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Abstract: Rheumatoid arthritis (RA) is a chronic, inflammatory, and systemic autoimmune disease
that affects the connective tissue and primarily the joints. If not treated, RA ultimately leads to
progressive cartilage and bone degeneration. The etiology of the pathogenesis of RA is unknown,
demonstrating heterogeneity in its clinical presentation, and is associated with autoantibodies directed
against modified self-epitopes. Although many models already exist for RA for preclinical research,
many current model systems of arthritis have limited predictive value because they are either
based on animals of phylogenetically distant origin or suffer from overly simplified in vitro culture
conditions. These limitations pose considerable challenges for preclinical research and therefore
clinical translation. Thus, a sophisticated experimental human-based in vitro approach mimicking
RA is essential to (i) investigate key mechanisms in the pathogenesis of human RA, (ii) identify targets
for new therapeutic approaches, (iii) test these approaches, (iv) facilitate the clinical transferability of
results, and (v) reduce the use of laboratory animals. Here, we summarize the most commonly used
in vitro models of RA and discuss their experimental feasibility and physiological proximity to the
pathophysiology of human RA to highlight new human-based avenues in RA research to increase
our knowledge on human pathophysiology and develop effective targeted therapies.

Keywords: in vitro models; rheumatoid arthritis; cytokines; mesenchymal stromal cells; co-culture;
tissue engineering; 3D cell culture; explants; joint-on-a-chip

1. Introduction

Rheumatoid arthritis (RA) is a progressive systemic, chronic, and inflammatory autoimmune
disease with an average prevalence of 0.5-1.0% in the population worldwide, demonstrating ethnic and
geographic differences [1]. Its pathogenesis is characterized by immune cell infiltration into the synovial
membrane and the joint cavity and the formation of hyperplastic and invasive synovium, resulting in
progressive cartilage destruction and subchondral bone erosion in late stages of disease if not treated
(Figure 1). Along with the joints, RA can affect many of the body’s organs, including the heart, eyes,
skin, intestine, kidney, lung, and brain, as well as the skeleton [2,3]. A disease most likely RA was first
recognized more than 20 centuries ago as a disease that painfully affects the body’s joints [4]. It is the most
common inflammatory joint disease affecting both individuals and society. The affected patients suffer
a considerable loss of quality of life and a decline in productivity, and the effort and costs of health care
increase, ultimately resulting in a major economic and social burden [5]. Symptoms of RA most commonly
include pain, swelling, and morning stiffness in the affected joints. It is a multifactorial disorder and
recent studies have identified multiple genetic and environmental factors associated with an increased
risk of RA, e.g., female sex, smoking, and major histocompatibility complex (MHC) regions encoding
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human leukocyte antigen (HLA) proteins (amino acids at positions 70 and 71) [2,6]. Years before first
clinical symptoms of RA occur, autoimmunity against modified self-proteins is initiated, which results in
the onset of the disease [1].

Risk factors

Epigenetic modification

o Genetic factors (e.g. HLA-DRB1)
o Smoking

o Female sex

o Ethnic factors

o Microbiota
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Figure 1. Establishment of rheumatoid arthritis (RA): Mechanisms of disease initiation, development,
and progression. (A) Multiple risk factors, including both genetic and non-genetic influences, are required
to induce the development of RA in susceptible individuals. Years before first clinical symptoms of RA
occur, autoimmunity against modified self-proteins is initiated, which results in the onset of a subclinical
inflamed synovium (symptomatic autoimmunity) propagated by immune cell infiltration and pannus
formation. Once established, RA can be classified according to the clinical symptoms. (B) Onset of
autoimmunity is supposed to occur in the mucosa (e.g., mouth, lung, and gut) by the creation of
neo-epitopes as a result of post-translational modifications, e.g., by citrullination. These neo-epitopes can
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be recognized by antigen-presenting cells (APCs) of the adaptive immune system and (C) are presented
to adaptive immune cells in lymphoid tissues, activate an immune response, and induce autoantibody
formation (e.g., ACPA and RF). (D) Activated immune cells and immune complexes can activate
synovial cells, such as fibroblast-like synoviocytes (FLS) and macrophage-like synoviocytes of the
intimal lining and APCs in the sublining area, to produce a range of inflammatory factors and expand
and form the cartilage- and bone-invasive pannus. Autoimmune activation and immune cell infiltration
(T cells, B cells, macrophages) of the sublining area further contribute to the excessive production of
inflammatory factors, autoantibodies, and synovial vascular leakage, ultimately leading to articular
cartilage and subchondral bone destruction as a result of matrix-degrading enzymes and a de-balanced
bone homeostasis characterized by an imbalanced RANKL/RANK/OPG system and activated osteoclasts.
ADAMTS, a disintegrin and metalloproteinase with thrombospondin motifs; APCAs, anti-citrullinated
protein antibodies; RF, rheumatoid factor; GM-CSEF, granulocyte-macrophage colony-stimulating factor;
M-CSF, macrophage colony-stimulating factor; MHC, major histocompatibility complex; MMP, matrix
metalloproteinase; NO, nitric oxide; OPG, osteoprotegerin; RANKL, receptor activator of nuclear
factor-kB ligand; RANK, receptor activator of nuclear factor-kB; TCR, T cell receptor; TNF, tumor
necrosis factor. Figure contains graphics from Servier Medical Art, licensed under a Creative Common
Attribution 3.0 Generic License. http://smart.servier.com/.

As the course of RA within the individual patients may differ with regard to pathogenesis,
clinical symptoms, and diseases subtypes, personalized precision medicine must be the ultimate goal to
achieve disease remission. To date, we are far from curing RA in part due to the need for (i) objective
patient-related biomarkers to identify disease subtypes and treatment response and (ii) the management of
patients who are refractory or resistant to available treatments. Having both will enable us to understand
the disease and their pathogenic processes to optimize and introduce personalized precision health care.

