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MicroRNAs (miRNAs) play important roles in the diverse biological processes of animals and plants. Although the prediction
methods based on machine learning can identify nonhomologous and species-specific miRNAs, they suffered from severe class
imbalance on real and pseudo pre-miRNAs. We propose a pre-miRNA classification method based on cost-sensitive ensemble
learning and refer to it as MiRNAClassify. Through a series of iterations, the information of all the positive and negative samples is
completely exploited. In each iteration, a new classification instance is trained by the equal number of positive and negative samples.
In this way, the negative effect of class imbalance is efficiently relieved.The new instance primarily focuses on those samples that are
easy to bemisclassified. In addition, the positive samples are assigned higher cost weight than the negative samples. MiRNAClassify
is compared with several state-of-the-art methods and some well-known classificationmodels by testing the datasets about human,
animal, and plant.The result of cross validation indicates thatMiRNAClassify significantly outperforms othermethods andmodels.
In addition, the newly added pre-miRNAs are used to further evaluate the ability of these methods to discover novel pre-miRNAs.
MiRNAClassify still achieves consistently superior performance and can discover more pre-miRNAs.

1. Introduction

MicroRNAs (miRNAs) are a set of short noncoding RNAs
(∼22 nt) which bindwith themRNAs to regulate their expres-
sion and result in their cleavage or translational repression
[1, 2]. The miRNAs usually participate in plenty of biological
processes of animals and plants, including the developmental
process, hematopoietic process, organogenesis, cell apopto-
sis, and cell proliferation in animals as well as growth and
signal transduction in plants [3, 4]. An effective route for
identifying miRNA is to predict the candidates by using
computational methods, following by purposeful validation
with the biological experiments.

For the computational prediction of miRNAs, the meth-
ods based on homologous search, comparative genomics, and
machine learning are three major categories. Although the
first two kinds of methods can accurately identify miRNAs,
they cannot identify those nonhomologous and species-
specific miRNAs. The main reason is that they depend on

sequence homology and sequence conservation among the
multiple species. The prediction based on machine learning
is a de novo method which can identify nonhomologous
and species-specific miRNAs. A prediction method based
on machine learning uses real pre-miRNAs and pseudo pre-
miRNAs as positive samples and negative samples, respec-
tively.Many features are extracted from these samples accord-
ing to the sequence and structure characteristics of pre-
miRNAs. At last, a classificationmodel is trained by using the
samples and their features. So far, researchers have established
models based on naive Bayes [5, 6], support vector machine
(SVM) [7–9], Random Forest [10], and probabilistic colearn-
ing [11] and used these models to discriminate whether a
given new sequence is a real pre-miRNA. Those sequences
classified as real pre-miRNAs can be regarded as candidates.
The position prediction method [12–14] is used to further
determine the locations of miRNAs in the candidates. All
pre-miRNA candidates and the location information of their
miRNAs contribute to the subsequent biological validation.
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When constructing a classification model, the experi-
mental validated pre-miRNAs (real pre-miRNAs) are used as
positive samples. As nearly all reported miRNAs located in
the untranslated regions or intergenic regions, the sequences
with stem-loop structure (pseudo pre-miRNAs) are collected
from the protein-coding regions. These pseudo pre-miRNAs
are regarded as negative samples. In reality, the number of
negative samples is far greater than positive samples, which
forms the severe class imbalance problem. It is well studied
that a classification model trained with these samples would
tend to determine a new sequence as a pseudo pre-miRNA
(the majority class) [15]. Simultaneously, it would result in
poor classificationwith respect to theminority class (real pre-
miRNAs).

Recently, several pre-miRNA classification methods have
taken the imbalance problem into account. Triple-SVM [8]
adopted random undersampling method to select the same
number of negative samples with that of positive samples.
PlantMiRNAPred [16] clustered the positive and negative
samples according to their distribution.The equal number of
representative positive and negative samples was selected as
the training data. HuntMi [17] selected the partial negative
samples based on the ROC score. Actually, there are a lot
of various pseudo pre-miRNAs (negative samples) in the
genomes. However, the methods with undersampling strate-
gies ignored so much information of negative samples that
the classification model has poor discriminative ability on
them. In addition, miRNApre [18] only extracted the negative
samples which are similar to the positive samples. As a result,
the corresponding classification model has low robustness
especially for the new pre-miRNAs that are not similar to
the previous pre-miRNAs. Furthermore, this method also
suffered from the negative effect of ignoring plenty of negative
samples. On the other hand, microPred [19] generated the
simulative positive samples based on SMOTE [20] to balance
the numbers of positive and negative samples. Nonetheless,
the process of generating simulative samples introduced
the noisy data, which decrease the classification accuracy
especially for positive samples. Therefore, it is essential to
develop a new method to efficiently classify the imbalanced
real and pseudo pre-miRNAs.

In addition, the correct classification of real pre-miRNAs
(positive samples) has greater value than the correct clas-
sification of pseudo pre-miRNAs (negative samples). It is
helpful for the biologists to discovermore novel pre-miRNAs.
Hence a better classification model should provide a higher
discrimination ability on the positive samples. In order to
construct this type of model, cost-sensitive and ensemble
learning [21, 22] has taken the various misclassification costs
of different categories of samples and the class imbalance
into account and achieved superior performance. Therefore,
we proposed a classification method based on cost-sensitive
and ensemble learning, which completely exploits the class
imbalance factor and the cost factor of different categories.
Through a series of iterations, the samples that are easy to be
classified correctly and those that are easy to be misclassified
are determined gradually and are assigned different weights.
During each iteration, a new classification instance is trained
by using the equal numbers of positive and negative samples.

