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Optimal control strategies 
on COVID‑19 infection to bolster 
the efficacy of vaccination in India
Ashutosh Rajput1,3, Mohammad Sajid2, Tanvi1,3, Chandra Shekhar1,3 & Rajiv Aggarwal1,3*

The Novel Coronavirus which emerged in India on January/30/2020 has become a catastrophe to the 
country on the basis of health and economy. Due to rapid variations in the transmission of COVID‑19, 
an accurate prediction to determine the long term effects is infeasible. This paper has introduced a 
nonlinear mathematical model to interpret the transmission dynamics of COVID‑19 infection along 
with providing vaccination in the precedence. To minimize the level of infection and treatment burden, 
the optimal control strategies are carried out by using the Pontryagin’s Maximum Principle. The 
data validation has been done by correlating the estimated number of infectives with the real data 
of India for the month of March/2021. Corresponding to the model, the basic reproduction number 
R

0
 is introduced to understand the transmission dynamics of COVID‑19. To justify the significance of 

parameters we determined the sensitivity analysis of R
0
 using the parameters value. In the numerical 

simulations, we concluded that reducing R
0
 below unity is not sufficient enough to eradicate the 

COVID‑19 disease and thus, it is required to increase the vaccination rate and its efficacy by motivating 
individuals to take precautionary measures.

COVID-19 is a contagious respiratory infection caused due to a new coronavirus called SARS-Cov-2. The effect 
of COVID-19 infection may vary from person to person. The illness from mild to moderate can be observed 
in most of the infected individuals and they may recover themselves without getting hospitalized. COVID-19 
infection can be transmitted through the infected individuals via direct or indirect close contacts. Transmission 
occurs majorly through asymptomatic infectives. Individuals with other comorbidities or with a compromised 
immune system are more prone to develop illness due to COVID-19 disease.

By the end of March/2021, COVID-19 had hazardously affected around 106 different countries and territo-
ries and hence, caused over 133 million confirmed cases. Out of which, more than 2.9 million infected people 
have died due to COVID-19 infection. According to this, we may say that more than 21 infected individuals are 
dying out of 1000 individuals infected with COVID-19 disease. As reported by the World Health Organization, 
community transmission was initially the cause for the transmission of COVID-19 infection in India, but later 
the cluster of cases has become a major concern. The Ministry of Health and Family Welfare has discontinued 
various activities at some major public places and social gatherings to control the transmission of COVID-19 
infection. In the beginning of April/2021, the total confirmed cases of COVID-19 disease had already crossed 
12 millions. Also, the total disease induced deaths have crossed 164,108. According to WHO, more than 70% 
deaths of COVID-19 infectives occurred due to the infection with other comorbidities.

According to the World Health  Organization34, some of the common symptoms of COVID-19 disease are 
high fever, dry cough, sneezing, breathlessness and pneumonia. To control the transmission of COVID-19 
infection among individuals, many countries have initially implemented complete or partial lockdowns in the 
year 2020. However, it was not that effective due to rapid increment in the number of hospitalized infectives and 
thus, increased the number of COVID-19 cases. In total COVID-19 has affected over 215 countries all over the 
world. However, the major devastation has been experienced by approximately 106 countries. Scientists from all 
over the world are collaborating to bring us various treatment procedures and vaccination to reduce the burden 
of COVID-19 pandemic. Nowadays vaccination has become a crucial player for the battle against COVID-19 
infection. The health care authorities are highly encouraging the individuals to receive the vaccination in the prec-
edence order. However, taking vaccination does not ensure the complete protection of an individual but reduces 
the risk of infection from COVID-19 disease. Thus, even after taking vaccination it is essential to implement the 
non-pharmaceutical inventions such as infection prevention (wearing masks and sanitizing hands), quarantine, 
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social distancing, contact tracing and isolation of infectives. According to the World Health Organization, pre-
vention measures such as mask wearing and keeping one meter distance must be a part of daily routine for each 
individual to avoid the transmission of COVID-19 infection through infectives. However, the appropriate use 
and cleaning techniques are also necessary to maintain the masks as effectively as possible.

It has become an important concern to predict and analyze the severity of COVID-19 for both health care 
authorities and researchers. Mathematical modeling provides an efficient way to analyze the real world problems 
such as the prediction of COVID-19 prevalence under certain assumptions. In order to model the real life prob-
lems more practically, a number of mathematical models have been proposed by various researchers with the time 
dependent parameters such as time dependent treatment rates and transmission rates to study the transmission 
dynamics of infectious  diseases1,25–28. Many researchers are working in this direction to predict the severity and 
analyze the transmission dynamics of COVID-192,5,10,12–14,16,17,21,22,29–31,33,37. Pang et al.18 have proposed a math-
ematical model for COVID-19 by considering transmission in three different stages on the basis of different 
control measures. They have concluded that strict quarantine rules are very effective in reducing the effective 
contact rate and hence the transmission of COVID-19. Ngonghala et al.17 proposed a mathematical model, by 
introducing non-pharmaceutical interventions such as social-distancing, contact-tracing and isolation to control 
and mitigate the burden of the pandemic. They have used the COVID-19 data to see the transmission dynamics 
in New York and the entire US. A COVID-19 model has been introduced by Sun and  Wang24 to forecast the 
effect of implementing strong interventions in Heilongjiang province in order to minimize the total infectives.

Keeping in view the aforementioned papers, we have introduced a nonlinear mathematical model by pro-
viding vaccination to the population in order to reduce the burden of COVID-19 pandemic. The aim is also to 
minimize the infectives and the total financial burden of vaccination and treatment of COVID-19 disease in the 
society. The proposed model has been qualitatively and quantitatively analyzed  following19,23.

The content of the paper is organized as follows: The second section begins with the formation of a nonlinear 
mathematical model along with the incorporation of vaccination. Equilibrium points have been determined along 
with computing the basic reproduction number in the third section. The fourth section captures the sensitivity 
index to determine the parameters that are having an immense impact on the reproduction number. An optimal 
control problem has been constructed in the fifth section, in order to reduce the infection prevalence together 
with the minimization of total financial burden on the society. Numerical simulations have been done in the 
sixth section to numerically validate the model with the real data of India. In the seventh section, the COVID-19 
model has been discussed briefly.

Model formation
In this section, a novel coronavirus model has been proposed and analyzed to study the transmission dynamics 
of COVID-19 disease among the population of India. To formulate the model, the total population denoted by 
N(t) depending on the time variable t,  is divided into eight mutually disjoint classes of population as defined 
in Table 1.

