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Abstract

The emergence of the diagonal of open/dry vegetations, including Chaco, Cerrado and Caa-

tinga, is suggested to have acted as a dispersal barrier for terrestrial organisms by fragment-

ing a single large forest that existed in South America into the present Atlantic and Amazon

forests. Here we tested the hypothesis that the expansion of the South American diagonal

of open/dry landscapes acted as a vicariant process for forest lanceheads of the genus

Bothrops, by analyzing the temporal range dynamics of those snakes. We estimated ances-

tral geographic ranges of the focal lancehead clade and its sister clade using a Bayesian

dated phylogeny and the BioGeoBEARS package. We compared nine Maximum Likelihood

models to infer ancestral range probabilities and their related biogeographic processes. The

best fitting models (DECTS and DIVALIKETS) recovered the ancestor of our focal clade in

the Amazon biogeographic region of northwestern South America. Vicariant processes in

two different subclades resulted in disjunct geographic distributions in the Amazon and the

Atlantic Forest. Dispersal processes must have occurred mostly within the Amazon and the

Atlantic Forest and not between them. Our results suggest the fragmentation of a single

ancient large forest into the Atlantic and Amazon forests acting as a driver of vicariant pro-

cesses for the snake lineage studied, highlighting the importance of the diagonal of open/

dry landscapes in shaping distribution patterns of terrestrial biota in South America.

Introduction

The Neotropical region is of great interest for the study of biogeographic processes. It has been

shown to be the most biodiverse region in the world with high levels of endemism for different

groups of organisms [1], including frogs [2], reptiles [3], and birds [4]. Several hypotheses

have been proposed to explain this high diversity and endemism, including the Great
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American Biotic Interchange [5, 6], the isolation of South America as an island during the

Paleogene and the Neogene (from 60 to 10 million years ago–mya; [7, 8]) and climatic fluctua-

tions of the Pleistocene, from 2.6 mya to 12,000 years ago [9–12]. Such climatic fluctuations

have been associated with the contraction and expansion of landscapes [11, 12].

The expansion of the South American diagonal of open/dry landscapes (DODL) including

the Cerrado, Caatinga and Chaco ecoregions [13] (Fig 1), has raised the question of which pro-

cesses have modulated the geographical distribution patterns of species we observe today in

the Neotropical region. A recurring hypothesis in the literature is that the emergence of the

DODL split a single large forest in South America prior to the Oligocene period into the pres-

ent Atlantic and Amazon forests [10, 14–18] (Fig 1). Most of the formation of the DODL may

have occurred due to two key factors: (i) the increasing aridity during cooler and drier periods

that started in the Oligocene (between 28 and 25 mya; [13]); and (ii) the late Andean uplift

throughout the late Miocene and early Pliocene (from 10 to 2 mya; Fig 1. [13, 19–21]), when

the Andean Mountains reached its peak, between 6 to 4 mya [22]. The latter event has been

suggested to have had a critical role on the last phases of the DODL formation, as the Andean

Fig 1. Summary of important events underlying the expansion of the diagonal of open/dry landscapes (DODL).

The location of the continuous ancient forest that was subsequently splitted into the actual Amazon and Atlantic

forests (dashed green line) is based on Bigarella et al. [18]. Below the map, times and periods are based on Cohen et al.

[25]. The asterisks indicate times established on the literature [9, 11, 26] with recent works contesting them [27–29].

Map source: Natural Earth (www.naturalearthdata.com).

https://doi.org/10.1371/journal.pone.0257519.g001
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uplift led to the uplift of the Brazilian Plateau and the subsidence of the Chaco region [13, 23].

Coscaron and Morrone [24] also hypothesized that the Andean uplift may have blocked the

atmospheric flow from the Pacific Ocean, helping to increase aridity and the subsequent emer-

gence of the DODL [24].

Whether the split acted as a vicariant process for terrestrial organisms [24, 30] or created a

dispersal barrier preventing populations from one forest to reach the other has been debated

[16, 31]. For assassin bugs of the Peiratinae subfamily and populations of the lizard species

Polychrus marmoratus, it was hypothesized that the emergence of the DODL acted as a vicari-

ant process [24, 30, 32]. For the frog genus Adenomera, numerous dispersals followed by vicar-

iant events between the Amazon and DODL have been suggested, and one of these events have

likely occurred between the Amazon and the Atlantic Forest, forming an Atlantic forest clade

[28]. The DODL has also been suggested to have isolated the frogs of the genus Dendrophrynis-
cus and Amazonella [33]. Lizards of the genus Enyalius colonized the Amazon from an Atlan-

tic Forest ancestor in the late Oligocene, which corresponded to a cladogenetic event [27].