2. The Course of RA Pathogenesis

The course of RA pathogenesis involves several stages. Before clinical symptoms are established,
a certain level of RA susceptibility (e.g., genetic factors) coupled with the accumulation of risk factors
proceed through the pre-clinical stage of the disease, leading to synovial inflammation, which, if not
resolved, ultimately leads to the development of RA. During the early development of RA, post-translational
modifications of a wide range of cellular (e.g., collagen) and nuclear proteins (e.g., histones) occur,
including the conversion of the amino acid arginine to citrulline, a process called citrullination.
Citrullination may be a result of smoking on mucosa, induced by microbiota (e.g., Porphyromonas gingivalis)
or by an overarching neutrophil reaction. Altered modified self-proteins engage professional antigen
presenting cells (APCs), such as macrophages, as foreign and induce a normal immune response via the help
of T cells, thereby stimulating B cells to produce a wide range of (auto)antibodies recognizing self-proteins,
such as rheumatoid factor (RF) and anti-citrullinated protein antibodies (ACPAs). The presence of
autoantibodies often occurs before the onset of clinical synovitis, leading to the assumption that a second
not-fully-understood mechanism seems to be necessary for the transition of autoimmunity to local synovial
inflammation [1,2,6].

However, during the progression of RA, increase in vascular permeability, a disrupted extracellular
matrix, and synovial immune cell infiltration transform the paucicellular synovium into chronically
inflamed tissue. This process includes the expansion of the intimal lining and activation of macrophage- and
stromal-fibroblast-like synoviocytes (FLSs), which then produce a variety of pro-inflammatory humoral
mediators, such as cytokines and chemokines, including interleukin (IL)-1f3, IL-6, IL-8, tumor necrosis factor
(TNF), granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage migration inhibitory
factor (MIF), and matrix-degrading enzymes, e.g., matrix metallopeptidases (MMPs) and a disintegrin and
metalloproteinase with thrombospondin motifs (ADAMTs), prostaglandins, leukotrienes, and reactive
nitric oxide. The aggressive and invasive phenotype of expanding FLSs, forming the hyperplastic pannus
tissue, contributes to cartilage damage but may also be responsible for propagation and systemic spreading
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of inflammation by migrating from joint to joint and other organs [7-9]. The inflammation-induced
expansion of FLSs and the infiltration of inflammatory cells into the usually paucicellular synovium
lead to an enhanced metabolic need and, therefore, to an undersupply of both nutrients and oxygen to
the synovial tissue. Due to the resulting local hypoxia, new vessels are formed that further facilitate
the inflammatory process by increasing the amount of adaptive immune cells, and especially CD4+
memory T (Th) cells infiltrating the synovial sublining. Lymphocyte infiltrates accumulate and form
aggregates ranging from small and loosely arranged lymphocyte clusters to large and organized ectopic
lymphoid structures, which, in some cases, develop germinal centers that facilitate local T cell-B cell
interactions. In these ectopic germinal structures, specific pathologic follicular helper T cells (Tfh)
promote B-cell responses and (auto)antibody production within pathologically-inflamed non-lymphoid
tissues. Apart from pathogenic Tth cells, Th1l and Th17 cells have been identified in the pathogenesis
of RA. Although the evidence of the pathogenic function of Th1 cells in RA is controversial due to the
lack of therapeutic efficiency targeting of interferon (IFN)-y [10,11], it should be noted that biologic
targeting of TNF-«, which is a Th1 cytokine, are successful treatments in RA [11]. An effect that can be
explained by the suppressive nature of Th1 on Th17 is that the responses contribute to tissue damage
through production of TNF and GM-CSF [12].

IL-17-producing CD4+ T cells have been identified in synovial tissues from patients with RA, including
their inducing cytokines IL-6 IL-1f3, IL-21, transforming growth factor (TGF)-f3, and IL-23 [13-17], and have
been demonstrated to be increased/maintained in the peripheral blood of RA patients [18-21], whereas IL-17
was shown to induce bone resorption and contribute to neutrophil recruitment, and particularly into
the synovial fluid, a hallmark of RA [22,23]. Besides effector T helper cells, antigen-presenting follicular
dendritic cells, macrophages, and mast cells are present in the synovial sublining and contribute to the
chronic inflammation by a large number of inflammatory mediators, such as cytokines, chemokines,
and reactive oxygen and nitrogen species, as well as matrix-degrading enzymes. In contrast, neutrophils are
lacking in the inflamed synovial lining and sublining but are abundantly present in the synovial fluid.
Recent studies proposed that distinct subtypes of synovial histology displaying inflammatory versus
non-inflammatory patterns are associated with different clinical phenotypes and a concurring response
to novel targeted therapeutic interventions [24,25]. Technical progression and the development and
combination of state-of-the-art methods from single cell genomics to mass cytometry have provided
new insights into the complex interplay of cells and soluble immune mediators, particularly cytokines
and chemokines [2]. Thus, specific pathogenic infiltrating immune cell subsets—such as IL-1f3 positive
pro-inflammatory monocytes, autoimmune-associated B cells, and peripheral helper T (Tph) cells sharing
similarities with Tfh cells, distinct subsets of CD8+ T cells, as well as mast cells—contribute to the
inflammatory pattern of the RA synovial lining/sublining [26-31].

Invading immune cells and FLSs of the synovial lining produce large amounts of pro-inflammatory
cytokines and express high levels of MMPs, while the expression of endogenous MMP inhibitors remains
insufficiently low. Finally, the invasive and destructive FLS-front of synovial tissue, called the pannus,
attaches to the articular surface and contributes to local matrix destruction and cartilage degradation.
The chondrocytes of the damaged articular cartilage contribute to the vicious cycle of cartilage
degeneration by inducing inflammatory cytokines, such as IL-1{3 and TNF-«, as well as MMPs and nitric
oxide (NO). Additionally, FLSs negatively affect the subchondral bone by activation and maturation of
bone-resorbing osteoclasts. Osteoclasts are highly responsive to autoantibodies; pro-inflammatory
cytokines, in particular TNF-c, IL-1f3, and IL-6; and more importantly, receptor activator of nuclear
factor kappa B ligand (RANKL), which is the key regulator of osteoclastogenesis. RANKL binds to
its receptor, the receptor activator of nuclear factor-«B (RANK), and activates osteoclasts, leading to
an enhancement of bone resorption. Conversely, osteoblasts that play a key role in the regulation
of anabolic bone metabolism produce bone matrix constituents, induce bone matrix mineralization,
and modulate osteoclasts through the production of osteoprotegerin (OPG) [32]. Although osteoblasts
producing OPG, which is a decoy receptor for RANKL, results in protection from bone destruction by
osteoclasts, they also generate RANKL and M-CSEF, both of which contribute to osteoclastogenesis.
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Imbalanced bone remodeling both in the subchondral and periarticular bone of joints leads to bone
erosions and periarticular osteopenia; generalized bone loss is a general feature of established RA.

