related terms. Within 
the top 36 GO clusters (out of 1388 total clusters, ranked by P 
value), 6 highly significant clusters consisting of 14 to 26 gene 
hits each were identified as neutrophil processes (“migration,” 
“mediated-immunity,” “activation,” “degranulation,” “activation 
involved in immune response,” and “chemotaxis”). Notably, no 
other cell type or subpopulation besides neutrophils appeared 
within the first 243 rank-ordered GO clusters. The “neutrophil 
degranulation” cluster was particularly prominent in markers 
that were identified by both SOMAScan and RNA-sequencing; 
it contained 10 of the 24 markers that emerged from that 
cross-platform comparison (Figure 3B, 3D, and 3E). This was 
further demonstrated by 3-way enrichment heatmap compari-
sons (Supplementary Figure 9).

Figure 2.  A, Hierarchically clustered heatmap of normalized SOMAscan expression values for 219 significant markers (FDR <0.01) from the SOMAScan BvV comparison 
in the space of all single etiology bacterial and viral samples in this study (see Supplementary Figure 10 for full resolution with details). Top track: viral (yellow) and bacte-
rial (blue) etiology. B, Top 10 rank-ordered protein markers (highest to lowest, left to right) in our BvV and BvVM marker sets. Abbreviations: BvV, bacteria vs virus; BvVM, 
bacterial vs malaria or virus; CCL23, C-C motif chemokine 23; CSF3, granulocyte colony-stimulating factor; CX3CL1, fractalkine; ESD, S-formylglutathione hydrolase; FDR, 
false discovery rate; HP, haptoglobin; IL1RL1, interleukin-1 receptor-like 1; IL6, interleukin-6; ITIH4, inter-ɑ-trypsin inhibitor heavy chain H4; KYNU, kynureninase; LCN2, neu-
trophil gelatinase-associated lipocalin; max, maximum; min, minimum; NTN4, netrin-4; PLA2G2A, phospholipase A2; RETN, resistin; S100A9, protein S100-A9; SERPINA1, 
ɑ1-antitrypsin; SLPI, anti-leukoproteinase.
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Neutrophil-related biological processes emerged as a key 
biological theme associated with bacterial infection. In partic-
ular, the “regulated exocytosis” GO cluster (34 gene hits) rep-
resents mostly neutrophil- or leukocyte-related terms. Within 
the top 36 GO clusters (out of 1388 total clusters, ranked by P 
value), 6 highly significant clusters consisting of 14 to 26 gene 
hits each were identified as neutrophil processes (“migration,” 
“mediated-immunity,” “activation,” “degranulation,” “activation 
involved in immune response,” and “chemotaxis”). Notably, no 
other cell type or subpopulation besides neutrophils appeared 
within the first 243 rank-ordered GO clusters. The “neutrophil 
degranulation” cluster was particularly prominent in markers 
that were identified by both SOMAScan and RNA-sequencing; 
it contained 10 of the 24 markers that emerged from that 
cross-platform comparison (Figure 3B, 3D, and 3E). This was 
further demonstrated by 3-way enrichment heatmap compari-
sons (Supplementary Figure 9).
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Figure 3.  Pathways and gene enrichment analysis with differential markers shared between this study, RNA-sequencing, and RBM multiplex assay studies with the same 
study population. A–C, Clustered terms enriched in our bacteria vs virus 2-class comparison. Each node represents 1 term describing a biological process or pathway. Edges 
connect similar terms (similarity score [κ] >0.3); the thickness of the edge represents the similarity score. Each term is represented by a circle node, where the size is propor-
tional to the number of input markers. The underlying file can be found as an additional supplementary file (“Cytoscape BvV network”). A, Distribution of support for each node 
from bacterial (red) and viral (blue) markers (ie, each pie sector is proportional to the number of hits that originated from a particular marker list). B, Nodes colored by their 
membership in 1 of the top 20 clusters. Each cluster is named for the term (node) with the best P value. Inset table: neutrophil degranulation, considered as a sub-pathway 
of regulated exocytosis, was detected as the major biological GO pathway shared between the BvVM marker set of this study and RNA-sequencing data. Of the 18 bacterial 
markers overlapping between the studies, 10 markers are directly involved in neutrophil degranulation (see panel E for all 18 markers). C, Bacteria vs virus marker set with 
nodes colored by P value. The darker the color, the more statistically significant the node (see legend for P value ranges). D and E, RBM and SOMAScan protein aliases were 
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Comparisons Between Datasets and Technologies

To assess the consistency of the results, we compared gene 
marker sets from similar marker-focused studies of the same 
population using different technologies. First, the current BvVM 
marker set was compared with markers found in our previously 
published RNA-sequencing approach [9]. Of the 1107 proteins 
included in our SOMAScan assay, 78 were represented by genes 
from the set of 600 significant differentially expressed markers 
in the RNA-sequencing analysis (of ~12 000 expressed genes) 
(Supplementary Data File 1D). Twenty-five of these 78 genes 
(corresponding to 24 proteins) proved to be statistically signifi-
cant markers in our comparison (Supplementary Figure 6).

In the RNA data, 18 of those 24 proteins were markers for 
bacterial infection and 6 were markers for malaria infection. 
A heatmap of these markers highlights the strong class distinctions 
(Supplementary Figure 7). Haptoglobin (HP) is markedly down 
and hemoglobin up in malaria samples, but the majority of markers 
are elevated in bacterial samples (Figure 3E, and see Supplementary 
Figures 6 and 8 for details on the malaria markers). When we used 
the SOMAScan data for these 24 markers to build RF and EN 
models, they performed similarly to 25 protein marker models 
optimized by the genetic algorithm (Supplementary Table 5E and 
5F), suggesting that those 24 markers would also be good candidate 
markers for a diagnostic assay.