Historical connections between the two forest blocks through dispersal corridors within the

DODL have been suggested (Fig 1) [10, 11, 34]. Such corridors, presently composed of relicts

of the ancient large forest block, and including gallery forests of the Cerrado and the brejos of

the Caatinga [10, 16], changed the view that the DODL is a separated and isolated region from

both the Amazon and Atlantic forests [10]. Three major corridors have been proposed (see Fig

1) [10, 11, 26, 35]. The Eastern corridor would have connected the northern Atlantic Forest

and eastern Amazon through the Caatinga region; the Central corridor would have been

located in central Brazil, in the Cerrado region; and the Western corridor would have been

located in southwestern South America, including the Chaco, in western Brazil, Paraguay,

Bolivia, and Peru [10].

Those dispersal corridors in South America were apparently present during different geo-

logical periods (Fig 1) [34]. The Eastern and Central corridors possibly have opened up more

recently, in the Quaternary [14, 15, 32, 34], during forest contractions and retractions in the

Plio-Pleistocene epochs (~ last 5 mya; [9, 12, 36]). A recent study, however, suggests more

ancient dispersal events through these “young pathways” in the early Miocene [27], 23 to 5

mya. The Western corridor, on the other hand, is hypothesized to be older and more relevant

[34, 37], despite recent discussions about its importance [35]. The emergence of this corridor

was congruent to sea introgressions forming the Pebas system, between 23 and 10 mya [21, 38,

39], with the expansion of the Amazon basin between 10 and 7 mya [21, 38], and with the

emergence of the Paraná sea [40, 41]. Those events may have provided paths for terrestrial

organisms to disperse [42]. Other studies have elaborated further on the Western corridor,

suggesting that rather than a direct link between the Atlantic and Amazon forests, the corridor

would have connected the Andean montane forests and the Southern Atlantic Forest [43–45].

At least two corridors may have connected the Andean region and the Atlantic Forest, one

through the Chaco region, passing through Paraguay, northern Argentina and Bolivia, and the

other within the Cerrado region, connecting the central Atlantic Forest and the Andes by gal-

lery forests [45].

Snakes are an interesting model for understanding biogeographical processes. The group

started to radiate more than 100 mya [46], and is distributed worldwide with the exception of

Antarctica [47–50]. Thus, a myriad of processes might have shaped their current diversity and

geographic patterns. Despite the great endemism and diversity of this group in the Neotropical

region [51], it is only recently that the biogeographic processes responsible for this diversity

have started to be studied [52–55]. Snakes of the family Viperidae, also known as vipers, are

distributed worldwide and comprise approximately 360 species [56]. However, about 70% of

all viper species are endemic to the New World [57].
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The genus Bothrops in the viperid subfamily Crotalinae, commonly known as lanceheads,

represents one of the most species-rich genus occurring in the New World [56] and, with the

exception of few species, most of them are endemic to South America. Bothrops species are dis-

tributed in both forest blocks and open areas over the Neotropics, making them an ideal model

for studying biogeographical processes in the Neotropical region. The group counts with

recently phylogenies available [57, 58], and The Reptile Database [56] currently recognizes 45

species of lanceheads. Within these species, a group of 18 species stands out, as it is composed

mainly by forest lanceheads, including Bothrops moojeni, which occurs in gallery forests

throughout the Cerrado region [59], a geographic domain with savannah-like open vegetation.

Here we explored the hypothesis that the expansion of the DODL acted as a vicariant pro-

cess for vipers of the genus Bothrops, by analyzing the temporal range dynamics of a Bothrops
clade comprising 18 forest species, and using models of ancestral geographic range estimation.

We intended to answer the following questions: (1) where did our focal forest clade originate?;

and (2) how biogeographic processes such as vicariance and dispersal shaped the current geo-

graphic distribution of those species?

Materials and methods

Study area and regionalization

Different regionalization schemes have been proposed for the Neotropical Region [60–63].

