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ABSTRACT

In absence of p-lactam antibiotics, Blal and Mecl
homodimeric repressors negatively control the
expression of genes involved in p-lactam resistance
in Bacillus licheniformis and in Staphylococcus
aureus. Subsequently to p-lactam presence, Blal/
Mecl is inactivated by a single-point proteolysis that
separates its N-terminal DNA-binding domain to its
C-terminal domain responsible for its dimerization.
Concomitantly to this proteolysis, the truncated
repressor acquires a low affinity for its DNA target
that explains the expression of the structural gene
for resistance. To understand the loss of the high
DNA affinity of the truncated repressor, we have
determined the different dissociation constants
of the system and solved the solution structure
of the B. licheniformis monomeric repressor com-
plexed to the semi-operating sequence OP, of blaP
(1/20P,blaP) by using a de novo docking approach
based on inter-molecular nuclear Overhauser
effects and chemical-shift differences measured
on each macromolecular partner. Although the
N-terminal domain of the repressor is not subject
to internal structural rearrangements upon
DNA binding, the molecules adopt a tertiary
conformation different from the crystallographic
operator-repressor dimer complex, leading to a
30° rotation of the monomer with respect to a
central axis extended across the DNA.

These results open new insights for the repression
and induction mechanisms of bacterial resistance to
p-lactams.

INTRODUCTION

The Bacillus licheniformis Blal protein (BLBlal, 128 amino
acids) is a transcriptional repressor of the BlaP
B-lactamase. This enzyme is a specific hydrolase of
B-lactam antibiotics, induced in response to the presence
of this class of antibiotic outside the cell (1). BLBIal is
homologous to Staphylococcus aureus Blal (SABlal, 126
amino acids) and Mecl (SAMecl, 123 amino acids)
regulators involved in the induction of BlaZ B-lactamase
and resistant penicillin-binding protein 2a (SAPBP2a or
SAMecA), respectively (2). BlaZ B-lactamase and resistant
PBP2a are the main factors involved in staphylococcal
B-lactam antibiotic resistance. The Blal/Mecl repressors
are organized in two domains, an N-terminal domain
(NTD) for DNA binding and a C-terminal domain (CTD)
for repressor dimerization (3). The crystallographic 3D
structures of SABIlal and SAMecl dimers in free and in
complex with their DNA operators have been determined
(4-6) and the 3D structure of BLBlal N-terminal DNA-
binding domain has been determined by heteronuclear
nuclear magnetic resonance (NMR) spectroscopy (7). For
the three repressors, the Blal/MecI-NTD share a common
fold composed of three a-helices and three B-strands
typical of the winged helix regulator proteins. The SABIal/
SAMecl structures highlight dimers of two independent
N-terminal DNA-binding domains and two intertwined
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Figure 1. Dimeric interaction of the Blal/Mecl repressor with its DNA operator. (A) Representation of the S. aureus dimeric Mecl repressor (ribbon)
in interaction with the bla operator (PBD ID 1SAX). C-terminus of Mecl (dimerisation domain) is colored in pink and N-terminus (DNA binding
domain) in blue. (B) Representation of the two potential parallels pathways represented for the B. licheniformis Blal repressor with the bla operating

sequence.

C-terminal  dimerization  domains  (Figure 1A).
The Blal/Mecl repressors bind specifically to similar
nucleic sequences composed of an imperfect dyad
symmetry (24 to 30bp) containing a central conserved
palindrome: 5-TACANNTGTA-3 (8) (nucleotide one-
letter code; N for any nucleotide). The study of BLBlal
dimerization and its interaction with its bla operator
(BLOPbla) has shown that, at a concentration below the
dissociation constant of BLBlal dimer ([BLBlal] <25 uM),
the binding of one BLBlal monomer to its operator leads
to the binding of the second monomer with an infinite
cooperativity (9). In this way, it has proved impossible to
isolate a BLBlal monomer bound to its DNA operator
(Figure 1B). In addition, for the same repressor, it has
been shown that the BLBlal-NTD obtained by papain
proteolysis retains its capacity to bind BLOPM/a.
However, its affinity for its DNA target becomes at least
500 to 1000 times lower as determined by DNAsel
footprinting experiments (3).

In S. aureus and B. licheniformis, the genes encoding for
B-lactam resistance (blaZ, blaP and mecA) form a
divergon with the blal/blaRl and mecl/mecRI1 operons,
respectively (10,11). blaR1/mecRI1 encodes a penicillin
receptor essential for the induction of the gene of
resistance. The bla/mec operators are located in the
intergenic DNA sequence between the blaP/blaZ|mecA
gene and the blal/mecl-blaR1/mecR1 operon. In presence
of B-lactam antibiotics, the BlaR1/MecR1 receptor is
acylated. The resulting activated receptor launches a
cytoplasmic signal which inactivates Blal/Mecl repressor.

In S. aureus, the SABIal inactivation is achieved by the
proteolysis of the peptide bond linking residues 101 and
102, giving rise to SABIal-NTD dissociated from SABIal-
CTD (12). The truncated SABIal-NTD is a monomer,
presents a lower affinity for its DNA operator and is
released into the cytoplasm. For BLBIal repressor, the

presence of a coactivator (13) generated by the activation of
the BlaR1 repressor has been postulated. The binding of
the coactivator to BLBIal would then result in a decreased
affinity of BLBIal repressor for its DNA target (14).