The weights of samples are updated according to the classifi-
cation result of the new instance. After the iteration process
is finished, all the instances are integrated into an ensemble
classifier.

First, each classification instance is trained by the same
amount of positive and negative samples, which can effi-
ciently relieve the negative effect of class imbalance. Second,
the cost of misclassifying a positive sample is set higher than
misclassifying a negative one. In this way, the classification
accuracy on the positive samples is further improved. Third,
the information of all the negative samples is exploited
during the training process. At last, when a new classification
instance is constructed, it focuses on the samples that are easy
to be misclassified, which contributes to the improvement
of the global classification performance. In addition, the
data about human, animal, and plant were used to test our
method, several state-of-the-art methods, and some classifi-
cation models. Our method achieved superior classification
performance not only for the cross validation but also for the
testing on the newly added pre-miRNAs.

The rest of this paper is organized as follows. Section 2
describes the features of real/pseudo pre-miRNAs and the
process of constructing the ensemble classification model. In
Section 3, we discuss the evaluation metrics of classification
performance and compare and analyze the results of our
method, other methods, and other classification models.

2. Methods

2.1. Features of Pre-miRNAs. It has been well studied that the
pre-miRNAshave some characteristics about their sequences,
secondary structures, and energy [23, 24]. The sequences
and secondary structure of pre-miRNAs are usually con-
served. The secondary structures often contain stem and
loop regions. Furthermore, they have lower free energy. The
previous pre-miRNAclassificationmethods usually extracted
different feature sets, as they focused on different char-
acteristics of pre-miRNAs. So far, miPred [10], microPred
[19], triplet-SVM [8], and miRNApre [18] have extracted
the sequence-related, structure-related, and energy-related
features. All the features are summarized as follows.

First, there are 81 sequence-related features. (1) 16 features
are related to the two adjacent nucleotides, and they represent
the frequencies of two adjacent nucleotides, denoted as𝑋𝑌%.
𝑋 and 𝑌 can be A (adenine), G (guanine), C (cytosine), or U
(uracil). (2) The G + C% is used to describe the total content
of G and C in the sequences. (3) 64 features are related to
the frequencies of three adjacent nucleotides and denoted as
𝑋𝑌𝑍%, where𝑋, 𝑌, and 𝑍 ∈ {A,G,C,U}.

The following 49 features are related to the secondary
structures of pre-miRNAs which can be obtained by using
the structure-related prediction software such as the Vienna
software package RNAfold [25]. (1)There are 8 features about
the structure topology, including the structural diversity
property Diversity, the structural frequency property Freq,
the structural entropy-related properties dS and dS/L, the
structural enthalpy-related properties dH and dH/L, the
Shannon entropy value dQ, and the compactness of topology
dF. (2) There are 9 features about base pairs, including



BioMed Research International 3

the average amounts of base pairs |A − U|/𝐿, |G − C|/𝐿,
and |G − U|/𝐿, the percentages of base pairs within the
stem region |A − U|%/𝑛 stems, |G − C|%/𝑛 stems, and |G −

U|%/𝑛 stems, the average number of base pairs in the stem
regionAvg BP Stem, the distance between a pair of bases dD,
and the base-pairing tendency dP. (3) There are 32 features
related to the characteristic of three adjacent nucleotides. “(”
and “.” represent paired and unpaired bases, respectively.The
nucleotide at the middle is recorded as A, G, C, or U. Thus,
the percentages of the 32 combinations can be obtained.

Finally, there are 9 features related to the energy of
secondary structure: (1) the minimal free energy of the
secondary structure dG, the minimal free energy-related
features MFEI1, MFEI2, MFEI3, and MFEI4, and the overall
free energy NEFE, the energy combination features 𝐷𝑖𝑓𝑓 =

|𝑀𝐹𝐸 − 𝐸𝐹𝐸|/𝐿, and (2) the energy required for dissolving
the secondary structure 𝑇

𝑚
and 𝑇

𝑚
/𝐿.

These features have been successfully used to classify
the real and pseudo pre-miRNAs. Therefore, the total of
139 features were merged to form our feature set. During
the process of our feature extraction, the codes of miPred,
microPred, triplet-SVM, and miRNApre were executed to
obtain the respective features. All the extracted features were
merged to represent each of real and pseudo pre-miRNAs.

2.2. Constructing the Cost-Sensitive Ensemble Model. A pre-
miRNA classificationmethod based on cost-sensitive ensem-
ble learning is proposed and referred to as MiRNAClassify.
We constructed multiple classification instances through a
series of iterations and integrated these instances into an
ensemble classifier. In this way, the information of all the
positive and negative samples can be exploited. In the process
of each iteration, a new classification instance is trained by
the equal number of positive and negative samples, which can
protect it from the negative effect of class imbalance. At the
same time, each sample has its own weight which reflects the
degree that it is easy to be misclassified.The training samples
are selected in proportion to their weights, which make the
new classification instance focus on the samples that are easy
to be misclassified. Moreover, the weights of samples are
adjusted according to the classification result of each instance.
Hence when constructing a new instance, the new weight
distribution of samples can be integrated to obtain a more
accurate instance. In addition, as the cost of misclassifying
each positive sample is higher than each negative sample, the
positive samples are assigned greater cost weights. As shown
in Figure 1, constructing the ensemble classification model
includes the following 4 steps.