Terrestrial ecoregions of the world represent a regionalization scheme based on global floristic

maps and vegetation types [63, 64]. We used combinations of Neotropical ecoregions sensu
Olson et al. [63] and Dinerstein et al. [64] to define our biogeographic units. Specifically, we

defined 13 biogeographic units by combining ecoregions according to the distribution patterns

of the focal clade (Fig 2).

Phylogenetic inference

To perform biogeographic analyses described below, we used the recently published molecular

dataset provided by Carrasco et al. [58] to generate a dated molecular phylogeny for our focal

clade. In their study, Carrasco et al. [58] generated a total evidence phylogeny of the genus

Bothrops, with the description of a new species. Their dataset comprised only mitochondrial

genes (12s, 16s, cox1, cytb and nd4), with 412 sequences. We used the R packages ape [65, 66]

and seqinr [67] to retrieve the sequences from GenBank [68] using the accession numbers pro-

vided by Carrasco et al. [58]. We aligned the sequences with MAFFT version 7 online service

[69–71] using default settings. The L-INS-I algorithm [72] was used to align genes 12s, 16s and

cox1, and the FFT-NS-I algorithm [73] to align genes cytb and nd4. We used Gblocks 0.91b

[74, 75] to remove poorly aligned positions of each sequence. We decided to allow gap posi-

tions within the final blocks in Gblocks. The sequences were then analysed and concatenated

in MESQUITE 3.61 [76]. Our final sequence matrix contained 2,482 base pairs and 197 termi-

nals. We used PartitionFinder 2.1.1 [77, 78] with a greedy algorithm and linked branch lengths

to select the best partition scheme and corresponding substitution models for our gene matrix,

partitioned by gene and codon position. The corrected Akaike Information Criterion (AICc)

[79] was used to select the best fitted models (see S1 File for more info).

We estimated the phylogenetic relationships and divergence times using a Bayesian frame-

work implemented in the software BEAST v2.6.4 [80, 81]. We estimated substitution rates

using a relaxed uncorrelated lognormal clock [82]. We used a Birth-Death speciation model

[83] as opposed to the Yule model [84], as the latter assumes zero extinction rates [85, 86] and

it is commonly known that extinction has great importance in species diversification [87, 88].

We calibrated the phylogenetic relationships by using some of the age of divergence recovered
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by Alencar et al. [57] (see S1 File for more detail). Alencar et al. [57] generated a dated phylog-

eny comprising 79% of viper species using both mitochondrial and nuclear genes (six and five,

respectively). These authors also dated their phylogeny using six fossils as calibration points,

being two viperid fossils and four positioned in the outgroup. Although using fossils as calibra-

tion points is the best strategy to date phylogenies [89–92], the fossil record of vipers is scarce

and only few fossils are considered suitable to be used as calibration points in phylogenetic

analyses [57, 91, 92]. This is even more pronounced in Neotropical vipers, such as Bothrops.
For this reason, we decided to date our phylogeny by using dates estimated by Alencar et al.

[58], which were able to include several calibration points given their broader phylogenetic

context. We decided to remove B. colombiensis and B. isabelae as they are not considered as

separated species in recent taxonomic arrangements [56].

Geographic distribution data

Geographic distributions of each species were mostly based on the 4,158 raw point records

obtained from Nogueira et al. [51]. For species not present in Nogueira et al. [51], we used the

maps generated by Guedes et al. [93] and descriptions of the distributions provided by The

Reptile Database [56]. The distribution of Bothrops sonene is available in Carrasco et al. [58].

Fig 2. Regionalization scheme used in this study. Biogeographical units are indicated by capital letters. Ecoregions or

combinations of more than one ecoregion followed Olson et al. [63] and Dinerstein et al. [64] and were based on the

present geographic range of Bothrops species. Images of Bothrops species are examples of some key species in each

biogeographic unit. Photograph credits: Bruno Ferreto Fiorillo (Bothrops jararacussu), Marcio Martins (B. moojeni, B.

diporus and B. erythromelas), Laurie J. Vitt (B. taeniata and B. venezuelensis), Conrado Mario da Rosa (B. pubescens),
Herpetológica LAB from Mexico (B. asper), and Thibaud Aronson (B. chloromelas). Map source: Natural Earth (www.

naturalearthdata.com).

https://doi.org/10.1371/journal.pone.0257519.g002
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Distributions can be seen in S2 File and S1 Fig. Species showing marginal geographic distribu-

tions in a biogeographic unit (< 10% of the total distribution records) were not considered as

occurring in that unit (S2 File).