To better understand the mechanisms of the binding
of the Blal/Mecl repressors on the DNA, and their
inactivation during the induction of BlaP/BlaZ/MecA
proteins, we solved the solution structure of the low
affinity BLBIlal-NTD/1/20PblaP complex ([BLBlal-
NTD]/[1/20PblaP]). The dissociation constants of the
SAMecl in complex with the B. licheniformis operator OP,
of blaP (OPyblaP) and in complex with the S. aureus
operators of blaZ (OPblaZ) and mecA (OPmecA) have
been determined. NMR spectroscopy allowed us to
estimate the dissociation constants of the SAMecl-NTD
and BLBIal-NTD for the semi-operating sequence of the
B. licheniformis blaP gene OP; (1/20PblaP) and for the
semi-operating sequence of the S. aureus mecA gene
(1/20PmecA).

MATERIALS AND METHODS
Sample preparation

The pET22b was used as vector for the overproduction
of the His-tagged SAMecl protein (SAMecl-His6).
The SAMecl coding sequence was amplified by PCR
from the S. aureus ATCC 43300 genomic DNA using
Taq polymerase (Promega) and the following oligonucleo-
tides as primers: 5-GAG-CAT-ATG-GAT-AAT-AAA-
ACG-TAT-GAA-ATA-TCA-TC-3' and 5-CTC-GAG-
TTT-ATT-CAA-TAT-ATT-TCT-CAA-TTC-TTC-TA-3’
purchased from EUROGENTEC, S.A., Belgium (http://
eurogentec.com). The fragment generated corresponds
to the SAMecl coding sequence within the restriction
sites for Ndel and Xhol and was cloned into the pCR4
TOPO (Invitrogen) vector to generate the pCR4-mecl.
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The identity of the sequence was verified before the
pCR4-mecl was digested with Ndel and Xhol enzymes and
cloned into the pET22b to generate the pCIP451 which
contains the Mecl coding sequence with a polyhistidine
tag at its carboxy-terminal end.

SAMecl-His6 samples were overexpressed in E. coli
strain BL21(DE3). For the production of uniformly
N-labeled samples, Luria-Bertani medium was replaced
bsy a M9 minimal medium supplemented with 1.1 g/l
>NH,CI, 2mM MgSO,, 0.1 mM CaCl, and 2 g/l glucose.
Cells were grown at 37°C to a 600 nm absorbance of 0.6
and 0.5mM IPTG was added for a 3-h induction period.
Cells were then harvested by centrifugation, re-suspended
in buffer A (20 mM NaH,PO,4/Na,HPO, buffer, 500 mM
NaCl, pH 7.6) and disrupted by passage through an
Inceltech disintegrator. The soluble fraction was separated
by centrifugation at 40000g and loaded onto a NiPDC
chelating column (2.6 x 10cm?, Affliland) charged with
50mM NiSO4 and equilibrated with buffer A. The
SAMecl-His6 protein was eluted by a gradient of buffer
B (250 mM imidazole, 500 mM NacCl, pH 8). The protein
was dialyzed against buffer A and concentrated. The final
yields of labeled and unlabeled purified protein were
respectively 9 and 15mg/l of cell culture. The isotopic
labeling of 95% was determined by mass spectrometry.

The uniformly '>C/'’N-labeled BLBlal sample was
prepared as described in Van Melckebeke et al. (7). The
SAMecl-NTD protein was dialyzed into a 75mM
NaH,PO,/Na,HPO, buffer, 200mM KCI, 1 mM EDTA,
I mM NaN;, pH 7.6 and was concentrated to 0.5 mM by
ultrafiltration through a 5kDa cut-off Amicon for further
NMR analysis.

Unlabeled single-stranded DNA samples of NMR
quality were chemically synthesized and purified by
EUROGENTEC, S.A., Belgium (http://eurogentec.com).
Freeze-dried samples were suspended in the buffers used
for interaction studies. Single-stranded DNA were mixed
in a 1:1 ratio, subsequently heated to 100°C and slowly
cooled down at room temperature, in order to improve
intermolecular arrangements. The mecA semi-operator
sequence [5-ATA-AGA-CTA-CAT-3 and complemen-
tary strand 5-ATG-TAG-TCT-TAT-3'] was designed
according to previous papers results (7) and obtained at
a 9mM final concentration in 75mM NaH,PO,/
Na,HPO, buffer, 200mM KCI, 1mM EDTA, 1mM
NaNj, pH 7.6. The OPblaP half-dyad [5-AAA-GTA-
TTA-CAT-3 and 5-ATG-TAA-TAC-TTT-3'] was
selected using former interaction results with BLBIal-
NTD and obtained at a 23 mM final concentration.

NMR spectroscopy

NMR experiments were performed on Varian Inova 600
and Inova 800 sPectrometers, both equipped with a triple-
resonance ('H, "*C, '>N) probe and shielded z-gradients.
Furthermore, the Varian Inova 800 MHz spectrometer is
equipped with a cooled probe. The temperature was set to
298 K. Proton chemical shifts were referenced with respect
to an external DSS calibration. *C and "N chemical
shifts were accordingly referenced indirectly using the
"H/X following ratios: 0.251449530 ('*C) and 0.101329118

Table 1. Oligonucleotides used in band-shift assays

Operators Oligonucleotide sequences

B. lichen. 5'CY5-AAA GTA TTA CAT ATG TAA GAT TTA-3'
OP;blaP 3-TTT CAT AAT GTA TAC TTA CTA AAT-Y

S. aureus S'CYS5-TAA AAA TTA CAA CTG TAA TAT CGG-3’
OPblaZ 3-ATT TTT AAT GTT GAC ATT ATA GCC-¥

S. aureus S'CY5-ATA AGA CTA CAT TTG TAG TAT ATT-3¥
OPmecA 3-TAT TCT GAT GTA AAC ATC ATA TAA-5

The nucleotide sequences correspond to the blaP operator from
B.lichen. (12), the blaZ and the mecA operators form S. aureus.
Numbering used in this study for B. licheniformis BlaP start from the 5
end (Al, A2, A3,...). The complementary strand is noted with a star
(T1*, T2* T3,...) and numbering starts from 3’ end.