Therefore, the total population N(t) can be written as

To formulate the model following assumptions are taken into consideration:

• The population enters with a constant recruitment rate Π into the class of susceptibles and dies with a natural 
death rate µ.

• Each individual must enter into the exposed class after coming in contact with an infected individual before 
switching into other infected classes.

• Individuals recovered from COVID-19 attain short term immunity and will move to the class of susceptibles 
again.

• Population detected with COVID-19 infection will remain isolated even after the detection of disease as 
suggested by the health care authorities and start taking medical facilities if intensive care is required.

N(t) = S(t)+ E(t)+ V(t)+ Iu(t)+ II (t)+ Ih(t)+ Ru(t)+ Rk(t).

Table 1.  The description of COVID-19 model state variables.

State variable Description

S(t) class of individuals susceptible to COVID-19 disease

E(t) class of individuals exposed to COVID-19 (pre-symptomatically infected individuals)

V(t) class of individuals vaccinated from COVID-19

Iu(t) class of undetected infectives (majorly asymptomatic infectives)

II (t) class of isolated infectives (includes both symptomatic and asymptomatic infectives)

Ih(t) class of hospitalized infectives (those who requires intensive health care)

Ru(t) class of unknown recovered individuals

Rk(t) class of known recovered individuals

D(t) class of individuals died from COVID-19
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• In a highly populated country like India, the proportion of infected neonates is very less in comparison to the 
total infected cases of COVID-19 in India. Thus, we have not considered neonates born to infected mothers 
as infectives.

Susceptibles acquire COVID-19 infection and become exposed, due to effective contact with undetected infec-
tives and hospitalized infectives at the rate β , where the force of infection, � , is given as

where η < 1 is the modification parameter which accounts for the fact that hospitalized infectives are detected 
with the coronavirus disease and are under intensive care and thus follow more precautionary measures in rela-
tion to undetected individuals, which as a result, reduces the probability of acquiring infection from hospitalized 
infectives. Individuals exposed to COVID-19 may move to the class of vaccinated individuals after taking vaccina-
tion at the rate m1 . However, susceptibles may also start taking vaccination at the rate m. Individuals vaccinated 
from COVID-19 may not get permanent immunity and acquire COVID-19 infection by switching to the class of 
individuals exposed to COVID-19 at the rate (1− ε)� , where ε is the efficacy of vaccination. Exposed individuals 
with mild symptoms known as pre-symptomatically infected individuals remain under an incubation period for 
5− 10 days. A fraction of newly infected individuals, who are not getting detected even after the completion of 
incubation period, will move into the class of undetected infectives at the rate (1− α)k . Undetected infectives 
may also progress to the class of isolated infectives by putting themselves into isolation or the quarantine centers 
set up by the government, after getting detected with the disease either by contact tracing or the generation of 
COVID-19 symptoms such as cold, high fever and difficulty in breathing at the rate σ Iu . Undetected infectives 
may also get recovered on their own from COVID-19 infection, on the basis of immunity level, and headway to 
the class of unknown recovered at the rate φIu , from where they may again become susceptible at the rate 1

δ2
Ru . 

Infectives under isolation may also get recovered by themselves by taking a little medical assistance during iso-
lation period and move to the class of known recovered at the rate τ II . Individuals recovered from COVID-19 
may not get permanent immunity and again move to the class of susceptibles at the rate 1

δ1
Rk . However, some 

infectives such as those with comorbidities and weakened immune system might require intensive medical care 
and headway to the class of hospitalized infectives, that is, Ih(t) at the rate γ II . After getting recovered from 
COVID-19, hospitalized infectives enter into the class of known recovered at the rate ψIh . Undetected COVID-
19 infectives, isolated infectives and hospitalized infectives who are dying due to COVID-19 move to the class 
of disease induced deaths at the rate µu,µI and µh , respectively.

Corresponding to the aforementioned assumptions, the variables and the parameters described in Tables 1 
and 2, respectively, a non-linear mathematical model has been formulated on the basis of a schematic diagram 
as given in Fig. 1. The non-linear system of differential equations describing the model is given as

(1)� =
β

N
(Iu(t)+ ηIh(t)),

Table 2.  The description of parameters.

Parameter Description

Π Constant recruitment rate

β Transmission rate for COVID-19

µ Natural death rate

µu Death rate of undetected infectives due to COVID-19

µI Death rate of isolated infectives due to COVID-19

µh Death rate of hospitalized infectives due to COVID-19

k Incubation period for exposed individuals

ε Efficacy of vaccination for COVID-19

m Rate at which susceptibles attain vaccination against COVID-19

m1 Rate at which exposed individuals attain vaccination against COVID-19

m2 Rate at which undetected infectives attain vaccination against COVID-19

δ1 Period after which known recovered individuals become susceptibles

δ2 Period after which unknown recovered individuals become susceptibles

ψ Recovery rate of hospitalized infectives

γ Treatment rate at which isolated infectives get hospitalized

τ Rate at which isolated infectives get recovered themselves

α Fraction of exposed individuals detected from COVID-19

φ Recovery rate of undetected infectives

σ Detection rate of undetected infectives through contact tracing

η Modification parameter
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with the initial conditions given as

(2)

dS

dt
= Π − �S −mS +

1

δ1
Rk +

1

δ2
Ru − µS

dE

dt
= �S + ρ(1− ε)�V −m1E − kE − µE

dV

dt
= mS +m1E +m2Iu − ρ(1− ε)�V − µV

dIu

dt
= (1− α)kE −m2Iu − σ Iu − φIu − (µ+ µu)Iu

dII

dt
= αkE + σ Iu − γ II − τ II − (µ+ µI )II

dIh

dt
= γ II − ψIh − (µ+ µh)Ih

dRu

dt
= φIu −

1

δ2
Ru − µRu

dRk

dt
= ψIh + τ II −

1

δ1
Rk − µRk ,

Figure 1.  Schematic diagram describing the transmission of COVID-19.
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Basic properties of the model. All the variables S(t), E(t), V(t), Iu(t), II (t), Ih(t), Ru(t) and Rk(t) 
forming the model system (2), denotes human sub-population, and hence are positive for all time t � 025. Fur-
ther, by adding the rate of change in all the sub-populations given by model system (2), we obtain

We solve the above linear differential equation to obtain

from which it follows that 0 < N(t) � Π
µ

, if N(0) � Π
µ

 . Thus, the total population N(t) is bounded, which in turn, 
proves the boundedness of all the sub-populations of N(t). Therefore, without loss of generality, the following 
positively invariant region can be taken under consideration:

In the model, a class of individuals died due to COVID-19 has been introduced and the corresponding differential 
equation for the death class is obtained as

Thus, by solving equation (5) with respect to the time variable t ≥ 0 , the number of individuals died due to 
COVID-19 is obtained as

Equilibrium points
There are two equilibrium points for the model system (2) that has been computed in the region Ω , namely, 
a disease-free equilibrium point P0 = (S0,E0,V0, I0u , I0I , I

0
h ,R

0
u,R

0
k) , which represents the state when no 

COVID-19 infected individual is present in the population and an interior endemic equilibrium point 
P∗ = (S∗,E∗,V∗, I∗u , I

∗
I , I

∗
h ,R

∗
u,R

∗
k).