(1) The sample set 𝑉 contains all the positive samples
(real pre-miRNAs) and the negative samples (pseudo pre-
miRNAs). 𝑛 is the number of the features. We extracted 𝑛

features from each positive sample and each negative one.
Since the purpose of our cost-sensitive learning is to improve
the discrimination ability on the positive samples (small
class), the cost weights of positive samples should be set
higher than those of negative samples. 𝐶

𝑃
and 𝐶

𝑁
represent

the misclassification cost of positive and negative samples,
respectively. The weight of each positive sample is initially
set to 𝐶

𝑃
/|𝑉| and that of each negative one is set to 𝐶

𝑁
/|𝑉|

where |𝑉| is the size of 𝑉. As 𝐶
𝑃
should be higher than 𝐶

𝑁
,

𝐶

𝑃
was set as 1 and 𝐶

𝑁
varied from 0.1 to 0.9 with step length

of 0.1.The best classification performance was achieved when
𝐶

𝑃
= 1 and 𝐶

𝑁
= 0.6.

During the process of the first iteration, in the 𝑛-
dimensional sample space, the distance between any two of
negative samples is calculated. Next, all the negative samples
in 𝑉 are gathered into 𝑘 clusters based on 𝐾-means, and
𝑘 equals the number of positive samples. For each cluster,
the negative sample that is closest to the center is obtained
to be a training sample. Thus the initial training dataset 𝐴

1

is composed of 𝑘 positive samples and 𝑘 negative samples.
The first classification instance based on the support vector
machine (SVM) is trained by 𝐴

1
and denoted as 𝑀

1
. The

purpose of constructing 𝑀
1
according to above steps is to

quickly determine the positive and negative samples that are
easy to bemisclassified. As𝑀

1
is trained by the same number

of positive and negative samples,𝑀
1
was not affected by the

class imbalance.
It has been confirmed that Rogers and Tanimoto mea-

surement [26] could successfully measure the similarity
between pre-miRNAs [16]. On the basis of the similarity
measurement, the distance between two negative samples,
such as 𝑥 and 𝑦, is defined as follows:

dis (V
𝑥
, V
𝑦
) = 1 −

V𝑡
𝑥
⋅ V
𝑦

V𝑡
𝑥
⋅ V
𝑥
+ V𝑡
𝑦
⋅ V
𝑦
− V𝑡
𝑥
⋅ V
𝑦

, (1)

where V
𝑥
and V

𝑦
are the feature vectors of 𝑥 and 𝑦, respec-

tively, and V𝑡
𝑥
and V𝑡
𝑦
represent their transpose.

(2) During the process of each subsequent iteration, the
classification instance 𝑀

𝑡
(1 ≤ 𝑡 ≤ 𝑇) classifies all the

positive and negative samples in 𝑉. 𝐺𝑡
𝑚
represents the global

classification performance of𝑀
𝑡
and it is described in detail

in Section 3.2. The weight of each positive and negative
sample is adjusted according to the classification results of
𝑀

𝑡
. The weight of a sample that was classified correctly is

reduced and that of a sample that was misclassified remains
unchanged. After a series of iterations were completed, a
greater weight represents that a sample has beenmisclassified
for more times.

As𝐺𝑡
𝑚
is𝑀
𝑡
’s classification performance, the error rate of

𝑀

𝑡
is 𝜑
𝑡
= 1 − 𝐺

𝑡

𝑚
. 𝜃
𝑡
is a parameter for adjusting the weight

of each sample and 𝜃
𝑡
= 𝜑

𝑡
/(1 − 𝜑

𝑡
). Thus, the weight of the

𝑖th sample 𝑥
𝑖
at the 𝑡th iteration is updated as𝑤𝑡−1

𝑖
𝜃

1−|𝑝
𝑡
(𝑥
𝑖
)−𝑦
𝑖
|

𝑡
.

Here,𝑤𝑡−1
𝑖

is the weight of 𝑥
𝑖
at the (𝑡−1)th iteration, and 𝑦

𝑖
is

the true label of𝑥
𝑖
. If𝑥
𝑖
is a real pre-miRNA,𝑦

𝑖
is 1. Otherwise,

𝑥

𝑖
is a pseudo pre-miRNA and 𝑦

𝑖
is 0. 𝑝

𝑡
(𝑥

𝑖
) represents the

classification result of𝑀
𝑡
over 𝑥

𝑖
, and 1 and 0 represent that 𝑥

𝑖

is classified as positive sample and negative one, respectively.
If 𝑥
𝑖
is classified correctly, the value of 𝑝

𝑡
(𝑥

𝑖
) is the same as

its true label 𝑦
𝑖
, we have |𝑝

𝑡
(𝑥

𝑖
) − 𝑦

𝑖
| = 0 and 1 − |𝑝

𝑡
(𝑥

𝑖
) −

𝑦

𝑖
| = 1. The weights of the correctly classified samples are

multiplied by 𝜃
𝑡
which is smaller than 1. Moreover, if the

classification error rate is lower, the weights of the samples
will become smaller. In terms of the misclassified samples,
we have |𝑝

𝑡
(𝑥

𝑖
) − 𝑦

𝑖
| = 1 and 1 − |𝑝

𝑡
(𝑥

𝑖
) − 𝑦

𝑖
| = 0. Thus,

their weights remain unchanged.
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Figure 1: Constructing the integrated model to classify the real/pseudo pre-miRNAs.