("°N). All experiments used the pulse sequences provided
by the Varian Protein Pack (http://varianinc.com). Data
processing and peak intensity measurements were per-
formed using the NMRPipe program. Peak picking and
spectra display were achieved using the NMRView
software.

Affinity measurements

Electrophoretic mobility shift assays were carried out
using an ALFexpress DNA sequencer as described in the
literature (11). The CY5-labeled fluorescent double-
stranded oligonucleotides used in these experiments are
listed in Table 1 (15,16).

For NMR interaction studies, 'H-'>N HSQC spectra
were collected along the titration of SAMecl and the
BLBIal truncated repressors with the 12 bp DNA. To limit
dilution and favor sensitivity, low volumes of highly
concentrated half-operators of mecA4 and blaP genes were
added to each protein sample. '’N-labeled SAMecI-NTD
and BLBIal-NTD samples concentrations were set to
0.1 mM. Titration exsperiments led on '"N-labeled Mecl-
NTD (respectively '*N-labeled BLBIaI-NTD) with both
unlabeled mecA and blaP semi-operating sequences were
performed in a 75mM (respectively 50 mM) NaH,PO,/
Na,HPO, buffer with 200mM KCI, I mM EDTA, 1 mM
NaNj3 and 10% of D,O at a controlled pH of 7.6.

Data analysis and Kd calculation were performed with
the titration script developed for the NMR View software
(17). In each case, curves fitting were displayed by the
Xmgrace software (http://plasma-gate.weizmann.ac.il/
Grace/).

NMR structural restraints

"H, 13C and "N assignment of the free BLBlaI-NTD
protein has been previously reported and deposited in the
BMRB (accession number 5873). Resonance assignment
of the unlabeled 12bp DNA of the OP;blaP semi-
operating sequence was performed on a 1 mM sample in
50mM of NaH,PO4/Na,HPO,, 200mM KCI, 1mM
EDTA, 1mM NaNj;, pH 7.6 in 90%:10% H,0:D,0. A
TOCSY spectrum with 80 ms mixing time and a NOESY
spectrum with 150 ms mixing time were recorded on that
sample. "H-"H NOESY was also collected in 100% D,O
with 150 ms mixing time. A classical homonuclear DNA



assignment strategy was used (18). Due to the large
number of overlap in Hy and Hs'/Hs" regions, assignment
and chemical-shift mapping were restricted to H,’, H,',
Hy', Hs and Hg/Hg resonances. For the 12 bp 1/20P,blaP
assignment in the complex, we reiterated the procedure
used for the free DNA but using only a 2D filtered
NOESY experiment recorded on the ['*C-'"N BLBIal-
NTD]/[1/20P,blaP] sample diluted in 100% *H,O. The
experiment was recorded on the 800 MHz spectrometer
with a mixing time of 150 ms.

For the ;BLBlaI-NTD]/[l J20PblaP] complex, the
"H, '*C and "°N protein resonances were not re-assigned
ab initio. Assignment of the protein in complex was
obtained by comparison of 'H-*C HSQC and a
'"H->’N  HSQC of the free and bound forms.
Experiments were recorded with 2mM samples and a
[3C-">N BLBIal-NTD]/[1/20P;blaP] molar ratio of 1 in
100% D->0O and in 90% H,0. To confirm this assignment,
a 3D HC(C)H-TOCSY experiment was also recorded on
the complex. The weak dependence of '*C chemical shifts
to long distances variation and then to the complex
formation has permitted to verify each corresponding
residue assignment.

In order to obtain inter-molecular NOE restraints
between the two partners of the [BLBlal-NTD]/[1/
20PblaP] complex, we collected isotopically doubly
filtered 2D and 3D '*C/'>N NOESY HSQC with mixing
times set to 150 ms. A protein chemical-shift mapping was
obtained by comparison of 'H-'""N HSQC, methyl-
selective '*C HSQC and '*C HSQC optimized for
aromatics recorded on the free and bound forms of the
protein. A chemical-shift mapping for the blaP half-
operator was obtained by comparison of the 'H-'H
NOESY recorded on the free DNA and the 2D filtered
NOESY experiment recorded on the 1/1 ['°C-'°N BLBIal-
NTD]/[1/20P,blaP] sample.

Docking procedure

Determination of the structure of molecular complexes
from sparse NMR data is a difficult task, requiring the
integration of local and long-range molecular plasticity
(19). In order to allow the maximum available degrees of
freedom we have determined the quaternary architecture
of the Blal repressor/DNA operator complex using a
de novo approach starting from randomized coordinates.
Experimental NOE collected on the '’N-'*C BLBIlaI-NTD
free protein were used to fold the bound polypeptide (7).
The use of these constraints is based on the observation
that few chemical shifts change between the bound and
free forms, showing that the fold of the two proteins is
essentially the same. The 12 bp operator was constrained
using distance restraints extracted from a canonical
double-strand DNA. B-DNA standard angles (o, B, 9, 7,
g, {, , v0, vl, v2) were also included for each nucleotide
to facilitate the DNA helix fitting.

Distances restraints extracted from intermolecular NOE
were defined at 5 A (one DNA proton correlated with one
protein resonance). A thirdly set of structural data was
introduced using chemical-shift mapping performed on
the two molecules. Chemical-shift-derived distance
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restraints were created by combining ‘significant” chemi-
cal-shifts wvariations identified on the polynucleotide
"H-"H NOESY with shifted residues in '’N-HSQC and
13C-methyl-selective-HSQC spectra, and including these
constraints in an ambiguous manner (20,21). Distances
inferred from these distance restraints were fixed at 10 A in
the docking simulation.