3. Lessons from Animal Models of Arthritis: None are Truly RA

Animal models represent an integral part of the preclinical drug discovery process and are used to
study pathophysiological mechanisms of RA. Despite their extreme usefulness for testing new approaches
of intervention in many cases, concerns about low clinical development success rates for investigational
drugs have been raised [33], “Dozens of preclinical arthritis models have been developed ... none of these,
however, is truly RA, and none consistently predicts the effect of a therapeutic agent in patients” [33].

Importantly, animals do not naturally develop autoimmune disorders, such as RA, which is
an inherent limitation of these arthritis models (Table 1). Instead, animal models can be used to study
certain specific pathophysiological aspects of human disease, such as destructive pathways involved
in the erosion of articular cartilage and bone. To this end, arthritis can be chemically induced in these
animals by soluble agents (e.g., type II collagen-induced arthritis model) or develop spontaneously
after genetic manipulation (e.g., human TNF transgene model) (Table 1) [34-36]. Although most of
these models display features of human RA, such as inflammatory cell infiltrate, synovial hyperplasia,
pannus formation, cartilage destruction, and bone erosions, they also demonstrate specific limitations,
such as the development of self-limiting arthritis, development of arthritis only in susceptible strains
of rodents, and a pathophysiology that does not recapitulate the endogenous breach of tolerance and
excludes systemic components of disease [34-36]. The mutations used in genetically engineered arthritis
models have not been identified in human RA [36]. When comparing transcriptional programs of
mice and humans overlapping but notably different gene expression patterns have been observed [37].
Therefore, therapeutic approaches, such as the application of biologics highly specific for human target
proteins, cannot be proven using non-humanized rodent models [38]. Finally, mice and humans differ in
their locomotion, life span, evolutionary pressures, ecological niches, circadian rhythms, weight bearing,
and blood leukocyte population ratios. Thus, none of the animal models is capable of fully replicating
human pathogenesis of RA, which provides an explanation for the observed challenges in clinical
translation [33].

Modern management guidelines recommend early and rigorous treatment to achieve low disease
activity or remission targets as rapidly as possible. Thus, RA is currently treated with a wide variety of
therapeutic drugs ranging from steroidal/nonsteroidal anti-inflammatory drugs (NSAID), glucocorticoids
(GCs), and disease-modifying anti-rheumatic drugs (DMARDs) of synthetic origin, such as conventional
synthetic DMARD:s (e.g., methotrexate), biological, and biosimilar DMARD:s (e.g., TNF inhibitors or IL-6
inhibitors), as well as targeted synthetic DMARD:s (the Janus kinase (JAK) inhibitors) targeting specific
immune cells, cytokines, or pro-inflammatory pathways [2,26,39]. Today’s therapeutic approaches using
state-of-the-art biologicals or JAK inhibitors have been proven to be highly successful and effective in
most patients with RA, including those with severe disease progression. Despite major progress in
the treatment of RA, a strong unmet medical need remains, as not all patients reach sustained clinical
remission (less than half of patients with RA) and about 25% still suffer from moderate or even high
disease activity [2,40]. Defining patients with RA (i) refractory to available treatments among patients
with RA who are undertreated or non-adherent to treatment, (ii) identifying objective biomarkers for
disease states (e.g., early versus established RA) and/or (iii) ‘refractory’ states and finally (iv) for states
treatment response is still the greatest unmet need in RA [40]. The lack of therapeutic efficacy in the true
refractory patients may be due to the nature of the “one-fits-it-all” approach of standardized therapeutic
regimes. Thus, clinical management of patients often neglects their heterogeneity with regard to the
endogenous circadian rhythms, disease states, subtypes and duration, as well as autoantibody, cytokine,
and infiltrating immune cell pattern. Identifying objective biomarkers to delineate disease subtypes
and treatment response will be necessary to provide a “precise’ customized treatment strategy for each
individual patient enhancing our repertoire in the battle against this potentially devastating disease.
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Table 1. Selected rodent models for rheumatoid arthritis (as reviewed in Reference [34-36]).

Animal Models for

Rheumatoid Arthritis Species Induction/Genetic Alteration Limitations References
Induced Arthritis Models
m General variable incidence, severity,
and inter-group inconsistency
Inoculation with type II heterologous or :f?:é};rt?sdumble in susceptible strains
. homologous collagen in complete Freund'’s L s
Collagen-induced . . N . . m Low incidence, as well as variability, of
o, Mouse, rat adjuvant in strains expressing major o s . [36,41-43]
arthritis (CIA) . oo arthritis severity in c57bl/6 mice
histocompatibility complex (MHC) Class II d self-limiti lvarthritis i
I-Aq haplotypes ® Acute and self-limiting polyarthritis in
q contrast to human RA
m Greater incidence in males in contrast to
human RA
m Pathogenesis is not mediated via T and B cell
Collagen-antibody-induced Anti-collagen antibodies have been response in contrast to humgn RA . ,
e Mouse 5 e m Pathogenesis is inducible irrespective of the [44,45]
arthritis (CAIA) demonstrated to induce arthritis .
presence of MHC class II haplotype in contrast
to human RA
Mixture of mineral oils, heat-killed
mycobacteria, and emulsifying agent, m Acute and self-limiting polyarthritis in
Adjuvant-induced arthritis which was termed complete Freund’s adjuvant ~ contrast to human RA ,
Mouse, rat . . L. . . [34,35,46,47]
(AA) (CFA); when omitting mycobacteria, also m Not antigenic but displays an autoimmune
known as incomplete Freund’s adjuvant (IFA); pathophysiology
see also pristane-induced arthritis (PIA)
Intra-articular injection of zymosan,
a polysacchar@g fro.m the cell wa.11 .Of m Technical skill required for an intra-articular
" e Saccharomyces cerevisiae, into the knee joints of . "
Zymosan-induced arthritis Mouse, rat R R K . X injection in mice [48,49]
mice causes proliferative arthritis, including O
: s . . m Monoarthritis in contrast to human RA
immune cell infiltration, synovial hypertrophy,
and pannus formation
m Pathogenesis is inducible in selected
susceptible strains of rodents
® Germ-free conditions are necessary to reach
susceptibility in rats
. m Multiple injections are needed; otherwise,
Streptococcal Streptococcus pyogenes synthesize o o . -
. X . acute and self-limiting arthritis develops, in [35,50,51]
cell-wall-induced Mouse, rat a peptidoglycan-polysaccharide contrast to human RA
arthritis (SCWIA) (PG-PS) polymer

m Tumor necrosis factor (TNF)-« is less
important in SCW-induced arthritis but not in
human RA

m Rheumatoid factor is missing in
polyarticular arthritis in rats

6 0of 23
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Table 1. Cont.