(3) Assume the number of positive samples is 𝑘. To
make the balance of positive and negative samples, we also
selected 𝑘 negative samples. A negative sample with greater
weight means that it has been misclassified for more times
in the previous iterations. Therefore, we selected the negative
samples in proportion to their weights. A new classification
instance𝑀

𝑡+1
is trained by 𝑘 negative samples and 𝑘 positive

samples. At the same time, theweights of the training samples
are integrated.

(4) Steps (2) and (3) are repeatedly performed until the
termination condition is satisfied.

At last, 𝑇 classification instances are constructed and
denoted as 𝑀

1
,𝑀

2
, . . . ,𝑀

𝑇
. The results of all instances

are integrated based on the voting mechanism to give the
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Input: a dataset, V, including all the positive and negative samples, and the negative samples are more than the positive samples.
Output: ensemble classifier based on integrating multiple classification instances.
(1) For 𝑖 = 1 to |𝑉|
(2) If xi is a positive sample
(3) 𝑤

1

𝑖
= 𝐶

𝑃
/|𝑉|, 𝑤1

𝑖
is the weight of 𝑥

𝑖

(4) else
(5) 𝑤

1

𝑖
= 𝐶

𝑁
/|𝑉|

(6) End If
(7) End For
(8) t is used to record the current iteration number, and its initial value is set as 1
(9) While (𝑡 ≤ 𝑇)
(10) 𝐷

𝑡
= Null, the negative training set𝐷

𝑡
is emptied

(11) If 𝑡 equals 1
(12) All negative samples are gathered into k clusters based on the 𝐾-means method. Assume set P is composed of all the

positive samples and the parameter 𝑘 = |𝑃|
(13) For each cluster, the sample locating closest to the center is selected and added into 𝐷

𝑡
. Furthermore, the number of

negative samples |𝐷
𝑡
| is equal to that of positive samples |𝑃|

(14) else
(15) According to the weights of negative samples, k negative samples are selected in proportion to their weights.

These samples are added into𝐷
𝑡
and |𝐷

𝑡
| = |𝑃|

(16) End If
(17) The training dataset is composed of𝐷

𝑡
and 𝑃. A new classification instance𝑀

𝑡
based on SVM is constructed by using

the training dataset and integrating their weight distribution
(18) 𝑀

𝑡
is used to classify all the samples in 𝑉, evaluate its classification performance 𝐺

𝑚
,

and compute its classification error rate 𝜑
𝑡

(19) The adjustment weight 𝜃
𝑡
= 𝜑

𝑡
/(1 − 𝜑

𝑡
) is calculated, and the weight of each positive and negative sample

is updated by using the rule 𝑤𝑡
𝑖
= 𝑤

𝑡−1

𝑖
𝜃

1−|𝑝𝑡(𝑥𝑖)−𝑦𝑖 |

𝑡

(20) 𝑡 = 𝑡 + 1

(21) End While
(22) An integrated classifier is constructed by integrating 𝑇 classification instances based on the voting mechanism.

The final classification result is obtained as follows.

𝑝

𝑓
(𝑥) =

{

{

{

{

{

1 if
𝑇

∑

𝑡=1

(log 1
𝜃

𝑡

)𝑝

𝑡
(𝑥) ≥

1

2

𝑇

∑

𝑡=1

log 1
𝜃

𝑡

0 otherwise

Algorithm 1: Algorithm of classifying the real/pseudo pre-miRNAs based on cost-sensitive ensemble learning.

final classification result. If the classification error rate 𝜑
𝑡
is

lower, 𝜃
𝑡
is smaller and the determination weight log(1/𝜃

𝑡
)

is greater. In this way, the result given by a instance with
higher classification performance accounts for the greater
proportion for the final result during the voting process. The
algorithm of classification of the real/pseudo pre-miRNAs
based on cost-sensitive ensemble learning is illustrated in
Algorithm 1.

The iterative process is terminated after the while loop is
performed for 𝑇 times. When the value of 𝑇 is large enough,
the error rate of the ensemble classifier can reach values as
small as possible. In this study, the value of 𝑇 is set as 300.

3. Results and Discussion

3.1. Data Preparation. Both the sample set and the feature set
are important factors influencing the pre-miRNA classifica-
tion. Furthermore, the previous methods extracted various
features because they focused on the different characteristics
of pre-miRNAs. Therefore, in order to fairly compare with

each of previous methods, our classification method was also
trained by the sample set and feature set which were the same
as its ones. The information about the sample and feature of
each compared method is listed as follows.