The components of both the equilibrium points can be obtained by solving the following simultaneous system 
of equations:

After solving for the uninfected components in the above system of equations, the disease-free equilibrium point 
is computed as P0 =

(

Π
m+µ

, 0, Πm
µ(m+µ)

, 0, 0, 0, 0, 0
)

.
The basic reproduction number R0 , is a threshold quantity, which counts the average number of secondary 

infectious cases produced by a single infected individual in an entirely susceptible  population9. Mathematically, 
it can be computed using the matrices F and V corresponding to the new infection terms and the remaining 
transfer terms,  respectively32 that are given as

(3)
S(0) = S0 � 0, E(0) = E0 � 0, V(0) = V0 � 0, Iu(0) = Iu0 � 0,

II (0) = II0 � 0, Ih(0) = Ih0 � 0, Ru(0) = Ru0 � 0 and Rk(0) = Rk0 � 0.

(4)
dN

dt
=Π − µN(t)− µuIu − µI II − µhIh � Π − µN(t).

N(t) � N(0)e−µt +
Π

µ
(1− e−µt),

Ω =

{

(S,E,V , Iu, II , Ih,Ru,Rk) ∈ R
8
+ : N(t) �

Π

µ

}

.

(5)
dD

dt
= µuIu + µI II + µhIh.

D(t) = D0 + µu

t
∫

0

Iudξ + µI

t
∫

0

IIdξ + µh

t
∫

0

Ihdξ .

(6)

Π − �S −mS +
1

δ1
Rk +

1

δ2
Ru − µS = 0

�S + ρ(1− ε)�V −m1E − k1E − µE = 0

mS +m1E +m2Iu − ρ(1− ε)�V − µV = 0

(1− α)kE −m2Iu − σ Iu − φIu − (µ+ µu)Iu = 0

αkE + σ Iu − γ II − τ II − (µ+ µI )II = 0

γ II − ψIh − (µ+ µh)Ih = 0

φIu −
1

δ2
Ru − µRu = 0

ψIh + τ II −
1

δ1
Rk − µRk = 0.
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Therefore, the basic reproduction number is determined as

where

Stability analysis of the disease‑free equilibrium point. To analyze the behavior of solution trajecto-
ries around the disease-free equilibrium point, the stability analysis is performed. We use the Lyapunov LaSalle’s 
Principle to prove the asymptotic stability of the disease-free equilibrium point.

Lemma 3.1 11 (Lyapunov LaSalle’s Principle) Let Ω ⊂ B be a compact set that is positively invariant. Let V : B → R 
be a continuously differentiable function and assume that V̇(x) � 0 for all x ∈ Ω . Let D be the set of all points in Ω 
where V̇(x) = 0 . Let S be the largest invariant set in D. Then every solution starting in Ω approaches S as t → ∞ , 
that is, for every x(0) ∈ Ω , x(t) → S as t → ∞.

Theorem 3.2 The disease-free equilibrium point P0 for the model system (2) is asymptotically stable, if R0 < 1 and 
is unstable for R0 > 1.

Proof Let us consider a vector Z = (E, Iu, II , Ih)
T . We have to show that

where the matrices F and V are given by equation (7) and (8), respectively. Clearly,

Now, we define X = (0,β , 0, ηβ) . It is straightforward to verify that X(V−1F) = R0X . Therefore, X is a left 
eigenvector of V−1F associated with the eigenvalue R0. Consider a Lyapunov function of the form

By differentiating L with respect to time, we get

If R0 < 1 , then X(R0 − 1)Z < 0 . Therefore, the equality dLdt = 0 gives XZ = 0 . Thus, we obtain

By using equation (6) and (10) we get, E = Iu = II = Ih = Ru = Rk = 0, S = Π
m+µ

 and V = Πm
µ(m+µ)

 . Thus, dLdt = 0 
for P0 =

(

Π
m+µ

, 0, Πm
µ(m+µ)

, 0, 0, 0, 0, 0
)

 . Therefore, the largest invariant set on which dLdt = 0 is singleton {P0} . 
Hence, by the Lyapunov LaSalle’s Principle, it can be conclude that the disease-free equilibrium point P0 is 
asymptotically stable when R0 < 1 . However, if R0 > 1 , we can observe dLdt > 0 in a neighborhood of the disease-
free equilibrium point in Ω . Thus, by Lyapunov stability theory the disease-free equilibrium point becomes 
unstable if R0 > 1 .   �

Endemic equilibrium point. The solution of the simultaneous system of equations (6), gives the compo-
nents of the endemic equilibrium point P∗ = (S∗,E∗,V∗, I∗u , I

∗
I , I

∗
h ,R

∗
u,R

∗
k) as

(7)F =









0 β(µ+ρ(1−ε)m)
m+µ

0 ηβ(µ+ρ(1−ε)m)
m+µ

0 0 0 0
0 0 0 0
0 0 0 0









(8)V =







m1 + k + µ 0 0 0
(1− α)k φ +m2 + σ + µu + µ 0 0
−αk − σ γ + τ + µI + µ 0
0 0 − γ ψ + µh + µ






.

(9)R0 =
βk(µ+mρ(1− ε))

A1A2A3A4A5
((1− α)(A4A5 + ηγ σ)+ A3αηγ ),

A1 = m+ µ, A2 = k +m1 + µ, A3 = m2 + σ + φ + µ+ µu, A4 = ψ + µ+ µh and A5 = γ + τ + µ+ µI .

dZ

dt
� (F − V)Z,

dZ

dt
=







�S + ρ(1− ε)�V −m1E − kE − µE
(1− α)kE −m2Iu − σ Iu − φIu − (µ+ µu)Iu

αkE + σ Iu − γ II − τ II − (µ+ µI )II
γ II − ψIh − (µ+ µh)Ih






� (F − V)Z.