Animal Models for

Rheumatoid Arthritis Species Induction/Genetic Alteration Limitations References
Cartilage oligomeric Immunization with IFA combined with native  m Acute and self-limiting polyarthritis in
ge ongon and denatured COMP, which is a large protein  contrast to human RA
matrix protein Mouse, rat R . K . . . [52,53]
(COMP)-induced arthritis that is synthesized by chondrocytes (see also ~ m Not antigenic but displays an autoimmune
adjuvant-induced arthritis) pathophysiology
. . - . m No evidence of autoimmune reactions
Prlstan'e.— induced Mouse, rat In]ect.l on of th.e hydroc‘arbon pristane m Inflammation is restricted to the joints but [47,54,55]
arthritis (PIA) intraperitoneally into mice . ", .
systemic abnormalities are absent in rats
m Intra-articular injection in mice requires
. . . . . advanced technical skills
Ant1ggg—1nduced Mouse In(.)culatlor.l with .al.mg?n by ® Does not recapitulate the endogenous breach [36,56,57]
arthritis (AIA) intra-articular injection .
of tolerance in contrast to human ra
m Excludes systemic component of disease
® Only inducible in susceptible strains of mice
Proteoglycan-induced Mouse Intraperitoneal injection of proteoglycan thatis  m Incidence of ankylosing spondylitis without [34-36]
arthritis emulsified with an adjuvant any exacerbations and remissions in contrast to S
human RA
Glucose-6-phosphate Immunization using the ubiquinone m Only inducible in susceptible strains of mice
isomerase (G6PI)-induced Mouse containing glycolytic enzyme G6PI with CFA  m Low prevalence of antibodies against G6PI in [34-36,58]
g glycoly Y p &
arthritis for induction of RA patients with RA
Genetically manipulated spontaneous arthritis models
m Mutations have only been identified in mice
K/BXN mice were generated by crossing mice ~ m Low prevalence of antibodies to gépi in
expressing the MHC class IT molecule A8” with ~ patients with ra »
K/BxN model Mouse the T cell receptor (TCR) transgenic KRN line ~ m Without systemic manifestations or [58-601
expressing a TCR specific for a G6PI-peptide  production of rheumatoid factor in contrast to
human RA
Induction of arthritis due to point mutation . Mutatlons ha.ve on.ly be}e n identified n mice
SKG model Mouse in ZAP-70 m Disease manifestations in germ-free mice [34-36,61]
only upon induction
Human TNF ® Mutations have only been identified in mice
Mouse Transgene for human TNF-« m No production of rheumatoid factor in [34-36,62,63]

transgene model

contrast to human RA

7 of 23
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Therefore, preclinical models are essential to help improve our understanding of pathological
mechanisms and to develop and verify new therapeutic approaches with the aim of meeting this unmet
medical need. This includes the investigation of human-specific alternatives to identify objective
biomarkers to delineate disease subtypes and treatment response, and novel targets to manipulate
the function of immune cells involved in the pathogenesis of RA. The purpose of this review was to
summarize the most commonly used and often cytokine-based in vitro models of RA, and discuss how
they reflect human pathophysiology to further understand the underlying mechanisms of RA.

4. Lessons from In Vitro Models of Arthritis: An Alternative without Alternatives

During the last decade, promising in vitro techniques have been improved by advances in
tissue engineering. Thus, the pathogenesis of RA has been simulated and studied using a variety
of in vitro and in vivo models. Cell-based in vitro assays range from tissue explants and relatively
simplified (co)-culture systems to complex engineered three-dimensional (multi)component tissue
systems using a variety of cell types from cell lines, primary cells, or patient-derived cells, such as
mesenchymal stromal cells (MSCs) or pluripotent stem cells (iPSCs), to study, e.g., cell migration,
activation, antigen presentation, and cell-cell interaction, as well as cell- and matrix-related changes.
Additionally, organoids incubated on microfluidic chips, as well as using in silico models, show promise
as an approach to further studying the mechanisms underlying RA pathophysiology and to identify
potential new targets. Thus, next-generation preclinical in vitro screening systems will be based on
microphysiological in vitro human-joint-on-a-chip systems using primary cells from patients with RA
and from different organs, mimicking the systemic nature of the disease and fostering the translational
process to humans, while reducing the number of animal experiments. Ultimately, the main goal for
all in vitro approaches is to achieve the greatest possible physiological proximity to the disease, while
ensuring experimental feasibility, breaking down the barrier to translational medicine and thus to
conducting high-quality, reproducible research (Figure 2).

Experimental feasibility
Physiological proximity

2D (co)culture Explants

3D (multi)components Organ-on-a-chip

N

easy to handle
easy to quantify
convenient

cost effective
functional assays

oversimplified

no 3D architecture

lack of biochemical cues
large medium volume
accumulation of anabolic

and catabolic molecules
\ %

cell-cell and/or cell-ECM
interactions

3D architecture
sensitive to drugs
mid/high-throughput
biomechanical cues

more difficult to quantify
accumulation of anabolic
and catabolic molecules
lack of fluid flow
perfusion

-

small reaction volume
real-time monitoring
transfer of anabolic and
catabolic molecules
flexibility in design
shear force conditions

more challenging
low-throughput screening
difficult to standardize
difficult to scale up

/

\

4

Hin vivo“ environment
easy to develop
3D architecture

short lifespan
short-term effects
low sample number
limited availability
affected by disease

\_ and/or medication

Figure 2. Overview of state-of-the-art in vitro models classified according to experimental feasibility

and physiological proximity. Figure contains graphics from Servier Medical Art, licensed under

a Creative Common Attribution 3.0 Generic License. http://smart.servier.com/.
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4.1. Tissue Explants: Close Physiological Proximity but Low Experimental Feasibility