All calculations were performed using the program
Discover with the AMBER4 force field (22). Simulated
annealing was used to explore the conformational
space for the structure determination and a restrained
molecular dynamics calculation was used to refine each
structure (23). Detailed initial conditions and physical
characteristics of exploratory period have been reported
previously (24).

RESULTS
Interaction between SAMecl and the DNA operators

The binding curves of SAMecl to its operator, OPmecA,
and to the two P-lactamase operators, OP;blaP and
OPblaz, have been determined by band-shift assay. All
show sigmoidal-binding curves as previously described for
the interaction of BLBIal repressor with its operators (9).
So, as for BLBIal, the binding parameters of SAMecl
interaction include two equilibria and only the global
dissociation constant Kd = Kd;. Kd, can be obtained,
where Kd; and Kd, are the dissociation constants of
SAMecl dimer and SAMecl dimer-operator complex,
respectively (Table 2).

NMR titration of truncated monomeric NTD with cognate
and crossed semi-operators

Titration of 'N-labeled BLBlal or SAMecl truncated
repressor with progressive amounts of unlabeled DNA
half-dyads was performed by monitoring changes in
"H-'N HSQC spectra. Significant chemical-shift changes
for correlation peaks in the 'H-'>N HSQC spectra were
observed when the 1/20PhlaP and the 1/20PmecA
were added to protein samples. [DNA]/[Protein] molar
ratios were varied from 0 to 10 for [BLBlal-NTD]/[1/
20PblaP], [BLBIlal-NTD]/[1/20PmecA],  [SAMecl-
NTD]/[1/20PmecA] and from 0 to 50 for [SAMecl-
NTD]/[1/20PblaP]. The chemical-shift changes observed
upon complexes formation reached a plateau over 7
[DNA]/[protein] molar ratios for [BLBIal-NTD]/[1/
20P;blaP], [BLBIal-NTD]/[1/20PmecA], [SAMecl-
NTD]/[1/20PmecA] and a plateau over 30 for [SAMecl-
NTD]/[1/20P,blaP] (Figure 2). These results confirm the
formation of stable intermolecular interactions with

Table 2. Equilibrium parameters of the Mecl-operator interactions

Kd (107" M?) Kdy(M)
OPmecA 1.7+0.4 6.8 x 1071
OPblaZ 1.4+0.7 5.6x 1071
OP,blaP 442 1.6 x1071°

The values of Kd, (Kd = Kd;.Kd,) were estimated by supposing that
the value of Kd; = 25uM estimated for B. licheniformis Blal dimer is
the same for S. aureus Mecl.
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saturating DNA quantities. At any point during the
titration, specific single correlation peaks were detected,
suggesting that the truncated monomeric repressors/semi-
operators complexes are in fast exchange regarding the
NMR time scale. Only well-resolved correlation peaks
with a chemical-shift cut-off equal or superior to 0.03 ppm
were used in the four experiments. The affinity constants
were calculated from a non-linear fit of the significant
chemical-shift variations versus [DNA]/[protein] ratio
using equation given by Morton et al. (25). Titration
data were analyzed assuming that the observed chemical-
shift perturbation is a weighted average between the two
extreme values corresponding to the free (Ad = 0) and the
bound state (Ad = Adyax) SO that:
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where [Op]y and [I]y are the total molar concentrations of
DNA operator and protein. Statistical analysis using
Monte-Carlo simulations were used to evaluate the
uncertainty of the fitted parameters.

Semi-operating sequences of the blaP and mecA genes
titration curves of selected individual amino acid residues
resulted in averaged binding constants of 190+ 50 uM
(Kd;y), 170£50uM (Kd,) and 160+ 60uM for the
[BLBlal-NTD]/[1/20P,blaP], the [BLBlalI-NTD]/
[1/20PmecA] and the [SAMecI-NTD]/[1/20PmecA] com-
plexes, respectively (Figure 2). For [SAMecl-NTD]/
[1/20PblaP], the measured affinity constant reaches
860 + 80 uM (Kds).

NMR structural determination

Considering the low affinity constant measured pre-
viously, we decided to investigate the solution structure
of the [BLBIal-NTD]/[1/20PblaP] complex using a
sparse data approach. Structure prediction using a dock-
ing approach remains difficult because of the number and
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Figure 2. Determination of dissociation constants using chemical shift titration obtained by NMR. Weighted sum of the 'H,'°N chemical shift
variation measured for the protein on ""N-HSQC is plotted as a function of the DNA /protein ratio for the different complexes. (A) B. licheniformis
Blal-NTD with the B. licheniformis 1/2-operator of the blaP gene and (B) with the S. aureus 1/2-operator of the mecA gene, (C) S. aureus MecI-NTD
with the 1/2-operator of the mecA gene and (D) with the B. licheniformis 1/2-operator of the hlaP gene. By fitting the curves, the different dissociation
constants Kd were obtained: Kd; [BLBIal-NTD][1/20PblaP] = 190+ 50 uM, Kd, [BLBIlal-NTD][1/20PmecA] = 170 +50uM, Kd; [SAMecl-

NTD][1/20PblaP] = 860 80 uM and Kd, [SAMecl-NTD][1/20PmecA] =

160 £ 60 pM.



the variety of parameters that should be taken into
account. Recent advances in the field (21) take advantage
of structural restraints from experimental interaction data
(biochemical and/or biophysical) to determine the relative
position of the molecular partners. Such approaches have
also been applied to the determination of the quaternary
structure of protein/DNA complexes (26). Our de novo
docking protocol has been performed as follows.