L = X(V−1Z).

dL

dt
= XV−1 dZ

dt
� XV−1(F − V)Z = X(R0 − 1)Z.

(10)β(Iu + ηIh) = 0.
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where

The force of infection �∗ , appearing in the components of endemic equilibrium point can be determined by 
using the following expression

Sensitivity analysis
The threshold quantity R0 plays a vital role to understand the transmission of a disease into a community. In the 
proposed non-linear mathematical model, the aforementioned parameters have different levels of impact on R0 . 
This section consists of the sensitivity index of the basic reproduction number R0 with respect to various model 
parameters. We investigate the significance of various parameters that have immense impact such as reduction 
in deaths due to COVID-19 infection. In relation to this, we study the normalized forward sensitivity index of 
R0 corresponding to the various parameters. If the basic reproduction number is differentiable with respect to 
a parameter, then the sensitivity index can also be obtained by using the partial derivative. In the model predic-
tion, the vitality of various parameters can also be justified by the sensitivity analysis. The occurrence of errors 
on the basis of collected data and presumed values may not justify the significance of a mathematical model.

Definition 4.1 3 Let, V be the dependent function and is differentiable with respect to parameter p, then the 
normalized forward sensitivity index is defined as:

The sensitivity index of R0 determines the parameters (given in (9)) having an immense impact on R0 . 
According to the parameters value given in Table 3 the sensitivity index for the transmission rate (β) is given as

The relative impact of various parameters on the threshold quantity R0 is shown below in Fig. 2 and the follow-
ing points are observed:

• Υ
R0
β = 1 : The value 1 signifies that R0 is directly proportional to β . Therefore, the transmission rate must be 

essentially reduced by increasing the detection and isolation of infectives and strictly following precautionary 
measures by all the individuals.

• ΥR0
ε = −1.80282 : From this value of sensitivity index of R0 , it is observed that if ε increases by 10% then 

R0 decreases by approximately 18%. That is, the efficacy of vaccination has a very high significance in the 
model. It signifies that the vaccinated individuals still need to follow the precautionary measures to control 
the transmission of infection as vaccinated individuals may also transmit the infection even without getting 
symptoms.

(11)

S∗ =
Π

S1
+

(

ψγ + τA4

γ S1S2

)

I∗h +
φ(1− α)A4A5

γ S1S3S4
I∗h

E∗ =
A3A4A5

γ S2S4
I∗h

V∗ =
mΠ

S1S5
+

(

m(ψγ + τA4)

γ S1S2S5
+

mφ(1− α)A4A5

γ S1S3S4S5

)

I∗h +

(

m1A3A4A5

γ k1S4S5
+

m2(1− α)A4A5

γ S4S5

)

I∗h

I∗u =
(1− α)A4A5

γ S4
I∗h

I∗I =
A4

γ
I∗h

I∗h =
Πγ kS2S3S4(ρ(1− ε)(�∗ +m)+ µ)

I1 − I2

R∗
u =

φδ2(1− α)A4A5

γ S2S4
I∗h

R∗
k =

δ1(ψγ + τA4)

γ S2
I∗h ,

S1 = �
∗ +m+ µ, S2 = 1+ µδ1, S3 = 1+ µδ2, S4 = σ − ασ + αA3, S5 = �

∗ρ(1− ε)+ µ,

I1 = S1S2S3A4A5

(

A3(ρ(1− ε)�∗(k + µ)+ µA2)+ ρ(1− ε)m2k(1− α)
)

and

I2 = ((ψγ + τA4)S3S4 + φS2A4A5(1− α))(ρ(1− ε)(�∗ +m)+ µ).

(12)�
∗ =

β

N
(I∗u + ηI∗h ).

(13)Υ V
p :=

∂V

∂p

p

V
.

Υ
R0
β :=

∂R0

∂β

β

R0

= + 1.
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• ΥR0
η = 0.661243 : From this point, we can observe that R0 increases by 6.612% if η increases by 10%. There-

fore, the health care authorities are required to follow more precautionary measures while giving treatment 
to the hospitalized infectives.

• ΥR0
m = −0.353316 : This value of sensitivity index indicates that the threshold quantity R0 decreases by 3.53% 

whenever m increases by 10%. However, at this rate of vaccination the spread of COVID-19 disease infection 
may not be controlled and, thus the vaccination must be provided with high intensity in order to eradicate 
the disease.

Table 3.  Parameters value for the numerical simulations.

Parameter Value Source Parameter Value Source

Π 50,000 day −1 Assumed ε 0.8 Estimated

β 1.12 day −1 Assumed σ 0.45 day −1 Data fitted

µ 0.000039 day −1 Estimated φ 0.9 day −1 Data fitted

µu 0.0001 day −1 Assumed ψ 1/14.7 day −1 Estimated

µI 0.000162 day −1 Estimated γ 0.3 day −1 Estimated

µh 0.002528 day −1 Estimated τ 0.9 day −1 Estimated

k 1/8 day −1 Estimated δ1 40 Assumed

α 0.2 Data fitted δ2 40 Assumed

η 0.7 Assumed m 0.00016 day −1 Estimated

m1 0.00005 day −1 Estimated m2 0.00005 day −1 Estimated

Figure 2.  Graphs showing the sensitivity of the reproduction number with respect to all the parameters.
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From the sensitivity index, it is concluded that only carrying out the precautionary measures is not adequate 
enough to eradicate the disease. The transmission of the COVID-19 infection can be controlled by giving vac-
cination to the individuals on its maximal level on the basis of precedence. Also, to increase the efficacy of vac-
cination each vaccinated individual is also required to follow the precautionary measures to maintain the effect 
of vaccination as they may also infect others without getting the symptoms of COVID-19 disease.