MicroPred collected 691 real pre-miRNAs from the early
version of miRNA database miRBase [27] (12.0 version,
abbreviated as miRBase12.0) as the positive samples. The
660 pre-miRNAs have the stem-loop secondary structures
and 31 pre-miRNAs have multiple stem-loops. These positive
samples formed a positive dataset which is referred to as
“MP positive set.” MicroPred obtained the 8494 pseudo
hairpins as the negative samples and these hairpins were
extracted from the human protein-coding regions. In addi-
tion, microPred collected 754 other types of noncoding
RNAs, such as tRNA and rRNA, as the negative samples.
The total 9248 negative samples formed a negative dataset
named “MP negative set.” In terms of feature set, microPred
obtained 21 features to train its classification model.

PlantMiRNAPred was a classical method used to clas-
sify the plant pre-miRNAs. It collected the 2043 plant
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pre-miRNAs in the miRBase14.0 as the positive samples
and extracted the 2122 pseudo hairpins from the protein-
coding regions of Arabidopsis thaliana and Glycine max as
the negative samples. The positive samples and negative
samples of PlantMiRNAPred formed its positive dataset
“PMP positive set” and negative one “PMP negative set.”
PlantMiRNAPred extracted 68 features from plant pre-
miRNAs.

HuntMi obtained 1406 human pre-miRNAs from miR-
Base17.0 and extracted 81228 human pseudo hairpins to
form the human positive dataset “HM hsa positive set” and
negative one “HM hsa negative set.” It also obtained 7053
real animal pre-miRNAs and 218154 animal pseudo hair-
pins to construct the animal positive dataset “HM animal
positive set” and negative one “HM animal negative set,”
respectively. In addition, it obtained 2172 plant pre-miRNAs
and 114929 plant pseudo hairpins to form the plant
positive dataset “HM plant positive set” and negative one
“HM plant negative set.” HuntMi used 28 features to train
its model.

MiRNApre obtained 1496 humanpre-miRNAs frommiR-
Base17.0 as the positive samples and extracted 1446 pseudo
hairpins similar with the positive samples. These pseudo
hairpins are used as the negative samples. These positive
samples and negative samples formed the positive and
negative datasets “MP positive set” and “MP negative set.”
MiRNApre extracted 98 features from each positive and
negative sample.

Moreover, the new pre-miRNAs about human,Arabidop-
sis lyrata, Oryza sativa, and Glycine max were reported by
miRBase when our work was almost completed. These pre-
miRNAs were also used to test the classification methods,
which can further validate their ability of discovering the new
pre-miRNAs.

In addition, to compare our method with other meth-
ods simultaneously, all the positive and negative samples
about human, animal, and plant were merged, respectively.
The 1496 human pre-miRNAs and 81982 pseudo hairpins
formed the human-related positive and negative datasets
which are referred to as “Merged hsa positive set” and
“Merged hsa negative set.” The animal-related positive and
negative datasets contain 7053 real animal pre-miRNAs and
218154 pseudo hairpins and they are named “Merged animal
positive set” and “Merged animal negative set.” The plant-
related datasets are “Merged plant positive set” and “Merged
plant negative set” which are composed of 2172 plant real
pre-miRNAs and 117051 pseudohairpins. All the classification
methods were tested by performing 5-fold cross validation
on the three groups of datasets. The 355 new human pre-
miRNAs (updated human dataset), 68 Arabidopsis thaliana
pre-miRNAs (updated ath dataset), 169 Oryza sativa pre-
miRNAs (updated osa dataset), and 302 Glycine max pre-
miRNAs (updated gma dataset) were also used for testing. In
terms of features, the 139 features described in Section 2.1 are
used to represent each positive sample and negative one.

3.2. Performance Evaluation Metrics. Suppose that TP and
TN represent the number of the correctly classified positive
samples (real pre-miRNAs) and that of the correctly classified

negative samples (pseudo pre-miRNAs), respectively. FP and
FN represent the numbers of the misclassified positive and
negative samples, respectively. Sensitivity (SE) represents the
proportion of the positive samples that are classified suc-
cessfully accounting for the total positive samples. Specificity
(SP) represents the proportion of the successfully classified
negative samples accounting for the total negative samples.
Consider

SE = TP
TP + FN

,

SP = TN
TN + FP

.

(2)

For the pre-miRNA classification, if a classifier has
higher SE and lower SP, it has poorer ability to identify the
pseudo pre-miRNAs. Thus, many pseudo pre-miRNAs will
be misclassified as the real pre-miRNAs, which reduces the
possibility that the biological experiments can successfully
identify pre-miRNAs. On the contrary, the classifier has
poorer ability to identify the real pre-miRNAs, andmany real
pre-miRNAswill bemisclassified as the pseudo pre-miRNAs,
which reduces the possibility that the real pre-miRNAs are
discovered by the experimental study.Therefore, the classifier
should have both high SE and high SP.