Ancestral geographic range estimation

Several models have been proposed to reconstruct ancestral geographic ranges [94], such as

the Dispersal-Vicariance Analysis (DIVA; [95]), the Dispersal-Extinction-Cladogenesis (DEC;

[96]), and the BayArea model [97]. DIVA is a parsimony model that considers vicariance

more important than dispersal, giving different costs for this process (0 for vicariance, 1 for

dispersal; [95]). Also, DIVA does not consider different processes that can occur among sym-

patric lineages (i.e. widespread and subset sympatry; [98]). DEC is a parametric model that

implements two types of sympatric processes (narrow and subset; [98]). However, it lacks the

implementation of widespread vicariance [98]. The BayArea is a Bayesian model that deals bet-

ter with larger numbers of areas than other models, however it does not implement vicariant

processes [98]. Recent implementations allow us to compare these models in a single platform,

such as the package BioGeoBEARS in R software [98, 99]. BioGeoBEARS incorporates bio-

geographical models in a parametric and Maximum Likelihood (ML) environment. As the

DIVA and BayArea are, respectively, parsimony and Bayesian models, they are implemented

in BioGeoBEARS as DIVALIKE and BAYAREALIKE. These implementations are ML ver-

sions of the originals, with the biogeographic assumptions of such models, or processes that

were originally implemented [98, 99], and not parsimony nor Bayesian approaches themselves.

Details on how BioGeoBEARS interprets all biogeographical processes with examples from

our results can be found in S1 Table.

We compared nine Maximum Likelihood (ML) models implemented in BioGeoBEARS, all

of them representing variations of the three most used ML models: DEC, DIVALIKE, and

BAYAREALIKE. Models can be set to estimate a certain maximum number of units in each

ancestor, called the ‘maximum range size’. Changes in the maximum number of units can

change the number of ranges possible in each node. The lower the maximum number of units,

the lower the combinations possible. We set the maximum range size to 8, which is the number

of units included in the range of Crotalus durissus. Note that C. durissus is a widespread Neo-

tropical pit viper, showing the highest number of units within its geographical range, and for

this reason we assumed that the ancestors had the potential to occur in up to 8 units. Although

representing one of the major novelties of the BioGeoBEARS package [98–100], we did not

include the parameter “j” (jump dispersal process) in our analyses due to recent discussions

involving it [101]. Three models included a time stratified dispersal matrix (the "TS" models),

that arbitrarily multiplies dispersal probabilities between two different regions based on land-

scape evolution of the Neotropical Region. Such probabilities range from 0 to 1, with 0 mean-

ing that a geographic barrier prevents dispersal between two areas, and 1 meaning no dispersal

limitations between two areas. Because we are testing the influence of the diagonal of open/dry

landscapes, we decided to use the TS in our analysis. The explanation of how the time stratified

matrix was created is available in S1 Text, and the S3 File contains the matrix itself. All models

were compared using AIC [102], and the best fitting models were then analysed and discussed.

As a supplementary analysis, we also performed the biogeographic reconstructions using the

phylogeny generated by Alencar et al. [57] (S2 Fig).

Results

The topology recovered in the present study is similar to recent phylogenies generated for the

group (S3 Fig) [57, 58]. More specifically, we also recovered Bothrops and Bothrocophias as
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paraphyletic due to the placement of B. lojanus within the latter. Within Bothrops, all major

groups were recovered with high posterior probabilities, including the B. atrox (100%), B. jar-
aracussu (100%), B. jararaca (100%), B. alternatus (96,64%) and B. neuwiedii groups (96,17%).

After the removal of B. colombiensis and B. isabelae, our final phylogeny had 46 terminals.

We recovered the DECTS and DIVALIKETS models as best and second best model, respec-

tively (Table 1). Both models included the time stratified matrix. DECTS was the best fitting

model and had a better fit than the second-best evaluated model. However, the AIC difference

between these two models was smaller than four, and the AIC weight of the second-best model

was considerably high (0.24). Moreover, the DIVALIKETS was also recovered as the best fitted

model when using the phylogeny generated by Alencar et al. [57] (S2 Fig). We therefore, con-

sider to not have enough evidence to support one model over the other [103], and considered

both models that estimated ancestral ranges under the phylogeny generated in this work to dis-

cuss the temporal range dynamics and evolutionary history of the group.