Optimal control problem
Modeling on an infectious disease may involve a high number of constant parameters, transmission effects 
and treatment costs. To make the model realistic, one requires the optimal control interventions on the level of 
infection and management costs to optimize the disease burden as much as possible. This model investigates the 
transmission dynamics of COVID-19 infection in India. Since, India is a highly populated country therefore the 
transmission of COVID-19 infection is higher and hence, it involves the high costs of management. In this paper, 
optimal control strategies are applied to minimize the number of infectives, the treatment cost on individuals 
and financial burden on the health care authorities. It has been that the optimal control strategies play a vital role 
in optimizing the infectious disease  problems25. In this section, we transform the constant parameters system 
of differential equations (2) into a system of differential equations with time dependent control functions. We 
introduce the control functions u1(t), u2(t), u3(t) and u4(t) by replacing the constant vaccination parameters 
m,m1,m2 and the intensive care treatment rate γ , respectively. The control function u1(t), u2(t) and u3(t) repre-
sent the time dependent vaccination rate to the susceptibles, exposed individuals and undetected infectives from 
COVID-19. Also, u4(t) measures the time dependent rate at which isolated infectives attain intensive treatment.

The optimal control strategies are applied to solve the problem by using Pontryagin’s maximum  principle20. 
According to this principle, we identify the intensity of optimal interventions and ideal timing to minimize the 
COVID-19 infected individuals along with reducing the cost as much as possible for the finite time interval. 
Thus, the optimal control functions u1(t), u2(t), u3(t) and u4(t) will be chosen in such a way that the state vari-
ables and the control functions minimize the objective functional defined as

where B1, B2, B3 and B4 denote the cost coefficients and the corresponding terms B12 u
2
1 , 

B2
2 u

2
2 and B32 u

2
3 describe 

the vaccination costs and the term B42 u
2
4 indicates the treatment cost. Also, the balancing factors are represented 

by the coefficients W1,W2,W3 and W4 indicating the significance of one type of intervention over the others. 
Define, the set of admissible control functions as

where tf  denotes the final time of study period. The objective is to determine the optimal control values u∗1 , u
∗
2, u

∗
3 

and u∗4 that satisfy the conditions in (14) and

We first verify the existence conditions given by Fleming and  Rishel7 for the optimal control function 
u∗ = (u∗1 , u

∗
2 , u

∗
3 , u

∗
4) and solution trajectories for the state variables: 

1. The solution set for the model system (2) must be non-empty corresponding to the admissible control func-
tions in Σ . Since, 0 ≤ N(t) ≤ Π

µ
 and N(t) = S(t)+ E(t)+ V(t)+ Iu(t)+ II (t)+ Ih(t)+ Ru(t)+ Rk(t). 

Therefore, all the state equations are continuous and bounded.
  Further, since all the partial derivatives with respect to state variables are bounded, thus, the Lipschitz 

condition is satisfied. Therefore, by the Picard-Lindelof ’s  theorem4, the solution set for the initial value 
problem (2)–(3) along with the control functions in Σ is non-empty.

2. The system of differential equations in (2) can be expressed as a linear function of control variables with the 
coefficients representing the functions of time and state variables as 

 Here, x′i s denote the state variables for i = 1, 2, . . . , 8 , whereas, for j = 1, 2, 3, 4 , u′js denotes the associated 
control variable.

3. The Lagrangian function in the objective functional J of the problem, is given as 

 The Lagrangian function L must be convex on Σ and satisfies the relation 

 Clearly, the function L is convex on Σ as it is a quadratic function of u = (u1, u2, u3, u4) . Also, since 
B4u

2
4 � B4 as u4 ∈ [0, 1] , therefore, the bound on L can be proved as 

J(u1, u2, u3, u4) =

tf
∫

0

(

W1Iu +W2II +W3E +W4(µuIu + µI II + µhIh)+
B1

2
u21 +

B2

2
u22 +

B3

2
u23 +

B4

2
u24

)

dt,

(14)Σ ={(u1, u2, u3, u4) : measurable and 0 � u1, u2, u3, u4 � 1 for t ∈ [0, tf ]},

(15)J(u∗1 , u
∗
2, u

∗
3, u

∗
4) = min

Σ
J(u1, u2, u3, u4).

(16)hi = a(t, xi)+ b(t, xi)uj .

L = W1Iu +W2II +W3E +W4(µuIu + µI II + µhIh)+
B1

2
u21 +

B2

2
u22 +

B3

2
u23 +

B4

2
u24.

(17)L(x, t, u) � ζ1 | u |ξ − ζ2, where ζ1 > 0 and ξ > 1.
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 where, ζ1 = min
(

B1
2 ,

B2
2 ,

B3
2 ,

B4
2

)

> 0, ζ2 =
B4
2 and ξ > 1. Therefore, the Lagrangian function L satisfies 

the relation in equation (17).
Thus, all the conditions of Fleming and  Rishel7 are verified, and hence, we have proved the following result.

Theorem 5.1 There exist an optimal control u∗ = (u∗1 , u
∗
2 , u

∗
3 , u

∗
4) and the corresponding solution trajectories 

S∗,E∗,V∗, I∗u , I∗s , I∗h ,R
∗
u and R∗

k for the initial value problem (2)–(3) that minimizes J(u1, u2, u3, u4) over Σ.

Characterization of optimal control. Consider the initial value problem (2)–(3) with the objective func-
tional J. We use the Pontryagin’s maximum principle which transforms the problem of minimizing the objective 
functional J into minimizing the Hamiltonian function H defined as

Here, the term x = (S,E,V , Iu, II , Ih,Ru,Rk) represent the vector of state variables and each hi represents the right 
hand side of the ith equation of state variables for the model system (2). To track the changes in the objective 
functional corresponding to the state variables, we utilize the adjoint variables that satisfy

where x = (S,E,V , Iu, II , Ih,Ru,Rk) , together with the transversality conditions given as

Optimality conditions. Differentiation of the Hamiltonian function partially with respect to u1, u2, u3 and u4 
and substituting ∂H

∂u = 0 , gives

In order to minimize the optimal controls u1, u2, u3 and u4 over Σ , the control parameters u∗1 , u
∗
2, u

∗
3 and u∗4 must 

be bounded between 0 and 1. Thus, to control the transmission of COVID-19 infection the optimal control 
functions for the detection and treatment at time t are obtained as

Numerical simulations
Corresponding to the epidemiological model of COVID-19 infection given by (2)–(3), the numerical simulations 
are performed on the basis of parameters value as given in Table 3 that are estimated by the data taken from 
the Ministry of Health and Family Welfare of  India15,  WHO34,36 and the published  literature14,17. For the month 
of March/2021, the real data of  India15 is taken under the consideration, and therefore, the initial values for 

L(x, t, u) >
B1

2
u21 +

B2

2
u22 +

B3

2
u23 +

B4

2
u24

�
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2
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2
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2
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2
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2
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,
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,
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,
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2 −
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8
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(18)
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= −
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∂x
,
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the state variables are chosen as S(0) = 1, 300, 000, 000, E(0) = 400, 000, V(0) = 8, 641, 002, Iu(0) = 560, 000, 
II (0) = 160, 293, Ih(0) = 10, 000, Ru(0) = 7, 000, 000, Rk(0) = 10, 588, 795.