The global classification accuracy based on machine
learning is usually evaluated by the parameter Acc. However,
the number of pseudo pre-miRNAs is usually much greater
than that of real pre-miRNAs, which causes TN and FP to be
much higher than TP and FN. Then we have

Acc = TP + TN
TP + TN + FP + FN

≈

TN
TN + FP

= SP. (3)

Therefore, besides SE and SP, we also compute the geometric
mean of SE and SP, denoted as 𝐺

𝑚
, to evaluate the global

classification performance:

𝐺

𝑚
=
√SE × SP. (4)

3.3. Comparison with Other Methods and Classification Mod-
els. In order to compare MiRNAClassify with the state-
of-the-art methods microPred [19], PlantMiRNAPred [16],
HuntMi [17], and miRNApre [18], the 5-fold cross validation
is performed. During the process of the cross validation,
the positive and negative samples are randomly divided into
5 parts. 4 parts are used as the training samples, and the
remaining part is used for testing. The testing dataset does
not intersect with the training dataset. So it can objectively
test the classification performances of the methods. Besides
cross validation, the newly added human, animal, and plant
pre-miRNAs are used to test the ability of discovering the new
pre-miRNAs.

MiRNAClassify is compared with other methods in two
different ways. For one thing, in terms of each compared
method, we choose its sample set and feature set to train
MiRNAClassify. In this way, we compare MiRNAClassify
with other methods, respectively. For another, MiRNAClas-
sify is compared with all the other methods simultaneously
by using the merged datasets and our feature set. In addition,
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Table 1: Datasets and detailed classification results of MiRNAClassify and microPred.

Method Species Dataset Type Size SE (%) SP (%) 𝐺

𝑚
(%)

MiRNAClassify

Homo sapiens

MP positive set Real 691 96.40 97.03 96.71
microPred MP negative set Pseudo 9248 90.65 92.16 91.40
MiRNAClassify MP updated set Real 1186 90.56
microPred 85.16
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Figure 2: Comparison of the performances of MiRNAClassify and
microPred.

MiRNAClassify is comparedwith other classificationmodels,
including SVM, naive Bayes, and Random Forest.

3.3.1. Comparison Using the Same Dataset and Feature Set.
MicroPred focused on classification of the human pre-
miRNAs, and it generated new simulated positive samples
based on SMOTE. In order to compare with microPred in a
fair way, we used the sample set and feature set of microPred
to train the model of MiRNAClassify. As shown in Figure 2
(details in Table 1), the first 3 columns are the results based
on 5-fold cross validation, and the last column is the result
for testing the newly added human pre-miRNAs. MicroPred
obtained the lower sensitivity (SE = 90.65%) and specificity
(SP = 92.16%) in the cross validation. The possible reason
is that generating samples based on SMOTE introduced the
noise data. MiRNAClassify is 5.31% better than microPred
in overall accuracy 𝐺

𝑚
. SE increased by 5.75% and SP

increased by 4.87%. For the dataset that composed of 1186
newly added human pre-miRNAs, MP updated set, the SEs
of MiRNAClassify and microPred are 90.56% and 85.16%,
respectively. These SEs are not as good as those in the cross
validation. The main reason is that MicroPred used the pre-
miRNAs in the early version of miRBase and the new pre-
miRNAs for testing are evenmore than the pre-miRNAs used
to train its classification model.

PlantMiRNAPred mainly studied the classification of
plant pre-miRNAs. The model of MiRNAClassify was con-
structed by using the same sample and feature sets with
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Figure 3: Comparison of the performances of MiRNAClassify and
PlantMiRNAPred.

PlantMiRNAPred. As shown in Figure 3 (details in Table 2),
the first 3 columns are the comparison results of cross vali-
dation. MiRNAClassify achieved slightly better performance
than PlantMiRNAPred. PlantMiRNAPred only extracted a
small number of pseudo hairpins. The number of negative
samples is close to that of positive samples, and there is no
obvious class imbalance. It confirms that MiRNAClassify is
still effective for this type of data. Actually, PlantMiRNAPred
only selected partial positive and negative samples to train
their model, which results in some of the sample information
was lost. On the contrary, MiRNAClassify fully exploited
the information from all the positive and negative samples
by adjusting the sample weights and constructing multiple
classification instances. In Figure 3, the last 3 columns are
the results on 138 newly added Arabidopsis thaliana pre-
miRNAs, 178Oryza sativa pre-miRNAs, and 488Glycine max
pre-miRNAs. MiRNAClassify obtained consistently better
classification accuracies.

HuntMi was constructed to distinguish the real and
pseudo pre-miRNAs about human, animal, and plant. The
model of MiRNAClassify was also trained by using its
samples and features. As Figure 4 shows (details in Table 3),
MiRNAClassify and HuntMi performed the cross validation
on three groups of datasets, respectively. It is obvious that the
number of negative samples is far more than that of positive
samples. There is a severe imbalance between the positive
samples and negative samples. Although there are quite a
lot of negative samples, HuntMi selected a small number of
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Table 2: Datasets and detailed classification results of MiRNAClassify and PlantMiRNAPred.

Method Species Dataset Type Size SE (%) SP (%) 𝐺

𝑚
(%)

MiRNAClassify Plant PMP positive set Real 2043 96.57 98.35 97.46
PlantMiRNAPred PMP negative set Pseudo 2122 95.10 97.17 96.13
MiRNAClassify Arabidopsis thaliana PMP ath updated set Real 138 92.75
PlantMiRNAPred 90.58
MiRNAClassify Oryza sativa PMP osa updated set Real 178 77.53
PlantMiRNAPred 67.42
MiRNAClassify Glycine max PMP gma updated set Real 488 90.78
PlantMiRNAPred 86.07

Table 3: Datasets and detailed classification results of MiRNAClassify and HuntMi.