Ex vivo culture models or tissue explants represent the closest physiological similarity to
pathological tissue due to the nature of their origin. If ethically and clinically available, these models
can be easily obtained, are easy to develop, and allow the semi-controlled study of the behavior of
cells cultured. Although tissue explants reflect the human physiology in terms of 3D structure and
environment, they are often affected by individual health status and medication, as well as sample
preparation. However, tissue explant approaches are still a powerful tool in, e.g., osteochondral
bone research due to the ability to retain native bone cell communication and to study cellular
responses and extracellular matrix remodeling processes, including disease-specific matrix degradation
in a (patho)physiological bone environment [64]. In addition to their limited availability (especially in
terms of healthy human material), the main limitations of tissue explant models are shortened lifespan
due to simultaneous disruption of the supplying vessels and, consequently, induced cell death and
necrosis-induced cell death at the explant/wound edges [65]. With synovial tissue, explants can be
obtained from patients with RA or osteoarthritis (OA) during joint replacement surgery, as well as by
needle and arthroscopic biopsy. These types of samples have been comprehensively examined using
molecular and immunohistochemical techniques leading to a better understanding of the pathogenic
events that occur in the course of the disease [66]. For instance, when studying the association between
synovial imaging activity by magnet resonance imaging or color Doppler ultrasound with the expression
of synovial inflammatory mediators using tissue explants, Andersen et al. observed a correlation of
distinct synovial cytokines with corresponding imaging pathology and disease activity [67].

Samples of synovial [68] and bone explants [69] have been used to study the efficacy and efficiency
of therapeutic treatments on the (i) production of pro-inflammatory mediators, (ii) expression of
matrix-degrading enzymes, and (iii) adhesion molecules. Of note, IL-1(3, TNF-¢, and IL-17 have been
demonstrated to produce many additive and/or synergistic effects in vitro. Using synovial explants
from patients with RA, therapeutic intervention with a combination of biologicals, e.g., anti-TNF-«
antibodies and IL-1Ra, resulted in significantly decreased IL-6 and MMP-3 production, indicating the
superior efficacy of combinatorial therapy over a single biological treatment [70]. Kirenol, which is
a Chinese herbal active component, was demonstrated to inhibit FLS proliferation, migration, invasion,
and secretion of pro-inflammatory IL-6 in explants from RA synovium [71].

To examine disease-related expression profiles, explants, like articular cartilage discs, have been
obtained from patients with RA after knee arthroplasty. Using this approach, Gotoh et al. demonstrated
that the interaction of CD40 with CD154 increased the expression of inflammatory cytokines and MMPs,
resulting in an increased cartilage degradation in patients with RA [72]. Based on the aforementioned
types of explants, Schultz et al. developed a 3D in vitro model to investigate destructive processes in
RA. Although the explant co-culture system did not address all aspects of RA, such as the presence of
immune cells, the authors confirmed the capability of their model to study FLS activity on destructive
processes of established joint diseases in vitro [73]. More than 10 years later, Pretzel et al. established
an in vitro that which closely reflects early processes in cartilage destruction caused by synovial
fibroblasts via, e.g., the suppression of anabolic matrix synthesis highlighting the value and close
proximity of tissue explant models [9].

4.2. Simplified 2D Culture and Co-Culture Approaches for High-Throughput Drug Screening

Closely mimicking physiological and pathophysiological biological complexity in terms of
physiological or pathophysiological characteristics requires the use of tissue explants, using 3D
architecture or the development of sophisticated complex 3D tissue models. However, achieving
experimental feasibility and ensuring adequate nutrient and oxygen supply are more challenging tasks
with 3D designs than with 2D cell cultures. Therefore, 2D monolayer cell cultures are a simple and
cost-effective alternative, especially for high-throughput screening approaches, which are common in
pharmaceutical, industrial, and toxicological research. They are still used to investigate the efficiency
and efficacy of therapeutics, to determine their optimal concentration, to analyze disease-related



Int. ]. Mol. Sci. 2020, 21, 7916 10 of 23

gene expression profiles, and to study cell—cell, cell-microenvironment, or cell-humoral interactions
using auto- and paracrine signals, such as in aggregate—cell interactions, in a simplified co-culture
system [74-77]. Two-dimensional monolayer cell cultures are used for rapid in vitro cell expansion,
despite the risk of cellular alterations in terms of morphology, genetic alteration, cell diversity,
cell cycle progression, and cell differentiation capacity [78]. Accordingly, when 2D modeling cartilage,
for instance, the phenotype of chondrocytes becomes unstable, which is indicated by a downregulation
of type II collagen (COL2) with a simultaneous increase in the expression of type I collagen (COL1).
To avoid these artificial changes, an optimized cultivation procedure is required using specific plate
coatings, such as poly(L-lactic acid) [79]. When investigating the effects of RA-associated cytokines on
cartilage, monolayer chondrocyte cultures are considered an optimal tool due to their easy handling
in combination with the rapid response of chondrocytes to pro-inflammatory cytokines. In addition,
chondrocytes, when stimulated with, e.g., IL-13, TNF-«, or IFN-y, show a classical RA-like phenotype
as evidenced by decreased expressions of COL2 and aggrecan (ACAN) when MMP13 expression
increases [80] and induced apoptosis in chondrocytes [81], reflecting the human in vivo situation [82,83].
Using the 2D approach, Teltow et al. demonstrated that the majority of IL-1p3-treated chondrocytes
are produced in collagenase 1 instead of collagenase 3, although the latter has been assumed to foster
the destructive processes of RA joints by degrading collagen type II [84]. IL-13 was demonstrated to
decrease the expression of COL2 in 2D monolayer cultures [85].

Expanding the 2D monolayer cultures using co-culture systems, the interaction between cells
growing in the same environment can be either indirectly (physical barrier) cultivated by simple
medium transfer and using a trans-well chamber or directly cultivated in a mixed culture system
providing cell-to-cell contact. Using direct and indirect co-cultivation, Donlin et al. demonstrated that
human RA synovial fibroblasts suppress the TNF-a-induced IFN-y signature in macrophages under
both conditions, indicating that no cell contact is required, but rather soluble fibroblast products inhibit
the IFN-y signature of macrophages [86]. To extend the co-culture systems, Pagani et al. developed
an advanced tri-culture model to study the interaction between osteoblasts, osteoclasts, and endothelial
cells and the cytokine-induced effects on bone homeostasis with respect to RA [87].