For the model (2), we have assumed the constant recruitment rate Π = 50, 000 as the average num-
ber of births in India ranges between 45, 000− 70, 000 day−1 . Also, the natural death rate is evaluated at 
µ = 3.9× 10−5 day−1 = 1

69.3 × 1
365 day−1 as the average life expectancy of people in India is 69.3 years. Accord-

ing to  WHO35, the average incubation period for the individuals progressing from the class of exposed to the 
infected classes is 8 days, which assisted us to choose k = 1/8 . Corresponding to the model, the transmission rate 
β for the time duration March/01/2021 to March/25/2021 is assumed to be 1.12 day−1 . The relative infectiousness 
of hospitalized infectives is assumed to be η = 0.7 as they infect at comparatively lesser rate than undetected 
infectives. Since, only 20–30% infected individuals require intensive medical treatment, therefore, γ is assumed 
to be 0.3 day−1 . According to the report, the efficacy of vaccination is 81%, therefore, we have chosen ε = 0.8 . 
Also, the individuals getting recovered from COVID-19 may acquire immunity for approximately 40 days and 
then again become susceptible which justifies choosing δ1 = 40 and δ2 = 40 . For the time duration March/01 to 
March/25/2021, the average number of daily active cases were estimated to be 162,2146 and daily average deaths 
due to COVID-19 infection were  1036. Since, hospitalized infectives are more prone to get dead due to COVID-19 
because of the presence of other comorbidities, more than 70% of the total deaths due to COVID-19 are observed 
in hospitalized infectives. Therefore, we have subdivided the total deaths into 82 and 21 of hospitalized infectives 
and isolated infectives, respectively. Correspondingly, the daily actively infectives are categorized into the daily 
number of isolated infectives and hospitalized infectives as 129, 772 and 32, 442, respectively. Thus, the estimated 
case fatality rate during the hospitalization and isolation are µh = 82

32442 = 0.002528 and µI =
21

129772 = 0.000162 
day−1 . The death rate of undetected infectives is assumed to be µu = 0.0001 day−1 . As reported by Ferguson 
et al.8, the infectives spend around 8 days in hospitalization and to monitor the regeneration of symptoms they 
remain under the isolation period for 4− 6 . Therefore, ψ is estimated at 1

14.7 day
−1 . In India, the recovery rate of 

infected individuals is more than 90%, therefore, we have estimated τ = 0.9 . The remaining model parameters 
values are estimated by data fitting and are given as α = 0.2 , σ = 0.45 , φ = 0.9.

To numerically simulate the model, we are initializing by validating the estimated data for the model. Cor-
respondingly, the predicted number of infectives are compared to the real data of India. In Fig. 3, we can visualize 
the prevalence of COVID-19 infection in India for the time period March/01 to March/25/2021.

The behavior of the equilibrium points is numerically determined corresponding to the parameters value 
estimated in Table 3. Accordingly, the estimated threshold quantity is R0 = 0.698428 which is less than unity 
and the transmission rate is β = 1.12 with the disease-free equilibrium point P0 = (2.51256× 10

8
, 0, 1.0308

×10
9
, 0, 0, 0, 0, 0) . Corresponding to the model, for R0 = 0.698428 two endemic equilibrium points come into 

existence. The point P1 = (4.91813× 10
8
, 1.67406× 10

6
, 7.56626× 10

8
, 123, 987, 813, 57.6, 4.45657× 10

6
,

345, 741, 3.86364× 10
6) is an unstable endemic equilibrium point, whereas, the endemic equilibrium point 

P2 = (3.19754× 10
8
,4.72041×10

7
, 1.4516×10

7
, 3.49611×10

6
, 2.29408×10

6
, 1.25664×10

8
, 9.74901×10

6
, 1.08945×10

8) 
is stable. For the above initial conditions, if R0 = 0.698428 < 1 the solution trajectories approach to the endemic 
equilibrium point P2 which justifies its local asymptotic stability and can be visualized in Fig. 4.

From the Fig. 5, for R0 with less than unity if the initial conditions for the susceptibles and vaccinated indi-
viduals changes to 5× 108 and 7.5× 108 , respectively, then the number of susceptibles and vaccinated individuals 
approach towards their respective components of the disease-free equilibrium point, whereas, the solution trajec-
tories corresponding to all other classes approach towards zero in approximately 3000 days. Thus, it is observed 
that only the precautionary measures such as using the face masks and isolation of infectives are not sufficient 
enough to eradicate the disease from the population even when the reproduction number reduces below the 
unity. Thus, the vaccination rate must be increased especially for the individuals that are suffering from other 
immune based comorbidities and health care workers that reduces the reproduction number below unity and 
aid to eradicate the COVID-19 disease from the population.

Figure 3.  Graph illustrating the validation of model system to the real data of India for the time interval 
March/01-March/25/2021: Red dots and Green solid line depict the real data and predicted trajectory, 
respectively, for the model system (2).
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If the transmission rate β reaches to 1.7, the threshold quantity will be R0 = 1.06011 > 1 ,  
then the unique point P∗ = (1.76186× 10

8
, 5.48786× 10

7
, 3.99376× 10

6
, 4.06451× 10

6
, 2.66705× 10

6
, 

1.1334× 10
7
, 1.46094× 10

8
, 1.26657× 10

8) becomes endemic equilibrium point and locally asymptotically 
stable. It can be clearly observed from Fig. 6 that due to rapid increment in the number of infectives the number 
of susceptibles decreases with the higher rate and then starts increasing gradually. Therefore, the number of 
known and unknown recovered individuals keep on increasing with the significant rate.