Method Species Dataset Type Size SE (%) SP (%) 𝐺

𝑚
(%)

MiRNAClassify Homo sapiens HM hsa positive set Real 1406 97.15 98.35 97.75
HuntMi HM hsa negative set Pseudo 81228 95.02 96.94 95.98
MiRNAClassify Animal HM animal positive set Real 7053 95.74 97.55 96.64
HuntMi HM animal negative set Pseudo 218154 94.11 95.95 95.03
MiRNAClassify Plant HM plant positive set Real 2172 93.32 97.82 95.54
HuntMi HM plant negative set Pseudo 114929 91.71 95.87 93.77
MiRNAClassify Homo sapiens HM hsa updated set Real 445 93.93
HuntMi 92.14
MiRNAClassify Arabidopsis thaliana HM ath updated set Real 68 92.65
HuntMi 91.18
MiRNAClassify Oryza sativa HM osa updated set Real 169 75.74
HuntMi 69.82
MiRNAClassify Glycine max HM gma updated set Real 302 92.72
HuntMi 88.41

hsa Animal Plant
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Figure 4: Comparison of the performances of MiRNAClassify and
HuntMi based on 5-fold cross validation.

negative samples based on the ROC values to train its model.
Apparently, it lost a large amount of information of negative
samples. MiRNAClassify completely presented its advantage

in processing the class imbalance and achieved superior
performance. In addition, we performed further testing using
the newly added human, Arabidopsis thaliana, Oryza sativa,
and Glycine max pre-miRNAs. The result was demonstrated
in Figure 5, which confirms thatMiRNAClassify can discover
more new pre-miRNAs. We found that the classification
performances of these two methods on newly added plant
pre-miRNAs were worse than the performances on the new
human pre-miRNAs. One of the important reasons is that
the sequences and structures of plant pre-miRNAs are more
complicated than those of human pre-miRNAs.

Although miRNApre was tested on human, animal, and
plant, only the training and testing samples about human
could be obtained. Therefore, the human-related dataset was
used to train the model of MiRNAClassify. Since miRNApre
only selected the negative samples which are similar to the
positive ones, the negative dataset is only composed of 1446
samples.The positive dataset contains 1496 samples (Table 4).
There is no class imbalance because the number of positive
samples nearly equals that of negative samples. In this case,
the cross validation performance of MiRNAClassify is still
better than miRNApre, as shown in the first 3 columns of
Figure 6. In addition, we obtained 355 new human pre-
miRNAs for further testing. The SEs of MiRNAClassify and
miRNApre are 91.2% and 90.1%, respectively. The SEs are not
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Table 4: Datasets and detailed classification results of MiRNAClassify and miRNApre.

Method Species Dataset Type Size SE (%) SP (%) 𝐺

𝑚
(%)

MiRNAClassify

Homo sapiens

MP positive set Real 1496 98.33 98.27 98.29
miRNApre MP negative set Pseudo 1446 97.66 97.23 97.44
MiRNAClassify MP updated set Real 355 91.27
miRNApre 90.14

Table 5: The classification results of MiRNAClassify and other methods over the merged datasets and the updated datasets.

Method Accuracy
(%)

Merged
human dataset

Merged
animal dataset

Merged plant
dataset

Updated
human dataset

Updated
ath dataset

Updated
osa dataset

Updated
gma dataset

MiRNAClassify
SE 97.93 95.85 93.37
SP 98.30 97.62 97.91 94.08 92.65 79.29 93.05
𝐺

𝑚
98.11 96.73 95.61

MicroPred
SE 92.25 91.61 89.50
SP 95.70 94.85 93.10 91.27 89.71 66.86 85.76
𝐺

𝑚
93.96 93.21 91.28

PlantMiRNAPred
SE 93.58 92.70 91.39
SP 91.20 88.60 87.10 92.11 89.71 70.42 88.41
𝐺

𝑚
92.38 90.63 89.22

HuntMi
SE 95.32 94.14 91.76
SP 97.11 96.07 95.94 92.68 91.18 72.78 89.07
𝐺

𝑚
96.21 95.10 93.83

miRNApre
SE 97.39 93.49 91.71
SP 90.90 89.80 88.10 90.14 89.71 71.01 86.09
𝐺

𝑚
94.09 91.63 89.89
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Figure 5: Comparison of the performances of MiRNAClassify and
HuntMi on the newly added data.

as good as those obtained in the cross validation. The reason
may be that the extracted negative samples were very similar
to the positive samples which resulted in the low robustness
of the classification models.

3.3.2. Comparison over theMergedDatasets. Besides compar-
ison with each method, respectively, we tested MiRNAClas-
sify and other methods simultaneously by using the merged
datasets about human, animal, and plant and the newly
updated datasets and extracting a set of same features. It is
worth noting that the number of negative samples is much
greater than that of positive samples in each merged dataset.
The classification results are demonstrated in Table 5.