The most probable ancestral range reconstruction suggested the origin of the focal forest

clade in the northwestern portion of South America (Node 1; unit D in DIVALIKETS and

units ACD in DECTS, Fig 3 and S4 Fig, respectively). The Western Amazon biogeographical

unit (D; see Fig 3) was recovered in both models in Node 1. However, geographical range

probabilities reconstructed in DECTS are highly unresolved (S4 Fig), meaning that there are

several other equally plausible combinations of biogeographical units that potentially represent

the ancestral geographical range of the clade (this is why the pie chart is covered in black). Spe-

cifically, the range ACD has a probability of only 2.65% (S4 File) and is still the most probable

ancestral range for this node, followed by ACDF (2.03%) and ABCDEF (1.90%). Under the

DIVALIKETS model, on the other hand, ancestral range reconstruction is much more proba-

ble (Fig 4), as the range D has a probability of 33.33% (S4 File), followed by AD (17.85%) and

DL (12,27%). The best-fitted model for Alencar et al.’s phylogeny [57] also recovered the West-

ern Amazon as the most probable ancestral distribution of the forest focal clade (S2 Fig).

Vicariant processes occurred in nodes splitting lineages into two or more biogeographic

units to its descendants (See Fig 3 and S4 Fig, and S1 Table for more details). In the Bothrops
jararacussu group (Node 8), a vicariant process must have occurred splitting the lineages

occurring in the Western Amazon (D) and the Southern Atlantic Forest (L) units (DL! L for

the upper descendant, D for the lower descendant). Other vicariant processes must have taken

place within the B. atrox group (Node 12). In Node 16, a vicariant event splitted lineages

occurring in the Northern Amazon (F) and Northern Atlantic Forest (K) units (FK! K, F).

Table 1. Model comparisons on the ancestral range reconstruction of Bothrops forest clade performed with the phylogeny generated in this work. d, e and w are free

parameters in models where d is the rate of range expansion (i.e. dispersal), e is the rate of range contraction (i.e. extinction), and w is a dispersal multiplier parameter. As

the time stratified matrix (TS models) were generated with arbitrary numbers, the “+w” models leave the w parameter free and the matrix itself is raised to the w parameter

to seek the best dispersal multiplier values. Best models (DECTS and DIVALIKETS) are highlighted.

Models Log likelihood d e w AIC AIC weights

DECTS -213.8 0.011 <0.0001 1 431.6 0.76

DIVALIKETS -215 0.014 0.0054 1 433.9 0.24

DIVALIKETS+w -220.7 0.01 <0.0001 0.014 447.4 0.0003

DEC -221.8 0.0078 <0.0001 1 447.6 0.0003

DIVALIKE -222.1 0.0095 0.002 1 448.1 0.0002

DECTS+w -221.8 0.0078 <0.0001 0.0013 449.6 <0.0001

BAYAREALIKETS -248.9 0.014 0.13 1 501.7 <0.0001

BAYAREALIKE -252.5 0.011 0.14 1 508.9 <0.0001

BAYAREALIKETS+w -252.3 0.011 0.14 0.037 510.7 <0.0001

https://doi.org/10.1371/journal.pone.0257519.t001
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Other vicariant processes in the forest clade explain diversification at nodes 5 (CD!D, C), 6

(AD! A, D), 14 (AF! A, F), and 17 (KL! L, K).

Dispersal processes (see S1 Table for details) between the Amazon and Atlantic forests

may have primarily occurred: (i) before the ancestor of the B. jararacussu group emerged,

between Node 7 upper descendant and Node 8 (D! DL); (ii) within the B. atrox group,

between Node 15 lower descendant and Node 16 (F! FK); and in the lineage giving rise to B.

bilineatus (D!DEFGK). Other dispersal events occurred in the lineage giving rise to B. moo-
jeni, the only species inside the focal forest clade that reached the DODL, more specifically the

Cerrado (L! IL).