4.3. 3D tissue Engineering Approaches: Mimicking Structural Features of the Joint

In the field of musculoskeletal disorders, simplified 2D cell culture systems have been stepwise
replaced by promising in vitro 3D tissue engineering approaches, including (i) scaffold-free 3D
approaches, such as cell-sheet formation [88], self-assembly, or self-organization [89], (ii) natural
scaffold-based 3D approaches, such as hyaluronic-acid-based scaffolds [90], and (iii) synthetic
scaffold-based 3D approaches, such as poly-(lactide)-based scaffolds [91].

These 3D approaches offer considerable advantages compared to the above-mentioned 2D
approaches because they facilitate cell-cell and cell-matrix interactions; cell proliferation, differentiation,
and migration and they maintain the cell fate as a result of the physiological 3D structure. To mimic
the structural features of the joint, which is a prerequisite for simulating the pathogenesis of RA,
the various cell-based components, such as synovial membrane and the chondrogenic and osteogenic
parts, must be developed for an in vitro 3D approach.

4.3.1. Synovial Membrane 3D In Vitro Models: From Monolayer to Micromass Culture

The synovial membrane, or synovia, lines the joint cavity and can be divided into the synovial
intimal lining (intima) and subintimal lining (subintima). In the healthy state, the intima lining consists
of one to four cell layers of type A (macrophages) and type B (FLSs) synoviocytes. The subintimal
lining is based on fibrous, areolar, and fatty tissues [92]. As described above, activated FLSs are
supposed to be key mediators of joint destruction and drivers of the inflammatory processes during the
course of RA. Therefore, FLSs are receiving attention for creating 3D models of the synovial membrane.
For this purpose, FLS are resuspended in gels to map a 3D micromass [93]. Karonitsch et al. used
such an in vitro 3D micromass model of the synovial membrane to determine the individual effects
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of pro-inflammatory cytokines, such as IFN-y and TNF-«, on mesenchymal tissue remodeling [94].
Whereas IFN-y promotes the invasive potential of FLSs via JAK activation, TNF induces pronounced
aggregation of FLSs, indicating that both cytokines affect synovial tissue remodeling in a different
manner [94]. Using a similar 3D in vitro approach, Bonelli et al. recently observed that TNF regulates
the expression of the transcription factor interferon regulatory factor 1 (IRF1I), a key regulator of
the IFN-mediated inflammatory cascade, which was confirmed by a TNF transgenic arthritis mouse
model [95]. Although both studies relied on 3D models solely consisting of FLSs, they indicated that
3D in vitro approaches are sufficient to elucidate mechanistically cellular processes in the FLS-driven
inflammation during RA.

Broeren et al. established a sophisticated, promising, and more complex in vitro 3D synovial
membrane model by combining either primary RA-FLSs with peripheral CD14+ monocytes or using
a complete human RA synovial cell suspension [96]. This model reflects the native 3D architecture of the
synovium forming a lining layer at the outer surface consisting of fibroblast-like and macrophage-like
synoviocytes. Long-term exposure to TNF-« led to hyperplasia of the lining layer, an altered
macrophage phenotype, and an increase in pro-inflammatory cytokines, such as TNFA, IL6, ILS,
and IL1B, reassembling key features of established RA, thereby confirming previous observations by
Kiener et al. [93,96]. The findings of the latter study highlighted the unrestricted possibilities of 3D
in vitro approaches to be an excellent alternative for drug testing and mechanistic research.

Although these models closely reflect the inflamed synovial membrane, they all rely on diseased
FLSs, which are often limited in availability and are affected by different stages of disease, as well as
current medication [97]. To mimic a healthy situation, which is essential to understanding pathogenic
alterations of the synovium, an easy to handle and available cell source from different sources that
shares properties of FLSs would be ideal for simulating the synovial tissue in vitro. Adult MSCs share
most properties with FLSs, including surface markers, differentiation capacity, and the capability to
produce hyaluronic acid, and are indistinguishable from each other. Thus, MSCs could be a promising
cell source for the development of in vitro 3D models of the synovial membrane or even the other
components of the joint [98].

4.3.2. Modeling Articular Cartilage: Scaffold Revisited

To mimic articular cartilage for a 3D in vitro model of arthritis, healthy hyaline cartilage is
a relatively acellular and avascular tissue with limited regenerative capacity, nourished by the synovial
fluid through diffusion [99]. Articular cartilage is characterized by an organized structure consisting of
different layers (superficially tangential, transitional, and radial) that absorbs mechanical loads and
forces within the joint and thus protects the underlying subchondral bone. Chondrocytes/-blasts are
the only cell population that produce and maintain the highly organized extracellular matrix (ECM),
consisting of collagens, mainly type II, type IX, and XI; non-collagen proteins; and proteoglycans,
such as aggrecan [99]. During RA, pro-inflammatory stimuli, such as TNF-« or IFN-y, result in the
molecular activation of catabolic and inflammatory processes in human chondrocytes, which decreases
their viability and proliferation and increases matrix degradation [81,100].

Due to the sensitivity of chondrocytes to the molecular and mechanical cues of the environment,
the consensus is that 3D tissue models, using a matrix that corresponds to the natural tissue properties,
are closer to the in vivo situation [101]. Therefore, most 3D approaches involve a scaffold to provide
the cells with a predetermined 3D structure. These scaffolds include porous scaffolds made of collagen
type II [102], natural gels, such as gelatine microspheres [103], alginate beads [104], hyaluronic acid,
and chitosan [105]. Using gelatine microspheres, Peck et al. created a 3D cartilage model very
closely mimicking human cartilage, as confirmed by the high expression of type II collagen and
proteoglycans [103]. Using a tri-culture approach combining the gelatine microspheres-based 3D
cartilage model with a synovial cell line and lipopolysaccharide (LPS)-activated monocytic THP-1 cells,
the authors confirmed and validated the pathological alteration in the phenotype of chondrocytes
characterized by increased apoptosis, decreased gene expression for matrix components, such as
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collagen type II and aggrecan, increased gene expression for tissue degrading enzymes (MMP1, MMP3,
MMP13, and ADAMTS4, ADAMTS5) and upregulation of the expression of inflammatory mediator
genes (INFA, IL1B, and IL6), as observed in a disease state of RA [103]. Along this line, stimulation of
alginate-based 3D cartilage tissue models with supernatant from RA synovial fibroblasts led to the
activation of catabolic and inflammatory processes that could be reversed by anti-rheumatic drugs
when used [106]. Ibold et al. developed a 3D articular cartilage model for RA based on the interactive
co-culture of high-density scaffold-free porcine cartilage with a RA-derived synovial fibroblast cell
line to provide a tool for high-throughput drug screening. For high-throughput purposes, automation
of cell seeding was introduced, which improved the quality of the generated pannus cultures as
assessed by the enhanced formation of cartilage-specific ECM [107]. However although the stiffness
and absorption rate of these natural matrices cannot be adjusted to the specific requirements of each
cartilage zone, Karimi et al., modeled the superficial, middle, and calcified zone using varying cell
amounts, mechanical loading, and biochemical influences [108].