The COVID-19 vaccines were introduced worldwide several months ago. However, according to the World 
Health Organization it will be earlier to determine the curability from COVID-19 infection. Since, the efficacy 
of COVID-19 vaccine appear to be high yet no vaccine has been introduced to provide 100% protection. As a 
result, there may be a small percentage of people who do not develop protection as expected after the introduc-
tion COVID-19 vaccination. In addition to the vaccine’s specific characteristics, several factors such as a person’s 
age, the underlying health conditions or previous exposure to COVID-19 may have an impact on the vaccine’s 
effectiveness. The vaccine’s effectiveness can also be affected by prevention measures taken by the vaccinated 
individuals. A vaccine can be effective when there is a strong and healthy immune system, however, alcohol is 
believed to suppress the immune functioning during the vaccination time. Thus, it is advisable by the health 
care authorities for the vaccinated individuals to avoid the consumption of alcohol for at least 45 days after the 
vaccination. Also, the vaccinated individuals must follow all the precautionary measures as followed previously 
such as social distancing, wearing masks and avoid large gatherings. Since, all such precautionary measures play 
a vital role in increasing the effectiveness of vaccine. By keeping all these practices in concern, Fig. 7 shows the 
level of efficacy of vaccination on the infected and vaccinated individuals by varying the value of ε from 0.01 to 
0.9. From Fig. 7(a), it can be observed that infectives start decreasing if the efficacy of vaccination increases. How-
ever, the number of vaccinated individuals increases if the efficacy of vaccination increases. From the Fig. 7(a), 
(b), it can be visualized that it is necessary for everyone who have received the COVID-19 vaccine to follow the 
appropriate COVID-19 precautionary measures such as mask wearing, hand sanitization social distancing and 
work from home to increase the vaccination process more effective.

Analysis of optimal controls. Now we shall carry out the numerical simulations to demonstrate 
the impact of optimal controls on the dynamics of COVID-19 by considering the parameters value 
as given in Table  3. As of March/25/2021, the number of actively infected cases in India were around 
422, 592 , whereas the recovered population has reached 11, 292, 83815. In view of this the initial condi-
tions are chosen as S(0) = 1, 300, 000, 000, E(0) = 700, 000, V(0) = 55, 504, 440, I

I
(0) = 380, 333, I

h
(0) = 42, 259,

R
u
(0) = 8, 000, 000 and R

k
(0) = 11, 292, 838.

The optimal control profiles have been numerically interpreted for the time interval March/25/2021 to 
April/25/2021, therefore, the final time has been set to tf = 30 days. The fourth order Runge-Kutta iterative 
scheme is used to estimate the results, beginning with the initial guess for the control variables over the interval 
[0, tf ] . To numerically solve the system, we solve the state equations satisfying

dx

dt
= −

∂H

∂�i

Figure 4.  Graphs depicting the stability of the equilibrium point P2 = (3.19754× 10
8
, 4.72041× 10

7
,

1.4516× 10
7
, 3.49611× 10

6
, 2.29408× 10

6
, 1.25664× 10

8
, 9.74901× 10

6
, 1.08945× 10

8) for R0 = 0.698428 < 1.
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together with the adjoint equations given by (18) and the control characterizations determined by equation (20). 
The state variables are computed by solving the system of state equations using the forward fourth order Runge-
Kutta scheme. The adjoint equations are then numerically solved by applying backward Runge-Kutta technique 
with the given transversality conditions. The process continues and the control variables are updated at each 
iteration by substituting the new values of state and adjoint variables until the convergence occurs.

The balancing constants justifying the level of importance of one type of intervention over the other are 
chosen as W1 = 1, W2 = 0.7, W3 = 0.3 and W4 = 0.5 . The cost coefficients corresponding to the individual 
vaccination and intensive treatment are considered as B1 = 250, B2 = 250, B3 = 250 and B4 = 1000 , indicat-
ing that the treatment cost for COVID-19 is very high as compared to the cost of vaccination. According to the 
parameters value given in Table 3 and the above mentioned initial conditions, the graph of control profiles is 
shown in Fig. 8. Using the control mechanism the solution trajectories that are formed corresponding to the 
model system (2) with and without optimal controls, can be visualized in Fig. 9. It can be seen from Fig. 9, the 
proposed optimal combination of both vaccination and treatment of COVID-19 infectives is proved to be very 
effective in reducing the infection prevalence and the financial burden on the government and individuals.

From the representation of control profiles (see Fig. 8), it can be observed that to reduce the infection preva-
lence, vaccination of individuals exposed to COVID-19 is required with full intensity, whereas the vaccination 
of undetected infectives with COVID-19 must be provided with its full intensity by the first 27 days and may 
decrease gradually to control the cost of vaccination. On the other hand, as our aim is to reduce the vaccination 
cost along with the infectives, it is optimal to provide vaccination to the susceptibles only for the initial days 
with its full intensity as they must have natural immunity in their body to fight against the coronavirus. Then 
the intensity should be decreased gradually to keep the cost as low as possible. However, since individuals under 
the treatment in hospitals may also infect other health care employees, therefore, only a few number of severely 
infected individuals who require intensive care needs to be provided the health care facilities in the hospitals 
and others must be stayed under the self-isolation or isolation centers established by the health care authorities. 
The treatment profile indicates that the treatment is required with its full intensity for the initial 4−5 days, after 

Figure 5.  Graphs depicting the stability of the equilibrium point P0 = (2.51256× 10
8
, 0, 1.0308× 10

9
, 0, 0, 0, 0, 0) 

for R0 = 0.698428 < 1.
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which the treatment intensity should be decreased slowly till the end of 30 days. However, the treatment will not 
be provided with its full intensity till the end of study period as the COVID-19 treatment cost (including ICU and 
ventilator cost) is relatively expensive to the vaccination cost and health care workers are also prone to acquire 
infection due to overcrowding of infectives in hospitals. Thus, the optimal treatment strategy is to provide vac-
cination with higher intensity specifically to the individuals suffering from other immune based comorbidities 
and exposed individuals till the end of study period and reduce the treatment intensity gradually with respect 
to time by motivating infectives towards the self-isolation.