Discussion

In this study, we investigated how the geographic ranges of a clade comprising 18 forest lance-

heads changed across time, and which biogeographic processes were involved during the

diversification of the clade in the Neotropical Region. The Western Amazon (D) biogeo-

graphic unit was the most probable ancestral geographic range of the clade, both for models

selected using our phylogeny, based on the molecular dataset provided by Carrasco et al. [58]

(Fig 3 and S4 Fig), and the best fitted model using Alencar et al.’s phylogeny [57] (S2 Fig).

However, this result remains uncertain under the DECTS model (black pie charts in S4 Fig).

Despite the DIVALIKETS being much more resolved, the Panama unit also appears at this

node with high probability, representing the second most probable range distribution for the

ancestor of the clade under DIVALIKETS. If a region comprising both Western Amazon and

Fig 3. Ancestral geographic ranges of the Bothrops forest clade reconstructed under the DIVALIKETS model.

Single capital letters indicate different biogeographic units used in this study. Mixed letters represent combinations of

such units. Colors also represent biogeographic units. Combinations of two or more units are shown as a mixed colour

made from all units in the combination. Units next to species names represent the current geographic distribution of

each species. The green clade highlights the focal forest clade. Vertical dashed grey lines indicate the time slices defined

in the time stratified matrix (see Methods). Letters in the corners of the cladogram represent the geographical range

inherited from the ancestor immediately after a cladogenetic process. Focal nodes discussed in the text are numbered.

https://doi.org/10.1371/journal.pone.0257519.g003
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Panama units were the range of the clade’s ancestor, a vicariant process would have happened

at the onset of the diversification of the clade. This vicariant event could have been potentially

related to changes in the landscape that were occurring in those regions at the time, such as the

uplift of the Andes [19–21] and the sea introgressions forming the Pebas system [21, 38, 104,

105]. Nevertheless, the most probable combinations of ancestral biogeographic units point to a

northwestern South America origin for the forest clade, and most of these combinations

include Amazonian units.

When focusing only on the groups that have a disjunct distribution on the forest blocks of

the Neotropical Region, that is, those splitted by the DODL, a pattern of dispersal events fol-

lowed by vicariance was detected, specifically vicariance events at nodes 8 and 16 and previous

dispersal events. These events agree with the hypothesis of the expansion of the DODL in the

Neotropical Region acting as a vicariant process, as already suggested for different groups of

organisms [24, 30]. The formation of the diagonal was gradual and followed the late uplift of

the Andes [14, 21], that reached its present height from 6 to 4 million years ago–mya [22]. This

pattern of dispersal and vicariance is present in estimates under the DECTS (S4 Fig), DIVALI-

KETS (Figs 3 and 4) and under the best-fitted model (DIVALIKETS) using the phylogeny gen-

erated by Alencar et al. [57] (S2 Fig).

Fouquet et al. [28] found a similar pattern for the frog genus Adenomera, with a possible

direct dispersal from the Amazon Forest to the Atlantic Forest followed by a vicariant process.

According to those authors, the timeframe of this dispersal is concomitant with the ancient

continuity between the two forest blocks [28]. It is probable that the formation of the DODL

and subsequent split of the ancient forest connection led to the patterns observed. Other

Fig 4. Ancestral geographic range probabilities associated with the range reconstruction of Bothrops forest clade

under the DIVALIKETS model. Pie charts in nodes represent the geographic range probabilities of each hypothetical

ancestor. Pie charts in the corners of the cladogram represent the geographical range probabilities inherited from the

hypothetical ancestor immediately after a cladogenetic process. Colors represent biogeographical units. Units next to

species names represent the current geographic distribution of each species. The green clade highlights the focal forest

clade. Vertical dashed grey lines mark the time slices defined in the time stratified matrix. Focal nodes discussed in the

text are numbered.

https://doi.org/10.1371/journal.pone.0257519.g004
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studies found dispersal processes between the two forest blocks followed by cladogenetic pro-

cesses and lineage isolation. For the lizards of the genus Enyalius, the colonization of the Ama-

zon from an Atlantic Forest ancestor occurred within the Oligocene (~ 25 mya) and led to

further isolation of Enyalius leechii [27]. A similar pattern was observed for the lizards of the

genus Anolis, although in the opposite direction, the colonization of the Atlantic Forest by an

Amazonian ancestor [42].