We also compared the SOMAScan marker sets with findings 
from a previous protein-based immunoassay (the rules based 
medicine [RBM] multiplex immunoassay) [13]. Five markers 
were identified as differential markers for bacterial pneumonia 
in both datasets: CKM, HP, IL6, myeloperoxidase (MPO), and 
SERPINA1 (Figure 3, Supplementary Figure 6). Three markers, 
HP, MPO, and SERPINA1, were identified as significant markers 
in all 3 studies (SOMAScan, multiplex immunoassay, and RNA-
sequencing) despite the very different methodologies employed 
(Venn diagram in Figure 3D). Two markers appear in both the 
SOMAScan and multiplex immunoassay data as likely markers 
for malaria infection, VCAM1 and APCS [13].

DISCUSSION

We present diagnostic models based on aptamer-derived blood 
protein signatures that accurately discriminate bacterial from 
viral infections of pediatric febrile respiratory illness with as few 
as 5 protein markers (94% accuracy, 90% sensitivity, 85% spec-
ificity), meeting/exceeding the FIND-sponsored expert con-
sensus guidelines on diagnostics for bacterial pneumonia [14]. 

Accurate discrimination of bacterial infection from both viral 
and malaria etiologies was achieved with 25 markers.

Because the BvV model was highly predictive, we investi-
gated the proteins to understand the processes that typify bacte-
rial and viral infections. Gene enrichment and pathway analyses 
showed neutrophil-dominated processes in bacterial infections. 
The consistency of a neutrophilic host-response signature is 
highlighted by common signals (18 bacterial markers) across 
prior studies at both the RNA and protein level, despite model 
and platform differences (Figure 3E). Reinforcing this obser-
vation, a cross-platform 24-marker set, highly enriched for 
neutrophil-associated proteins (neutrophil degranulation being 
prominent), proved to be equally effective in differentiating 
bacteria versus other (Supplementary Table 5F). Ten of the 18 
bacterial markers were associated with bacterial airway inflam-
mation, modifying, mitigating, or augmenting neutrophil im-
munological responses. For example, SERPINA1 and SLPI are 
both protease inhibitors regulating neutrophil elastase activity 
[19–21].

Bacterial pneumonia diagnostics are a challenge glob-
ally for all countries in pediatric populations with a need for 
better diagnostics to improve antibiotic stewardship and mor-
tality outcomes. The limitations of the current WHO clinical 
pneumonia definition were improved upon by our strict fur-
ther criteria, laboratory testing, and consensus review to pro-
duce the best possible set of pneumonia cases. Our objective 
was to develop protein-based predictors that could eventually 
be ported to a field-deployable device for discriminating bac-
terial from nonbacterial pneumonia. While larger validation 
studies are needed, this study provides strong evidence that a 
blood-based protein panel of limited size can achieve the sen-
sitivity and specificity required to guide clinical decisions re-
garding antibiotic therapy. By identifying biologically plausible 
sets of markers, the groundwork for the development of a point-
of-care test has been established, particularly considering that 
some of these markers (HP, SERPINA1, MPO, etc) are relatively 
simple to measure. We identified surrogate proteins that can be 
exchanged for markers in our models without loss of accuracy, 
allowing flexibility in developing a diagnostic test. Although 
optimized for single etiology samples, our models performed 
well in mixed infections representing the natural complexity 
of febrile respiratory illness. Importantly, these markers seem 
to discriminate appropriately, even in the context of a high un-
derlying malnutrition or HIV prevalence, such as the one in 

converted into their gene names to compare markers between studies. D, Overlap of selected marker sets: SOMAScan (BvVM, n = 156), RNA-sequencing (BvVM, n = 431), 
and RBM immunoassay (BvV and BvM, n = 21). E, Two direct comparisons of marker sets derived through the same approach (BvV and BvVM); filled circles indicate a marker 
identified in the specified analysis. Markers that overlapped in the 2 direct comparisons are depicted by filled circles, but not between the 4 individual marker sets. The color 
indicates the direction of expression change. Red: upregulation in bacterial samples; dark blue: downregulation. Light gray: the marker was not detected or not included in at 
least 1 of the 2 marker sets. Abbreviations: ALPL, alkaline phosphatase; BvV, bacteria vs virus; BvVM, bacterial vs malaria or virus; CHIT1 - chitinase 1; CKM, creatine kinase, 
M-type; CST7, cystatin F; GO, Gene Ontology; HGF, hepatocyte growth factor; HP, haptoglobin; IL18R1, interleukin 18 receptor 1; IL6, interleukin-6; ILI8RAP, interleukin 18 re-
ceptor accessory protein; LCN2, neutrophil gelatinase-associated lipocalin; LTF, lactotransferrin; MMP8, matrix metalloproteinase-8; MPO, myeloperoxidase; OSM, oncostatin 
M; PGLYRP1, peptidoglycan recognition protein 1; PLXNC1, plexin C1; RETN, resistin; S100A9, protein S100-A9; SERPINA1, ɑ1-antitrypsin; SLPI, anti-leukoproteinase.
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Manhiça, southern Mozambique [22, 23]. This is a significant 
benchmark, as a predictor must be effective across the spec-
trum of real-life clinical scenarios. Finally, our study provided 
insights into the host-response biology in our discriminant 
marker proteins. These observations may inform marker selec-
tion in future prospective studies and, together with our spe-
cific models and markers, may facilitate the development of the 
optimized markers for pneumonia diagnosis with the eventual 
transition to point-of-care tests that are needed to change future 
clinical practice, particularly for those settings where associated 
case-fatality rates for common infections remain high and diag-
nostic tools scarce.

Supplementary Data
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