Figure 9, illustrates the behavior of solution trajectories with and without optimal controls (for the fixed value 
of u1 = 0.00016, u2 = 0.00005, u3 = 0.00005 and u4 = 0.3 ). From Fig. 9(a), it can be observed that susceptibles 
decrease significantly when the vaccination is applied at an optimal level and move to the class of vaccinated 
individuals which increases the population level in the vaccination class as can be seen in Fig. 9(c). From Fig. 9(b), 
we can observe that the number of exposed individuals increases at a higher rate when vaccination is not provided 
with its full intensity. Figure 9(d) shows a remarkable decrease in the class of undetected individuals when vac-
cination is applied at an optimal level. Thus, increasing the vaccination rate is very important to control the spread 
of coronavirus(COVID-19) infection from undetected infectives, which is a main cause behind community 
transmission. Also, Fig. 9(e) shows that the number of infectives in isolation centers decreases significantly when 
optimal control strategies are applied as compared to the case when vaccination and treatment are not applied 
at an optimal level. This may happen due to the fact that isolated infectives are getting hospitalized at an optimal 
level in comparison to the case when optimal strategies are not applied. Whereas, the number of individuals 
taking intensive care in hospitals show a remarkable improvement for initial few days when the treatment is 

Figure 6.  Graphs illustrating the COVID-19 infection prevalence together with the local stability of the endemic 
equilibrium point P∗ = (1.76186×10

8
, 5.48786×10

7
, 3.99376×10

6
, 4.06451×10

6
, 2.66705×10

6
, 1.1334×10

7
, 

1.46094× 10
8
, 1.26657× 10

8) when the corresponding reproduction number for COVID-19 is greater than 
unity.

Figure 7.  Graphs illustrating the influence of the efficacy of vaccination among individuals. The graphs are 
plotted by varying the value of ε from 0.01 to 0.9 for; (a) Total infectives (b) Vaccinated individuals.
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given at an optimal level (Fig. 9f). The hospitalized infectives start decreasing by the end of the study period as 
improvement in the vaccination rate decreases the number of infectives, and hence the number of hospitalized 
individuals. Figure 10 displays the dynamics of COVID induced deaths in both the cases, that is, with and without 
optimal control. It can be clearly observed that the number of COVID induced deaths is increasing till the end 
of 30 days when optimal controls are not applied. However, the number of COVID induced deaths is decreas-
ing significantly when all the controls are applied as compared to the case when no optimal control is applied.

Thus, it can be concluded that to attain the maximum reduction in the infection prevalence, efforts in the 
direction of increasing the intensity of vaccination and treatment measures such as sufficient number of beds in 
hospitals, ventilator facilities and proper care must be done.

Discussion and conclusion
The novel coronavirus(COVID-19) has become a destructive cause for both human health and economy across 
the world. It has already affected over 215 countries all over the world majorly to USA, Brazil and India. India 
has haphazardly faced the second wave of COVID-19 disease causing the deaths of more than 421 thousands 
infected people. As reported by the World Health Organization, no complete cure has been introduced yet against 
the COVID-19 infection. Also, many non-pharmaceutical precautionary measures such as wearing masks, body 
sanitization, social distancing and isolation of infectives are taken into consideration but are not proved to be 
very effective in reducing the transmission of COVID-19 infection. Hence, more than 12 million individuals 
have been infected from COVID-19 disease. To reduce the infection prevalence, combined efforts towards the 
vaccination of the population from COVID-19 and the treatment of infectives are required.

This paper is focused on a deterministic COVID-19 model by incorporating the vaccination for exposed, 
infected individuals and the treatment for COVID-19 infectives. Onto the model, the optimal control strategies 
are applied by introducing the time dependent parameters to optimize the number of infectives while keeping the 
cost of vaccination and treatment as low as possible. In the model, the vaccination is applied on three classes of 
population, that is, susceptibles, exposed and undetected infectives to eradicate the disease from the population. 
To analyze the dynamics of this model, the basic reproduction number R0 has been computed. For the threshold 
quantity R0 , the effect of parameters on R0 is determined on the basis of sensitivity index. From the sensitivity 
index, it is observed that the transmission rate and the efficacy of vaccination are the most influencing parameters 
in controlling the spread of the disease. The disease-free equilibrium point and the endemic equilibrium point 
has been computed to determine the state in which the disease can be eradicated or becomes endemic in the 
population. Corresponding to the constant values of the parameters, the model has been numerically simulated 
to justify the behaviour of the solution trajectories in the neighborhood of the equilibrium points and the role 
of vaccination in controlling the spread of COVID-19 infection. Numerical simulations indicate that when the 
reproduction number is greater than unity, a unique endemic equilibrium point exists which is locally asymptoti-
cally stable. For R0 > 1 , the unstable disease free equilibrium point exists. This justifies, if the threshold quantity 
crosses unity then the disease will spread drastically into the population. On the other hand, if R0 < 1 then two 
different endemic equilibrium points exist out of which one is locally asymptotically stable. Simultaneously, a 
locally asymptotically stable disease-free equilibrium point comes into existence. For the threshold quantity 
less than unity, the existence of COVID-19 endemic equilibrium points justify that it is not sufficient enough to 
reduce the reproduction number below one in order to eradicate the disease from the population, but the vac-
cination also plays a crucial role in reducing the spread of COVID-19 infection.

Figure 8.  Illustration of optimal control profiles u∗
1
(t), u∗

2
(t), u∗

3
(t) and u∗

4
(t) for B1 = B2 = B3 = 250 and 

B4 = 1000.
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It has also been observed that after receiving the vaccination against COVID-19, vaccinated individuals still 
need to follow all the non-medicinal precautionary measures mentioned by the health care authorities such as 
proper hygiene, mask wearing, social distancing, breathing etiquette and avoid the intake of alcohol to increase 
the efficacy of vaccination, and hence decreasing the level of infection. The impact of optimal control interven-
tions has also been observed in the numerical simulations to control the spread of COVID-19 disease. It has 
been observed that individuals exposed to COVID-19 and undetected infectives require the vaccination with 

Figure 9.  Graphs illustrating the solution trajectories against time (days) from March/25/2021 to April/25/2021 
with and without optimal controls u∗
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its full intensity while the vaccination rate can be reduced for the susceptibles in order to reduce the financial 
burden on government and individuals. To reduce the number of infectives and increase the number of recov-
ered individuals, the detected infectives must be encouraged to remain under isolation and may not transfer 
to the hospitals for treatment until they require intensive care. Accordingly, the risk of infection for the health 
care employees and the cost of intensive care treatment will remain under the control. The combination of all 
the optimal control strategies together provides a remarkable decrease in the number of exposed and infected 
individuals along with the COVID induced deaths with an increment in the number of vaccinated individuals.

Thus, it can be concluded that the transmission of COVID-19 disease can be controlled while minimizing the 
cost of vaccination and treatment provided the vaccination rate increases significantly and all the vaccinated and 
unvaccinated individuals people must follow all the non-pharmaceutical precautionary measures as mentioned 
by the health care authorities. The success of optimal control strategies mainly rely on the proper implementation 
of government policies by infectives and proper management by the health care authorities.
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