MiRNAClassify performed the best not only over
the merged datasets but also over the updated datasets.
HuntMiRNA also achieved decent prediction performance.
MicroPred, PlantMiRNAPred, and miRNApre obtained the
inferior results, especially over the negative samples. In terms
of MicroPred, more simulated positive samples have to be
generated because there are so many negative samples, which
also introduced more noisy data. The possible reason for
the worse performance of PlantMiRNAPred and miRNApre
is that most of information about negative samples was
abandoned and their discriminative ability on negative
samples was reduced greatly.

In addition, a paired 𝑡-test was used to determinewhether
MiRNAClassify’s global performance (𝐺

𝑚
) over the 3 groups

of merged datasets and its accuracy (SE) over the 4 updated
datasets is higher than other methods. The corresponding 𝑝
values are listed in Table 6. The statistic results confirm that
MiRNAClassify outperforms other methods significantly at
the significance level 0.05.
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Table 6:The statistic results obtained by using paired t-test over the prediction performance of MiRNAClassify and that of another method.

Different datasets microPred PlantMiRNAPred HuntMi miRNApre
𝑝 values on three groups of datasets 0.0019 4.9374𝑒 − 04 9.7070𝑒 − 04 0.0050
𝑝 values on four updated datasets 0.0339 0.0284 0.0354 0.0108
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Figure 6: Comparison of the performances of MiRNAClassify and
miRNApre.

3.3.3. Comparison with Other Classification Models. We use
5-fold cross validation to compareMiRNAClassify with other
well-known classification models including the standard
SVM, naive Bayes, and Random Forest. These models under
SMOTE method were further developed to compare with
MiRNAClassify. All the models were trained by the merged
datasets and the same set of features, and their classification
results are demonstrated in Table 7.

For the datasets with severe class imbalance, MiRNA-
Classify demonstrated its ability to process the imbalanced
data and achieved the best performance. As expected, the
standard classification models overlearned the information
of majority class and obtained the small SEs and the great
SPs. After the SMOTE method was applied to balance the
positive and negative samples, these models except naive
Bayes obtained decent improvement on 𝐺

𝑚
values. The main

reason is that naive Bayes has intrinsic resistance to the
class imbalance. However, the classification models under
SMOTE method, SVM, and Random Forest obtained nearly
consistent performanceswhichwere slightly better than naive
Bayes. It confirmed that SVMhas the excellent generalization
ability. In particular, each classification instance of MiRNA-
Classify was established based on SVM, which was one of
the important factors that MiRNAClassify could perform
well. After exerting 𝑡-test on the 𝐺

𝑚
values obtained by

MiRNAClassify and other models, the statistic results in
Table 8 indicated that MiRNAClassify achieved significantly
better performance.

Table 7: The classification results of MiRNAClassify and three
classification models over the merged datasets.

Classification models SE (%) SP (%) 𝐺

𝑚
(%)

Human
SVM 69.18 99.83 83.11
SVM + SMOTE 92.25 95.70 93.96
Naive Bayes 87.43 96.12 91.67
Naive Bayes + SMOTE 90.24 94.43 92.31
Random Forest 67.78 99.82 82.26
Random Forest + SMOTE 91.51 95.34 93.41
MiRNAClassify 97.93 98.30 98.11

Animal
SVM 69.03 98.14 82.31
SVM + SMOTE 91.61 94.85 93.21
Naive Bayes 85.04 95.03 89.90
Naive Bayes + SMOTE 90.83 92.61 91.71
Random Forest 69.52 98.72 82.84
Random Forest + SMOTE 91.12 95.01 93.05
MiRNAClassify 95.85 97.62 96.73

Plant
SVM 68.51 99.24 82.45
SVM + SMOTE 89.50 93.10 91.28
Naive Bayes 82.91 96.75 89.57
Naive Bayes + SMOTE 87.20 92.61 89.86
Random Forest 68.32 99.35 82.39
Random Forest + SMOTE 89.18 92.87 91.01
MiRNAClassify 93.37 97.91 95.61

4. Conclusions

Anewmethod based on cost-sensitive and ensemble learning
(MiRNAClassify) was developed to classify the imbalanced
real and pseudo pre-miRNAs. The multiple classification
instances were constructed and integrated to classify a query
sequence. Each instance was trained by the same number
of positive and negative samples, which effectively relieved
the negative effect of class imbalance. At the same time,
the information of all the positive and negative samples was
completely exploited. The weight of each sample embodied
the possibility that it would be misclassified. Based on the
sample weight, the new classification instance could focus on
the samples that are easy to be misclassified. All of the above
contribute to the more accurate classification performance.

MiRNAClassify has been compared with the previous
methods, microPred, PlantMiRNAPred, HuntMi, and miR-
NApre. Not only the human data but also the animal and
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Table 8: The statistic results obtained by using paired t-test over the prediction performance of MiRNAClassify and that of another
classification model.

p value SVM Naive Bayes Random Forest
7.3053𝑒 − 04 6.2651𝑒 − 04 0.0015

p value SVM + SMOTE Naive Bayes + SMOTE Random Forest + SMOTE
0.0019 0.0010 0.0028

plant data were used to test their performance. MiRNA-
Classify outperformed better than other methods during the
cross validation and could discover more newly added pre-
miRNAs. In addition, we compared MiRNAClassify with
other methods and several well-known classification models
by using the merged and imbalanced datasets. MiRNAClas-
sify demonstrated its ability of processing the imbalance and
achieved significantly better performance.
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