To investigate the structure of the complex between the
13C/"*N-labeled BLBIlal protein with the unlabeled blaP
semi-operating sequence, we collected two filtered
NOESY experiments. The 2D isotopically filtered
NOESY performed in *H,O allowed us to observe three
NOE. To verify these constraints, we collected an
additional 3D NOESY '*C HSQC experiment in HO,
resulting in one additional inter-molecular contact. These
four correlations have been assigned ambiguously with a
tolerance value of 0.05 ppm for the protein and 0.03 ppm
for the DNA.

To complement the four NOE distance constraints, a
chemical-shift mapping has been carried out for both
macromolecular partners as follows. For the protein, we
compared 'HY and "N (backbone amide), and 'HE and
13C methyl chemical shifts assigned for the free and bound
form of the molecules, measured in '"HY-'°N and 'H-13C
methyl-selective and aromatic-selective HSQC, respec-
tively. Indeed, methyl group and aromatic chemical-
shifts perturbations were judged to be good additional
probes to precisely localize the interaction site.
Concerning the nucleic acids, only the sugar H,’, H,//
H,”, Hy and the base Hg/Hg protons were used for
chemical-shift mapping due to the overlap problems
observed in the other spectral regions.

The chemical-shifts variations resulting from complex
formation allowed us to make an inventory of each
individual amino acid or nucleotide potentially involved in
the interaction. We only considered chemical variations

Nucleic Acids Research, 2007, Vol. 35, No. 13 4389

larger than O.Slpsprn for the weighted sum of the 'H and
13C, or 'H and "N chemical-shift variations of the protein
with respect to the gyro-magnetic ratios, and larger than
0.09 ppm for the proton chemical-shift variation measured
for the blaP half operator. In both cases, peaks that
disappeared were incorporated in the docking procedure.
For the blaP DNA operator, the majority of perturbations
concerned nucleotides in the vicinity of the TgACA;/
Ag.TGT,;. motif namely the thymines 5, 7, 8 and 6%, 97,
11* on the complementary strand, the adenines 6, 9, 7, 8*
and 12* and the guanines 4 and 10" (nucleotides
nomenclature is described in Table 1 legend). For the
protein, larger perturbations are observed for the N-
terminal part, the H2 and H3 helix and around the wing.

The structure calculation started from random coordi-
nates of the entire system, and used 1513 experimental
intra-molecular NOE of the free form BLBIlal-NTD
protein and simulated distance restraints for a standard
B-helix (613 intra-residue distances and 52 inter-residue
distances). Classical dihedral angles for DNA subunits
were also included, namely, 22 o, 24 B, 23 v, 23 9, 22 €, 22
C, 24 x, 24 v2, 24 vl and 24 v0. The use of experimental
NOE from the free form of the molecule is based on the
lack of drastic shift between 'H-'>N HSQC of the
unbound and the bound protein, indicating that no
significant structural rearrangement occurs. NMR dihe-
dral angles were also calculated using TALOS software
and incorporated in the calculation. Four intermolecular
NOE were associated with 11 and 24 additional ambig-
uous distance restraints proceeding from '*C methyl-
selective HSQC experiments and from >N HSQC spectra,
respectively.

Structure of the complex

Ten lowest energy structures from 250 calculations of the
['*N-'3C BLBIal-NTD]/[1/20P,blaP] have been generated
using a de novo driven docking (Figure 3). As expected, the

Figure 3. Ten lowest energy structures obtained by de novo docking of the Bacillus licheniformis Blal-NTD in interaction with the blaP semi-
operating sequence. (A) Front view and (B) back view of the structure ribbon representation. Root mean square deviation has been calculated to
0.7A for all heavy atoms of the 10 structures. The 12 bp DNA of blaP half operator are shown in orange. H3 helix is inserted into the major groove

and the minor groove is overhung by the wing motif.
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global fold of the NTD repressor domain is not modified
by the complex formation. Pairwise RMSD calculated on
the NTD backbone atoms between the monomeric
complexed BLBIlal structure and free BLBIal-NTD,
SAMecl/OPblaZ and SABIlal/OPblaZ is 1, 1.6 and
1.5A, respectively. The typical structural arrangements
of the WHP family protein is conserved without violations
in the structure calculation file. The three a-helices H1
(9-20), H2 (26-36), H3 (41-54) and the three stranded
B-sheets S1 (23-25), S2 (57-62), S3 (65-70) are packed
following the sequence H1-S1-H2-H3-W1-S2-S3. The
wing motif W1 consists of a short loop (residues 63 and
64). Three-dimensional structures of the free and bound
forms of the BLBIaI-NTD are very close except for the
more dynamic residues located in the N- and C-terminals
extremities of the protein, namely M1 to 14 and Y77 to
S82, respectively. Moreover, it should be noticed that
restricted conformational modification occurred for the
residues of the Wing (G63 and R64) and for few residues
surrounding this motif (E62, V65 and F66).

In the complex, the B-DNA form is conserved in the
final lowest energy structures. The position of the bases is
less well-defined at both ends of the molecule than in the

A

central part, possibly due to a lack of conformational
restraints. Concaveness observed for the complete opera-
tor for SABlal and SAMecl is not observed for the half
operator (Figure 4). However, alignment of our 12bp
operator with the common base of the full Mecl operator
shows a very similar conformation (Figure 4B). The
absence of a detectable kink could be due to the reduced
length of the half-operator used in the NMR study.