To establish scaffold-free 3D cartilage constructs, intrinsic processes, such as spontaneous
self-assembly, or extrinsic processes, such as mechanical load-induced self-organization, have been
described [109-112] and used as 3D invitro models for, e.g. preclinical high-throughput
screenings [113,114].

Since MSCs, which are progenitors of chondrocytes, can be forced in vitro to enter chondrogenic
differentiation, they represent an ideal cell source for the development of in vitro cartilage models:
MSCs are available from different tissue sources (even autologous), they are immune privileged,
easy-to-handle, and highly expandable. Thus, MSCs have been the focus in numerous studies with and
without the incorporation of scaffolds [115,116]. Using this approach, a chondrocyte-like morphology
and cartilage-like matrix corresponding to that of native cartilage were reported, particularly with the
aim of develop cartilage grafts for therapeutic purposes [115].

4.3.3. The Complexity of Mimicking 3D Subchondral Bone: Mission Impossible?

A key feature of RA is focal bone loss or bone erosion [117]. To address this feature, mimicking bone
tissue is mandatory. However, bone tissue is complex in terms of cell composition, matrix organization,
vascularization, and mechanical loading. Bone is a dynamic, highly vascularized, and connective tissue
that undergoes lifelong remodeling processes in an adaptive response to mechanical stress. It provides
a supporting function within the musculoskeletal system and consists of different cell types, such as
osteoblasts, osteocytes, and osteoclasts embedded in the ECM, which consists of organic and inorganic
phases. Osteoclasts and osteoblasts are key players during bone turnover, whereas osteocytes play
a crucial role in bone homeostasis, responsible for mechanosensing and mechanotransduction [118].
Traditionally, bone tissue engineering has been used to produce implants for bone regeneration [119].
In recent years, however, bone tissue engineering has been increasingly applied to create artificial
in vitro bone models to improve our understanding of bone-related (patho)physiological mechanisms,
such as osteoporosis. Commonly, approaches used to mimic bone in vitro are scaffold-based.
Thus, numerous innovative scaffolds (synthetic, natural, biodegradable, and non-biodegradable)
have been developed that are capable of mimicking the mechanical stiffness and structural properties
of bone; the latter includes mimicking porosity and pore sizes to provide cavities for cell penetration
and nutrient supply [120]. These scaffolds are further optimized to have both osteoconductive and
osteoinductive properties [121].

Apart from the scaffold-based approaches, scaffold-free organoids or spheroids and 3D
printing, hydrogels, or beads have been used [90,122-125]. However, all of the aforementioned
approaches commonly use MSCs capable of differentiating into the osteogenic lineage, osteoblasts,
and a combination of either osteoblasts and osteocytes or osteoblasts and osteoclasts. To further support
osteogenic properties, bioactive compounds, such as bone morphogenetic protein 2 (BMP-2) or vascular
endothelial growth factor (VEGF), have been included [126,127]. To achieve the mechanical impact
important for native bone, suitable bioreactors combined with bioceramics further support the in vitro
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osteogenesis in a defined, standardized, controlled, and reproducible manner [128]. Novel promising
approaches aim to realize in vitro bone models with robust vascularization using human umbilical
vein endothelial cells [129-131]. However, no in vitro 3D bone model is currently available that reflects
the complexity of the human bone.

4.3.4. 3D Multicomponent Approaches: Reconstructing the Joint Structure

Multicomponent in vitro 3D co-cultures systems combining 3D in vitro models of articular
cartilage and bone (osteochondral unit) with in vitro 3D models of the synovial membrane are
necessary to study the cartilage degradation and bone erosive processes during RA that are linked to
the invasiveness of the hyperplastic synovium (pannus) [132]. Currently, multicomponent engineering
approaches are widely used to simulate key features of osteoarthritis instead of RA or are used to
develop suitable artificial matrices that can replace damaged regions and promote tissue regeneration.
Thus, many promising in vitro approaches have been recently developed using (i) scaffold-based bone
and scaffold-free cartilage [133], (ii) different scaffolds for both bone and cartilage, (iii) a heterogeneous
(bi-layered) scaffold, or (iv) a homogenous scaffold for both bone and cartilage (as reviewed in
Reference [134]). Notably, bi-layered systems are most often fixed by adhesives, such as fibrin,
creating a barrier for cell-cell contact. To avoid this, Lin et al. encapsulated iPSCs-derived MSCs
(iMPCs) in a photocrosslinkable gelatin scaffold. Using a dual-flow bioreactor, encapsulated iMPCs
were chondrogenic (top) and osteogenic (bottom) differentiated to directly form a stable bridging
zone between the both tissue models [135]. So far, no appropriate multicomponent in vitro model
exists that is able to mimic the physiologically relevant environment of a healthy or an inflamed
joint, including all signaling molecules, cells, and tissue types. Consequently, we developed a valid
in vitro 3D model to simulate the immune-mediated pathogenesis of arthritis. The in vitro model
relies on the three main components of the joint: (i) the osteogenic and (ii) chondrogenic parts, and (iii)
the synovial membrane with the synovial fluid. All components are based on differentiated MSCs
from a single donor and thus include most relevant cell types involved, enabling crucial cell—cell
interactions [136]. We simulated the inflamed joint using the application of RA-related cytokines,
as well as immune cells [132]. Finally, we confirmed the suitability of the multicomponent in vitro 3D
model, which may serve as a preclinical tool for the evaluation of both new targets and potential drugs
in a more translational setup [137].