Both vicariant processes found in our study (nodes 8 and 16) must have occurred in Plio-

Pleistocene epochs (3–2 mya), which occurred more recently than those found by Fouquet

et al. [28]. Some authors suggested much older vicariant events, between the Oligocene [27,

33] and early Miocene [28, 42]. Simon et al. [106] discuss that much of the Cerrado plant line-

ages began to diversify in the late Miocene (10 mya), and this late grassland expansion agrees

with the even later vicariant events that we found here for the Bothrops clade. Coscarón and

Morrone [24, 30], analysing members of the bug family Peiratinae, discuss that the disjunction

patterns between the Atlantic and Amazon forests observed in many organisms occurred as a

result of vicariant events, probably related to the expansion of the DODL influenced by the late

Andean uplift in the Plio-Pleistocene, inducing aridity in South America through the interrup-

tion of the Pacific airflow [24, 107]. The late uplift of the Andes is also linked to the subsidence

of the Chaco and the uplift of the Brazilian Plateau [13, 23]. Martins et al. [108] also found that

the emergence of the DODL is congruent with a vicariant process in populations of the vam-

pire bat Desmodus rotundus during the Pleistocene. A similar pattern of pleistocenic vicariance

was suggested for birds from the genus Xiphorhynchus [109]. Forest expansions and contrac-

tions occurred at different times along the DODL [9, 12, 28, 106, 107], and this could explain

the effect of the DODL in different timeframes. The results found here are congruent to these

climatic and geological modifications in South America.

The only dispersal between the two forest blocks not followed by a vicariant event occured

in the lineage giving rise to B. bilineatus. This species currently has a disjunct distribution in

both the Atlantic and Amazon forests. Dal Vechio et al. [110] concluded in a phylogeographic

approach that two different dispersal events probably occurred for this species, one at 2 mya

ago, when the Atlantic Forest was colonized by a western Amazonian ancestor, and one more

recently, at 0.3 mya, when an Atlantic Forest ancestor dispersed back to the Amazon Forest

through the northeastern coast of Brazil [110]. The second dispersal event would be in line

with the forest expansions and climatic fluctuations that occurred during the Quartenary [9,

11, 12], through the “young pathways” between the Atlantic and Amazon forests, as classified

by Batalha-Filho et al. [34]. However, these pathways might have occurred much later [9, 11]

and would correspond to the date of the second dispersal by B. bilineatus.
Perhaps more important than the vicariant processes themselves that occurred during the

diversification of the clade of forest lanceheads is the almost lack of dispersal processes

between the Amazon and the Atlantic forests. Dispersal events took place mostly: (i) within

the Amazon units or between these Amazon units and the Caribbean and/or Andean units (B,

C, D, E, F and G); and (ii) within the two Atlantic Forest units (K and L). Exceptions to this

pattern are the three dispersals discussed above. This reinforces the DODL as a dispersal bar-

rier between the two forest blocks, limiting the dispersal between them even after the Plio-

Pleistocene climate fluctuations (2.5 mya) and forest expansions within the diagonal [9, 12, 16,

31]. Similar results are found for the frog genus Dendrophryniscus and Amazonella [33], Ade-
nomera [28], and for the lizard genus Leposoma [29]. The restriction to forests and the lack of

dispersion through open areas by forest lanceheads might suggest that niche conservatism

could be prevalent in this clade. Indeed, the few dispersal events between the Amazon and

Atlantic forests may even have happened through the forest corridors present within the

DODL in the past, as highlighted for B. bilineatus [110]. Future studies could shed light on the
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usage of these corridors by other members of the Bothrops genus. Regardless of the pathways

between the Amazon and the Atlantic forests within the DODL, our study indicates that the

upper Miocene and Pliocene history of our clade was heavily influenced by the emergence of

the DODL, as it may have acted both as a vicariant process in some lineages and as a dispersal

barrier within our focal clade.

Conclusions

The ancestor of our focal clade of forest lanceheads was distributed in the northwestern Ama-

zon forests, and the clade diversified over the Neotropical Region. Most of the dispersal events

occurred within the Amazon and the Atlantic Forest, and not between them. Then, the DODL

may have acted as a dispersal barrier between those forests. Moreover, the expansion of the

diagonal is likely to have acted as a vicariant process for two clades of forest lanceheads.
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