To analyze the orientation of the protein relative to the
DNA, we have aligned our structure with the two X-ray
structures of SABlal and SAMecl using a superposition of
the conserved DNA sequence. Compared to the two
crystallographic structures, the relative orientation of the
monomeric protein with respect to the DNA helix shows a
30° rotation along the long axis of the DNA and a
translation of 3 A (Figure 4B). To compare the stability of
the different protein/DNA complexes, analysis of the
protein/DNA interaction using LIGPLOT software (27) is
presented in Table 3. Details of the nominative protein/
DNA contacts observed in our structure are presented in
supplementary Figure S1.

Two helices (H2 and H3), the wing motif and the N-
terminal domain of the B. licheniformis BLBlalI-NTD have

B

Figure 4. Front view of the superposition of the structure of the B. licheniformis BlalI-NTD in interaction with the blaP semi-operating sequence and
the S. aureus Mecl dimer in complex with the blaP operator (1SAX). (A) Alignment of the two complexes using [BLBlal-NTD]/[1/20P,blaP] and one
of the [NTD]/[1/20P] of SAMecl/SAOPmecA. Secondary structures of the monomer BLBlalI-NTD conserved a similar position relative to the major
and minor groove of the DNA. (B) Alignment of the two structures using only the h/laP semi-operating sequence and the corresponding 12 bp DNA
sequence of the SAOPmecA. Monomer BLBIal-NTD has twisted by 30 degrees relative to the sequence of the operator.

Table 3. Number of protein/DNA interactions detected using LIGPLOT software for the different dimeric complexes: S. aureus SAMecl/OPblaZ
(1SAX), S. aureus SABlal/OPblaZ (1SXD), S. aureus SAMecl/OPmecA (2D45) and for our monomeric B. licheniformis [BLBlal-NTD]/[1/20P,blaP]

Secondary structure elements SAMecl (ISAX) SABIlal (IXSD) SAMecl (2D45) BLBIalI-NTD low. ene. BLBIlalI-NTD Ensemble Average

N-TER 2 0 0 1 0.8
HI 1 0 1 1 0.6
H2 1 0 0 3 23
H3 6(3) 2.(1) 6 (3) 4 (3) 6.7 (5.2)
WING 2 0 2 2 1.7
OTHER 0 2 1 5 2.04 (0.4)
TOTAL 12 (3) 4 (1) 10 (3) 16 (3) 14.5 (5.6)

Number of interactions has been obtained for the NMR lowest energy structure. Average values are displayed for the 10 lowest energy structural
ensemble. Values in parentheses correspond to the number of sequence specific H-bonds involving atoms of the DNA bases.



been reported to establish contacts with DNA. In our
structure, the H3 helix (P41-K53) is deeply inserted in the
DNA major groove, whereas the minor groove is close to
the wing motif (G63-R64). For our NMR-based model,
residue R64 of the wing motif (G63-R64) binds to the
3’ end of thymines 3* and 2*. Moreover, interaction is
occasionally propagated for residues surrounding the wing
motif i.e. F66 and H61 which make contacts with A6, T7
and C4*, T3" nucleotides, respectively. In the Mecl/Blal
X-ray structures, the wing amino-acid F67 binds the DNA
backbone in the opposite side to that observed in the
NMR model (A7C and T8C equivalent to position G4
and T5 in our DNA sequence). As a consequence of the
global rotation, contacts of the wing with the DNA are
also rotated with respect to the ‘crystal wing’ position in
SAMecl/OPbla.

The H3 helix residues (P41-K53) contact principally
with nucleotides belonging to the TgACA;/Ts*"GTA "
motif. T43, T46 and R50 privilege interactions with
nucleotides T9*, GI10* and TI1*  respectively.
Furthermore, K54 (and W39) anchors the position of
H3 via interaction with A12* (and G10¥). In this low
affinity complex, Q45 plays a central role, forming
hydrogen bonds network with nucleotides T7 and T8
instead of an interaction with conserved A6-T6* bases as
observed for the SAMecl.

In our structure, H2 helix (T26-T36) also binds to the
DNA via T26 and N27 that interact with A6. This
interaction is well-conserved through different bacterial
strains. E11 of the HI1 helix and residue K3 of the
N-terminal region may reinforce DNA recognition of this
extremity. A parallel could be made with the A1l of the
HI residue of SAMecl which also contacts DNA.

DISCUSSION

Monomer pathway has a significant role in
the repressor—DNA binding

In the past it has been assumed that in B-lactam resistance
regulation system, B. licheniformis 749/1 Blal-WT inter-
acts as a preformed dimer with its operator (15). The
binding constants of the full-length SAMecl and BLBIlal
repressors in interaction with palindromic operating
sequences have been measured in the range of tens of
nanomolar (9). Using chemical-shift mapping, we have
determined affinity constants for the BLBlal and SAMecl
NTD with the different half DNA operators. For all the
complexes, [SAMecl-NTD]/[1/20PmecA], [SAMecl-
NTDJ/[1/20P,blaP], [BLBIlal-NTD]/[1/20PblaP] and
[BLBIaI-NTD]/[1/20PmecA] binding constants are in the
same range of hundreds of micromolar, that is, 100 times
higher than for the dimeric repressors. The relatively low
dimerization constant of 25 pM (9) observed for BLBlal
has suggested that both monomer and dimer pathways
were possible. Now, taking into account our quantitative
values of monomer-DNA dissociation constants and in
vivo concentrations of BLBIal, estimated to 2 uM (9), we
can conclude that the monomer pathway contributes
significantly to the Blal repressor binding mechanisms
in vivo.
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In various Winged HTH dimeric repressor systems, a
similar monomer—dimer equilibrium has been established
(9,28). Two repression systems comparable to Blal are
known: LexA and Rep. The DNA binding constant of
LexA-NTD (29) and Rep-NTD (30) are respectively about
1 and 20 uM, close to values determined for SAMecl-
NTD and BLBIalI-NTD. Moreover, initial assays measur-
ing the dimerization constant of the LexA repressor
(29,31) reported a Kd of about 10-50 uM. The association
constant of the full-length Rep repressor has been
evaluated to 3—5 nM as well. When Rep monomers bind
specific DNA sequences, the CTD is moved away, and
stable repressor-operator contacts can be established.
If the specificity is not high enough, the tail competes
with  DNA and prevents DNA/protein non-specific
associations.