5. Microfluidic Approaches: Prospectively Systemic

In recent years, perfused cultivation systems have become increasingly important due to the
advantages they provide for the cultivation of functional tissues. They ensure the permanent supply of
nutrients and the defined real-time monitoring of environmental conditions, such as pH, temperature,
and oxygen concentrations. Multi-chamber bioreactors provide the opportunity to cultivate two or more
cell/tissue types in a defined manner [138,139]. Generally, microfluidic approaches provide inherent
flexibility in combinatory design, which enables relevant concentration gradients, cellular spatial
configuration, and co-culture and shear force conditions [140]. To date, only a few different microfluidic
culture approaches have been reported that at least partially reflect the physiology of the joint structure,
mimicking either subchondral bone, articular cartilage, or both together, namely the osteochondral
part, as well as the synovial membrane, including spatial topology and mechanical loading [141,142].
However, these do not yet cover all the possibilities offered by these microfluidic systems (Figure 3).

In detail, using equine chondrocytes in a microfluidic culture, 3D cartilage constructs were formed
by establishing a physiologic nutrient diffusion gradient across a simulated matrix. Additionally,
the geometric design constraints of the microchambers drive native cartilage-like cellular behavior [141].
Calvo et al. developed a synovium-on-a-chip system by culturing patient-derived primary FLSs
in a Matrigel™-based 3D micro-mass mimicking TNF-a-driven structural changes and synovial
remodeling [142]. As a result, the activation of FLSs by TNF-« leads to induction of the expression
of pro-inflammatory cytokines, such as IL6 and IL8, as well as matrix-degrading metalloproteinases
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and pannus formation, which is a typical feature of RA. Since the rea-out parameters in a perfused
system are often limited to endpoint assessments, the chip system reported by Calvo et al. (2017)
facilitates the online monitoring of cellular parameters by incorporating a simplified light scattering
method that enables the non-invasive detection of cell motility, proliferation, invasion, and even matrix
condensation processes within the 3D tissue [142].

{ Aricular |
; cartilage | ‘OsteochondraIJ
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membrane | Human . load
joint
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Figure 3. Overview of microfluidic approaches mimicking selected physiological interactions of the
human joint tissues. Figure was modified from Servier Medical Art, licensed under a Creative Common
Attribution 3.0 Generic License. http://smart.servier.com/.

Conclusively, the ultimate goals of microfluidic approaches are to (i) provide reliable information
on the health and disease status of the integrated complex biological system, (ii) reproducibly promote
the formation of the microphysiological tissue structure, and (iii) non-invasively and automatically
monitor stimuli-driven tissue responses [143].

Additionally, a variety of organoids representing various tissues, such as liver, kidney, or heart,
have been established and implemented in microfluidic systems as a single-tissue approach,
namely organ-on-a-chip, or as multi-tissue approaches, such as multi-organ-on-a-chip or, if possible,
human-on-a-chip (Figure 4). However, the human-joint-on-a-chip approach could be a promising
in vitro tool to improve our understanding of the complex pathophysiological mechanisms in RA and
to develop and verify new therapeutic strategies to further expand our repertoire in the battle against
this potentially devastating disease. Future perspectives include human-joint-on-a-chip tailored to
a single patient for use in a personalized medicine scenario to maintain human health.

Despite their advances and opportunities for translational studies and drug testing, microfluidic
systems have still some limitations. So far, microfluidic systems are more challenging to operate and
control than static systems, some organ functions, such as cognition on the brain and mechanical
function in bone, cannot be readily modeled, and they are difficult to adapt to high-throughput
screening and are difficult to standardize and scale up.


http://smart.servier.com/

Int. ]. Mol. Sci. 2020, 21, 7916 15 0f 23

/” \\~\
ot brain heart N
Vd ‘\
I’ ) \,
S/ mtestlne AN
/ RN
4 \
/ \
/ \
N \

S

spleen/ k

I
b 1
| immune system
1 (j
I )
1
i
i
1 ( ]
] |
\ 00\ °0
\ *oTJo | inflamed joint !
\ skin F D % ,l
\
\ ]

-
-
-~ -
S ————————T

Figure 4. Next-generation preclinical in vitro approach based on microphysiological in vitro
human-joint-on-a-chip systems in combination with pathophysiological-relevant human organs.

6. Conclusions and Outlook

Here, we comprehensively summarized key events in RA pathogenesis, which is the most common
immune-mediated chronic inflammatory joint disease. Today’s treatment goal of RA is to achieve
remission or at least low disease activity. However, a strong unmet medical need remains, as by far
not all patients reach sustained clinical remission and even about 25% still suffer from moderate or
even high disease activity characterized by systemic inflammation, persistent synovitis, expansion of
synovial cells (pannus formation) and progressive cartilage and bone destruction in late stages. In the
last years, we have witnessed the failure of potential new therapies in clinical trials although their
development was based on promising preclinical animal data, which can be attributed to the nature of
these models. Animal models and simplified 2D cell cultures of arthritis have been useful to identify
certain pathomechanisms underlying RA. However, they do not fully reflect human pathogenesis due
to oversimplification of the pathophysiological processes or misleading in case of animal models which
owe interspecies differences with regard to, e.g., chondrocyte biology, articular cartilage, and cartilage
thickness [144-146].

Thus, we herewith suggest that shifting our traditional research approaches in biomedicine towards
an improved human personalized patient-driven translation by using sophisticated in vitro models may
enhance “precision” in medicine. Finally, personalized in vitro models will provide guidance to replace
today’s inefficient standard treatment regimens (one fits it all) taking into account patient heterogeneity
in terms of disease subtypes, endogenous circadian rhythms, autoantibodies, cytokine and infiltrating
immune cell patterns, and the extent of pannus formation, ultimately preventing ‘refractory” arthritis.

Along with the joints, RA can affect many of the body’s organs [2,3]. Therefore, combining different
3D tissue models with state-of-the-art microfluidic devices must be the next generation in vitro approach
to study the complex crosstalk between tissues/organs and the immune system, including the spreading

of (auto)immune reactions across different organs, ultimately mimicking the systemic nature of
rheumatic diseases.
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Prospectively, the human-based approach will not only provide opportunities (i) to identify
objective patient-related biomarkers to elucidate disease subtypes and treatment response but also
(ii) enable strategies for the management of patients who are ‘refractory’ or resistant to available
treatments. Thus, human-based cellular and tissue models will close the gaps in RA research and,
finally, health care, increase clinical translatability, and contribute to the reduction and/or replacement
of animal experiments used in basic and translational RA research.
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