The monomer pathway could provide a method for
rapid localization of the binding site involving sliding of
the protein along the DNA. Theoretical considerations
and experimental evidence of protein sliding along non-
specific  DNA sequences are now well documented
(32-35). This kind of search could combine 1D sliding
with 3D diffusion (36) driven by energetic differences for
specific and non-specific DNA-binding. In our system, the
localization speed of the correct DNA-binding site
depends on the competition of the monomer pathway
with the dimer pathway. Although strong cooperative
effects in monomer association with DNA do not allow us
to experimentally evaluate this process, we note that such
a mechanism could play a role in this system. Monomers
would be able to reach the adapted DNA motif using such
diffusive processes, and this pre-recognition step would
allow a simpler contact between the two CTD. This
intermediate step might be useful for the protein to
establish correct and strong contacts.

Corepression and adaptability

The presence of low affinity constants for the DNA
binding of the monomeric form can be correlated with the
adaptability of the repressors for different operators. For
example, the dimeric LexA repressor tightly binds the
different recA, uvrB, dinC and dinB DNA sequences. In
the case of Blal, the co-repression mechanism of homo-
logous repressors in S. aureus has been demonstrated (37).
The Kd values measured in this work demonstrate that the
BLBIal-NTD protein is able to bind to both cognate and
crossed semi-operators in the same affinity range. Thus, it
suggests that low affinity complex formation might be an
essential intermediate relay in binding variable regulation
sequences.

Contrary to BLBIaI-NTD with mecA half-operator, we
have shown that the affinity for blaP semi-operating
sequence is 10 times reduced for the SAMecl-NTD
repressor. This parameter might corroborate observations
performed on clinical S. aureus isolates (38,39). Indeed, it
has been shown that the majority of oxacillin-resistant
strains contain deleted or mutated mecl genes while blal
sequences remain intact. Thus, in S. aureus clinical
isolates, the exclusive expression of Mecl repressor
appears to be a drawback in stress condition. Indeed, in
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Figure 5. Superposition of the S. aureus Mecl and the monomeric unit of the B. licheniformis Blal repressor. (A) Side view of the dimeric S. aureus
Mecl DNA binding domain (in green and blue) in complex with the bla sequence (PDB ID in orange). The monomeric BLBlal obtained by de novo
docking (in red) has been superimposed to Mecl using only the conserved DNA recognition motif. The B. licheniformis Blal DNA binding domains
(in red) and the arrows point out the 30° rotation which is necessary to superpose the two monomeric Blal-NTD and the two MecI-NTD domains.
(B) Side view of the S. aureus Mecl repressor (ribbon representation) in interaction with the 25 base-pair bla operating sequence. The monomeric
units are shown in different colors (light blue and green). (C) Orientation of the dimeric S. aureus Mecl repressor where each SAMecI-NTD unit has
been superimposed on the [BLBlal-NTD]/[1/20P,blaP] complex. The 30° rotation, described in panel A, to superimpose the SAMecl and the
monomeric BLBIal-NTD creates a complete disruption of the dimerization domains in the case of a complete rigid molecule. This twist can be
considered as a starting point for more complex structural modification following the induction process.

this case, bacteria are unable to respond rapidly. The
Blal/BlaR1 system associated with the Mecl/MecR1
machinery may enhance antibiotic resistance by improv-
ing capability to respond. Affinity of the monomer could
reflect the capacity to form some intermediate states
required during the induction process and the Blal-NTD
might play a crucial role thanks to its inter-operator
adaptability.

The dimerization of the repressor on the DNA involves a
tertiary rearrangement of the DNA—monomer complex

In the monomer pathway mechanism, a first monomer
binds to the DNA, exhibiting the monomer-DNA
conformation described in this work. This structure is
indeed stabilized by a large number of protein-DNA
interactions that are systematically present in the dimer—
DNA interface (Table 3). Indeed, the comparison between
the position of the monomeric and dimeric repressor on
the DNA gives a 30° rotation. In this conformational
change, the overall position of the protein on the DNA
remains the same, that is the helix H3 stays in the main
groove, but it shifts from one base (Figure 5). In this
model, the energetically favorable monomer—-DNA inter-
face is destabilized upon the binding of another monomer
molecule onto the DNA-monomer complex. However, it
is easy to interpret the increase of the global affinity by
considering the gain in enthalpy and entropy due to the
presence of two DNA-monomer interfaces and an
additional dimerization interface. We note that some
energy is stored in the two monomer—DNA interfaces
when a dimer-DNA complex is formed, that can be
potentially released if the dimerization domain is
destabilized.

A monomerization of the repressors can explain the
derepression mechanism

The values of the monomer—-DNA affinities measured in
this work (hundreds of micromolar) and the concentra-
tions of repressors measured in the cell (2uM) (9) show
that monomers are not able to repress the genes. In the
presence of PB-lactam antibiotics, the induction process
modifies the affinity of the protein repressor for its cognate
DNA sequence. The lower affinity measured for the
monomer to its DNA-binding domain could then be
sufficient to explain the derepression of the gene.
However, intermediate steps driving the release mecha-
nism are not clearly understood.

Biochemical investigations performed on the blaRI/
blal/blaZ B-lactamase regulation system (15) proposed
that proteolysis drives the signal transduction. Indeed, in
Staphylococci, the BlaR1 penicillin receptor is a membrane
protein containing a zinc metalloprotease motif. Acylation
of the sensor-transducer via penicillin binding triggers the
signaling mechanism leading to bla genes transcription.
This event has been proposed to be the result of the
cleavage of the dimeric S. aureus Blal repressor between
residues N101 and F102. Two induction models have been
proposed for the bla operator transcription under
B-lactams stress conditions (12,14). The first takes into
account the fact that a fourth gene, as blaR2 in bla strains,
encodes a key protein necessary for the CTD accessibility
improvement (5,6,13). The second considers that an
inductor produced in the cytoplasm in stress conditions
can modulate the quaternary blocked conformation of the
regulations elements. In this way, the inductor would be
able to act as a proteolysis enhancer like in the TetR
system (40). To sum up, the lower affinity of the repressor
during the induction process could be the result of either a



proteolysis of the repressor, leading to monomerization,
or a structural change of the dimer that would place the
two monomers in an unfavorable conformation, leading
to a dimer—DNA dissociation constant almost equal to a
monomer—DNA dissociation constant.

The energetically most favorable monomer—-DNA
conformation could represent a possible intermediate state
induced in the inactivation process

For both schemes, the structural study of the monomeric
BLBIaIl-NTD bound to its DNA gives some information
on a possible intermediate state induced in the inactivation
process, and sheds light on the structural role of the C-
terminal domain in the DNA-binding affinity.

In both crystal structures of the SAMecl and SABIal in
interaction with the bla and mec DNA sequence (5,6), the
cleavage site is not easily accessible, suggesting that
conformational changes may be necessary. Furthermore,
it has been observed that two forms, open and closed,
could co-exist, allowing structural adaptation between
mec and bla operators with different inter-N-terminal
domain distances (10,41).

This structural flexibility may be permitted by the high
dynamics observed for the dimerization part of the
repressors (7). Here, considering the structural differences
between the monomeric and dimeric interactions of Blal
with DNA, we propose a model where the dimer placed on
DNA plays the role of a tense spring that can be released
by a modification of the dimerization domains of the
repressors. This tense spring is composed of a transla-
tional component similar to the one observed between the
open and closed form (6) and a supplementary rotational
contribution of 30°. During this release, the monomer
repressor would slide 30° inside the major groove of the
DNA until it reaches its equilibrium conformation (as
described in this article). Figure 5C displays the relative
position obtained for the two CTDs in case of a complete
rigid structure and illustrates an incompatibility between
the twist of the two NTDs and conservation of an intact
dimerization domain. This twist displacement could in
practice modify the accessibility of the cleavage site by
involving a modification of the secondary structure
arrangement in the core of CTD and could result in
breakage of covalent bonds in this region. This structural
modification would be responsible for an irreversible
separation of the two helices of the dimerization domain,
substantiating the possible existence of an inactivation-
state DNA-binding domain conformation. In the MexR
repressor study (42), two conformations have been
observed as well. On one hand, the open state exhibits
optimal DNA-binding domains interspaces, which privi-
leges the association with the operator. On the other hand,
a modification in between the DNA-binding domains
avoids repressor stowage on DNA. Furthermore, this
sliding mechanism might be an explanation for a potential
repressor ability to adjust contact between the closed and
open form.

Recently published results (43) underline the fact that
mobility in the tertiary arrangement might be a useful
requirement for thin regulation processes, even in
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eukaryotic systems. Indeed, the homeodomain of the
transcription factor Pdx1 is able to bind a 15-bp DNA
promoter (with a consensus binding site) and adopt two
slightly different conformations in the same asymmetric
unit. Both complexes differ by a 2.4° rotation. Additional
modifications such as DNA curvature and N-terminal
local adjustments have been also raised by the author.

Similarly, major structural rearrangements controlled
by small molecules have been highlighted for other
systems as hormone receptors (44). For the FadR
transcriptional regulator (45), interaction with DNA is
disrupted by the acyl-CoA binding. Dramatic structural
rearrangements happen which leads the DNA recognition
helices being separated by 7.2A. Another repressor
inactivation process has been published concerning
bacterial resistance to antibiotic. Indeed, the TetR
repressor is released in presence of tetracycline. This
molecule associated with Mg®" plays the role of the
inducer. Inducer binding generates structural changes in
the CTD. Thus, a pendulum-like motion increases
the separation of the attached DNA-binding domains
(40) by 3 A.

These models give strong support to the hypothesis that
an inducer or a blaR2 product participates to the initiation
of C-terminal remodeling and propagation to the
N-terminal parts (46). In presence of the effector, specific
and optimized contacts between the N-terminal part and
the DNA could be re-established by increasing the
interspacing between the TACA/TGTA motifs. The
differences in the length of the interspaces between the
recognition motifs could limit the DNA-binding domains
adaptation quality of SAMecl-WT to bla operator.

To conclude, the weak affinities obtained for the NTD
and the monomer—DNA structure demonstrate the crucial
role played by the CTD in an optimal positioning of the
N-terminal units. When a dimer—-DNA complex is formed,
sliding of the repressor on the DNA creates a tense spring,
which can be released by the structural modifications
produced by an inductor during the induction process.
The monomer—-DNA structure described here may then be
seen as an intermediate state during the monomer path-
way repression scheme, and also during induction after
destabilization of the dimerization domain.
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